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A B S T R A C T   

Kinetic studies are important for the design and optimisation of thermochemical processes. This 
study involved analysis of the pyrolysis and combustion behaviour of the agricultural residues 
(bean straw and maize cob) by non-isothermal thermogravimetric analysis. Increasing the heating 
rate from 10 to 40 K min− 1 during both combustion and pyrolysis increased the degradation rate 
of both feedstocks and the gaseous yields of H2O, CO and CO2. The activation energies deter-
mined by the Flynn-Wall-Ozawa and Kissinger-Akahira-Sunose methods varied which reveals that 
the pyrolysis and combustion of these agricultural residues are complex processes involving 
multiple reactions. The average activation energy of maize cob and bean straw were 214.15 and 
252.09 kJ mol− 1 for pyrolysis and 202.26 and 165.64 kJ mol− 1 for combustion, respectively. The 
order of reaction ranged between 9.0-10.3 and 6.3–13.3 for both feedstocks in combustion and 
inert environments, respectively. Modelled data is important to enable the optimisation of reactor 
design for pyrolysis and combustion for energy generation from agricultural residues.   

1. Introduction 

Biomass is a CO2 neutral abundant energy source which accounts for about 10% of global primary energy consumption with further 
expansion predicted in the future [1]. Maize and bean are commonly cultivated crops globally, thereby generating large volumes of 
agricultural residues [2] with the potential for energy generation. The global productions of bean and maize are estimated to be 28.9 
[3] and 1147 million tonnes [4] respectively. Combustion is the most widely used technology globally [5], while pyrolysis is gaining 
interest because of its potential to produce solid (char), liquid (bio-oil), and gaseous components [6–8] with the potential for a wide 
range of potential uses e.g. heat, electricity, transport fuel, hydrogen production, energy storage etc. Kinetic studies provide vital 
information in designing and modelling of combustion/pyrolysis and gasification systems as pyrolysis is an intermediate step 
providing a correlation between reaction temperature (T), conversion rate (α) and reaction rate constant (k) [9]. Kinetic studies can 
also help in explaining how different processes in a pyrolizer/gasifier affect product yields and composition [10]. 

Thermogravimetric analysis (TGA) is the most common technique to study the thermal behaviour of materials and to derive kinetic 
parameters such as activation energy and order of reaction. The methods used in analysing kinetic parameters are categorised as model 
fitting and model free. Model fitting involves fitting different models to the data and the model with the best statistical fit is then 
chosen for determination of the kinetic parameters. Model fitting methods require only a single TGA measurement for a complete 
kinetic study. However, their inability to uniquely determine the kinetic model is a challenge unlike for model-free methods where 
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kinetic parameters are determined without pre-assumption of a model and the errors associated with wrong presumption of the model 
can be eliminated [11]. Furthermore, the model free method is flexible (accommodating changes in reaction mechanism) and uses 
multiple heating rates which minimises mass transfer limitations [12]. Model free methods are the most common method which have 
been used to study the kinetics of biomass materials such as microalgae [13], cardoon [14], Para grass (Urochloa mutica) [15], smooth 
cordgrass (Spartina alterniflora) [16], coffee husk [17] and wood based feedstocks (Pinus elliottii, Eucalyptus grandis, Mezilaurus itauba 
and Dipteryx odorata) [18]. Iso-conversional (model free) methods are used to determine kinetic parameters without pre-assumption of 
a model whereby the error associated with wrong presumption of the model can be eliminated [11]. They are based on the assumption 
that the reaction rate of any conversion is only dependent on temperature [19]. However, studies in the literature show significant 
variations in kinetic parameters associated with different feedstocks, together with the atmosphere and analytical approaches used 
[15,16,19–25]. Gupta and Mondal [26], studied the kinetics of maize cob pyrolysis using Friedman, FWO, KAS and Starink methods 
and reported that the average activation energies were 197.63, 186.06, 185.39 and 185.80 kJ mol− 1 respectively. While Castiblanco 
et al. [27], assessed the effect of CaO and CaCO3 on the kinetic parameters of maize cob pyrolysis and reported that addition of CaO or 
CaCO3 increased the activation energy from 58.35 to 69.33 and 66.07 kJ mol− 1, respectively. Although the kinetics of maize cob 
pyrolysis have been studied previously, combustion and the evolving gases during the pyrolysis process have not been studied. 
Furthermore, to our knowledge there are no kinetic studies in the literature on the pyrolysis and combustion of bean straw. This study 
focussed on analysing the combustion and pyrolysis behaviour of corn cob and bean straw with the development of kinetic models 
from model fitting (i.e. universal integral approach) and model-free methods i.e., Flynn-Wall-Ozawa (FWO) and 
Kissinger-Akahira-Sunose (KAS) in combination. 

2. Materials and methods 

Bean straw obtained from Nafferton Farm (a research/commercial farm owned and managed by Newcastle University; 
54◦59′07.1′′N, 1◦53′59.4′′W), was part of an organic crop rotation left as residue in the field to dry before being collected and stored 
under cool/dry conditions. Maize cobs were kindly provided by Barfoots of Botley Ltd, UK (https://www.barfoots.com). Maize 
(supersweet varieties) was harvested at Stage R3 (milk stage) of maturity in a range of countries (Senegal, Morocco, United States of 
America, South Africa, Greece, Germany, United Kingdom, France and Spain) and stored at 273–278 K for 1–25 days. Proximate 
analysis of maize cob and bean straw (Table 1) was conducted following the BS1016-6 standard. Ultimate analysis (i.e., CHN) was 
carried out using a Carlo Erba 1108 Elemental Analyser. High heating value (HHV) was determined using a CAL2K ECO bomb 
calorimeter. 

2.1. Thermogravimetric analysis (TGA) 

Prior to the TGA experiments, raw/dried maize cob and bean straw samples were ground to a particle size <250 μm to minimise 
mass and heat transfer limitations [14]. About 10 mg of sample was placed in a Netzsch Jupiter STA 449C TG-DSC system connected to 
a Netzsch Aeolos 403C quadrupole mass spectrometer (QMS). The system was heated from 298 to 1273 K at a heating rate of 10, 20, 30 
and 40 K min− 1 in either helium or a mixture of 20% oxygen +80% helium by volume (referred to as air subsequently) at a flow rate of 
30 ml min− 1. These heating rates were low enough to favour efficient homogenous decomposition and minimise mass and heat transfer 
effects. High heating rate produces a large temperature gradient within particles, thereby affecting the kinetic parameters [28]. The 
QMS was operated in full scan mode over the range m/z 10–300 and mass spectrometric data were acquired and processed using 
Quadstar version 7.x. 

2.2. Kinetic modelling 

The iso-conventional Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) methods were used to determine activation 
energies as they do not require any knowledge of the reaction mechanism [11,29]. The methods assume that the reaction rate is 
independent of heating rate [14]. Data obtained from TGA experiments was used to determine conversion, α (a fraction of the material 

Table 1 
Properties of bean straw and maize cob feedstocks (values in the bracket are standard deviation for n = 3).  

Property Maize cob Bean straw 

Proximate analysis (dry basis)   
Ash (% wt) 3.0 (±0.5) 6.2 (±0.7) 
Volatile (% wt) 80.7 (±0.7) 72.7 (±4.9) 
Fixed carbona (% wt) 16.3 (±0.9) 21.1 (±4.9) 
Ultimate analysis (dry and ash free)   
C (%) 46.6 (±1.9) 45.0 (±2.6) 
H (%) 7.7 (±1.2) 5.8 (±0.0) 
N (%) 2.1 (±0.6) 2.0 (±1.0) 
Oa (%) 43.6 (±2.3) 47.2 (±2.8) 
High heating value (HHV) (MJ kg− 1) 18.9 (±0.1) 17.3 (±1.0)  

a By the difference. 
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decomposed in time t [24]). The conversions outside the range 0.1–0.8 were not considered in the KAS and FWO plots while deter-
mining the activation energy due to low correlation values [22]. Furthermore, the first 10% conversion is affected by evaporation of 
water while the last 20% is not considered, because the mass loss is negligible. The pre-exponential factor and the reaction order were 
determined following the Universal Integral method [13]. Due to the complexity of the pyrolysis and combustion processes and the 
composition of the feedstocks, a simple first order reaction scheme (Equation (1)) with an associated kinetic model was adopted [30]. 

A(s)→
k bB(s) + (1 − b)C(g) (1)  

where A(s) is the initial solid reactive, B(s) is the solid residue, b is the production coefficient of B(s), C(g) is the volatile matter formed 
and k is the reaction rate constant defined as; 

k(T)=Aexp
(

−
E

RT

)

(2)  

where A (min− 1) is pre-exponential factor, R is the universal gas constant (8.314 J K− 1 mol− 1), E (kJ mol− 1) is the activation energy 
and T (K) is the temperature. 

The thermal degradation of a material is defined from the TGA data in terms of conversion, α (a fraction of the material decomposed 
in time t) that is obtained from Equation (3) [24]. 

α=
mo − mt

mo − mf
(3)  

where mo = initial mass of feedstock, mt = mass of feedstock at time t and mf=final mass. 
The rate of thermal degradation/conversion of biomass, defined as reaction rate is given by Equation (4) [13,31]. 

dα
dt

= k(T)f (α) (4)  

where: f(α) is a differential reaction model, T is the sample temperature and k(T) is the reaction rate constant as a function of tem-
perature (Arrhenius equation) as described by Equation (2). From Equations (2) and (4), the reaction rate can be expressed as: 

dα
dt

=Aexp
(

−
E

RT

)

f (α) (5) 

For the non-isothermal process, temperature changes with time at a constant heating rate [23]. 

β=
dT
dα.

dα
dt

. (6) 

Combining equations (5) and (6) gives 

dα
dT

=
A
β

exp
(

−
E

RT

)

f (α) (7) 

Equation (7) is the differential form of the kinetic equation and consequently, the integral form is 

g(α)=
∫α

0

dα
f (α)=

∫T

To

A
β

e

(

− E
RT

)

dT =
AE
βR

∫xo

x

x− 2e− xdx=
AE
βR

P(x) (8)  

where g(α): the integral reaction model, To and T are the temperatures at the beginning and end of the reaction respectively, x : E
RT and 

P(x) is a temperature integral with no exact analytical solution. Equations (7) and (8) are used in the determination of the kinetic 
parameters by either isoconversional or model-based methods. Equation (8) is solved by use of approximation. The difference between 
the iso-conversional methods is therefore based on the type of approximation used in solving Equation (8) [14]. 

2.2.1. Kissinger-Akahira-Sunose (KAS) 
Kissinger-Akahira-Sunose (KAS), uses the approximation given by Equation (9) [14]. 

P(x)= x− 2e− x (9)  

which is substituted in Equation (8) to give Equation (10). 

In
(

β
T2

)

= In
(

AE
Rg(α)

)

−
E

RT
(10) 

A plot of In
(

β
T2

)
against 1

T for each conversion ratio produces a straight-line graph whose slope is used to obtain the activation 

energy. 
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2.2.2. Flynn-Wall-Ozawa (FWO) 
Flynn-Wall-Ozawa (FWO), uses Doyle’s approximation: 

log(p(x))≈ − 2.315 + 0.457x (11) 

Combining Equations (8) and (11) gives Equation (12), the FWO model. 

log β= log
(

AE
Rg(α)

)

− 2.315 − 0.457
E

RT
(12) 

The activation energy is obtained from the slope of the plot of log β against 1
T. 

2.2.3. Universal integral 
Rearranging Equation (5) and integrating both sides 

g(α)=A exp
(
− E
RT

)

t (13) 

For the non-isothermal process, temperature, T of experiment at time, t is determined by Equation (14) [23]. 

T = βt + To (14) 

Substituting for t from Equation (14) in Equation (13), 

g(α)=A
β
(T − T0)exp

(

−
E

RT

)

(15) 

Rearranging Equation (15) and introducing natural log (ln) on both sides, gives Equation (16). 

In
[

g(α)
T − T0

]

= In
[

A
β

]

−
E

RT
(16) 

A plot of In
[

g(α)
T− T0

]
against 1T gives a straight line whose gradient is − E

R, from which the activation energy is calculated and compared 

with the value obtained from FWO and KAS. The intercept is In
[

A
β

]
from which the pre-exponential factor A is calculated [13]. The 

order of reaction n is obtained from the integral reaction model g(α). 

Fig. 1. Thermogravimetric (TG) of (a) maize cob and (b) bean straw, and differential thermogravimetric (DTG) curves of (c) maize cob and (d) bean 
straw in He at heating rates of 10, 20, 30 and 40 ◦C min− 1. 
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Fig. 2. Effect of heating rate on (a) H2O, (b) CO and (c) CO2 release from maize cob in an inert environment.  

Fig. 3. Effect of heating rate on (a) H2O, (b) CO and (c) CO2 release from bean straw in an inert environment.  
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3. Results and discussion 

3.1. Pyrolysis of maize cob and bean straw (TGA in He, an inert environment) 

Maize cob and bean straw showed a three-stage decomposition in helium (He) (Fig. 1a and b) i.e. moisture release at temperatures 
below 473 K (Stage I); decomposition of hemicellulose and cellulose together with partial decomposition of lignin 473-682 K for maize 
cob and 473–738 K for bean straw (Stage II); and lignin/primary char decomposition between 682 and 1273 K for maize cob and 
738–1273 K for bean straw (Stage III). Char decomposition involved C–H and C–O bond cleavage, forming a carbon rich solid [32]. 

The highest rate of weight loss was attained during Stage II (Fig. 1) due to the release of volatiles, with residual weights of 18% and 
25–26% for maize cob and bean straw respectively at the end of this stage. The rate of weight loss was greater with increasing heating 
rate from 10 to 40 K min− 1 (Fig. 1c and d). The rate of weight loss became higher and broader with increasing heating rate because 
components in the biomass degrade simultaneously at high heating rate thereby causing an overlap between the peaks [16]. The 
heating of biomass particles at a low heating rate occurs gradually leading to more effective heat transfer to the material bed and 
between the biomass particles [33]. Heat transfer is not effective at higher heating rate (meaning, more time or a higher thermal 
gradient is required to complete the thermal degradation [33]), therefore the minimum heat required for cracking feedstocks to release 
volatiles is reached later at higher temperatures [24,34], causing the simultaneous decomposition of the biomass components. 
Increasing heating rate generates a large temperature gradient across the biomass particles due to low thermal conductivity of the 
material [35]. The peak between 923 and 965 K (Fig. 1d) could be due to the decomposition of a thermally stable organic carbon (char) 
not seen in the other sample, consistent with the evolved gas data (see later). 

The effect of heating rate on the decomposition rate was also reflected in the peak yields of, H2O (Figs. 2a and 3a), CO (Figs. 2b and 
3b) and CO2 (Figs. 2c and 3c) which corresponded to the peak DTG temperature. The H2O peak at a temperature <473 K corresponds to 
the release of cellular water and external water held by surface tension [36]. The peak CO2, CO and H2O yields at temperatures of 
473–682 K for maize cob and 473–738 K for bean straw are due to condensation and, decomposition such as decarbonylation and 
decarboxylation. Decomposition forms unstable compounds such as carbonyl and carboxyl groups which then undergo dehydration, 
fragmentation and secondary reactions to form CO2, CO and H2O [37]. The trends of the TG and DTG curves agree well with those for 
other biomass materials such as cardoon leaves and stem [14], para grass [15] and smooth cordgrass [16]. 

3.2. Combustion of maize cob and bean straw (TGA in 80%He 20% O) 

At a temperature >473 K, a significant reduction in mass was observed up to 676 K for bean straw and 686 K for maize cob (Fig. 4a 
and b). The highest rate of weight loss was due to the release of volatiles which were subsequently oxidised. The slower rate of 
oxidation of partially decomposed lignin and char occurred at a temperature range of 676–1273 K for bean straw and 686–1273 K for 

Fig. 4. A comparison of thermogravimetric (TG) of (a) maize cob and (b) bean straw, and differential thermogravimetric (DTG) curves of (c) maize 
cob and (d) bean straw in air. 
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Fig. 5. Effect of heating rate on the yield of, (a) H2O, (b) CO and (c) CO2 following the combustion of bean straw in air.  

Fig. 6. Effect of heating rate on the yield of, (a) H2O, (b) CO and (c) CO2 following the combustion of maize cob in air.  
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maize cob. This reaction is diffusion limited, as oxygen needs to diffuse into the particle or react at the surface of the char particle. The 
residual ash content of the feedstock was around 5% for maize cob and 8–9% for bean straw. The TG and DTG profiles were similar to 
those obtained from the combustion of other biomass feedstocks i.e. olive prunings, cotton residue, cardoon, olive kernels and peach 
kernels [38], empty fruit bunches and palm kernel shell [39]. As with pyrolysis, CO2, CO and H2O were detected in the gaseous product 
(Figs. 5 and 6). The impact of varying heating rate on the TGA/DTG (Fig. 4a–d) and gas profiles (Fig. 5a–c and 6(a–c)) from combustion 
of both feedstocks were identical to those observed following pyrolysis. The H2O peaks at a temperature <473 K (Fig. 5a) were due to 
the release of absorbed moisture. The H2O yields peaked between 473 and 676 K for bean straw and 473–686 K for maize cob (Fig. 6 a) 
which were likely attributed to combustion of oxygen containing functional groups, most especially hydroxyl groups as suggested by Li 
et al. [36]. Meanwhile, the H2O produced at temperatures >676 K for bean straw and 686 K for maize cob were likely due to the 
combustion of H2 (produced from dehydrogenation) and other volatiles i.e. CH4 and other hydrocarbons/oxygenated compounds 
(produced from demethylation). The CO and CO2 peaks between 473 and 676 K for bean straw (Fig. 5b and c) and 473–686 K for maize 
cob (Fig. 6b and c) were due to decomposition of carboxyl and carbonyl groups. Between 676 and 1073 K for bean straw and 686–1073 
K for maize cob, the CO and CO2 yields corresponded to the combustion of volatiles and the carbon rich solid residue [40] and 
Boudouard reaction i.e. C+ CO2 ↔ 2CO. 

3.3. Kinetic parameters 

The regression lines for FWO and KAS were parallel (Figs. 7 and 8) with high correlation coefficients (R2 > 0.94) (Tables 1 and 2), 
thereby suggesting that the order and mechanism of thermal degradation reactions are similar [22] with a high degree of accuracy of 
the results [41]. Similar regression plots were also reported for melon seed husk [22]. The activation energies calculated from both KAS 
and FWO were conversion dependent, indicating that pyrolysis and combustion of bean straw and maize cob involve multiple reactions 
such as thermal cracking, condensation and depolymerisation (Tables 2 and 3). Such variations in activation energies following 
thermal conversion were also reported for soybean straw [42], poplar wood [11] and smooth cordgrass [16]. The average activation 
energies obtained by KAS and FWO were 213–215 kJ mol − 1 for maize cob and 250–254 kJ mol − 1 for bean straw in an inert envi-
ronment but were higher than the 202 kJ mol − 1 for maize cob and 165–167 kJ mol − 1 for bean straw in air (Tables 2 and 3). The 
difference in activation energies obtained from the two methods was negligible, likely due to the distinctive linear approximation to 

Fig. 7. Kinetic plots for maize cob using (a) Flynn-Wall-Ozawa and (b) Kissinger-Akahira-Sunose in air.  
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the temperature integral [43]. The high level of similarity confirms the predictive power of KAS and FWO. As shown in Tables 2 and 3, 
a lower activation energy in air than He is due to heat generated from exothermic oxidation/combustion reactions in air and also 
indicating that both feedstocks had lower porosity for He than for air. The higher activation energy in He indicates that combustion is 
easier than pyrolysis from a reactivity viewpoint. Similar results were reported for tobacco waste [44]. The activation energy of bean 
straw in air was much lower than in helium which could be due to the higher oxygen content of bean straw (47.2%) as the organically 
bound oxygen in the feedstock would provide some of the oxygen required for combustion [45]. However, the activation energy of 
bean straw in He was higher than that of maize cob likely due to the higher volatile content in maize cob where more energy is required 
to decompose the fixed carbon in bean straw. Therefore, these results suggest that bean straw has higher thermal resistance to 
degradation than maize cob in an inert environment i.e. He which is likely due to the much higher lignin content of bean straw (10.2% 

Fig. 8. Kinetic plots for bean straw using (a) Flynn-Wall-Ozawa and (b) Kissinger-Akahira-Sunose in He.  

Table 2 
Activation energy (E) and coefficient of determination (R2) of maize cob and bean straw in an inert atmosphere (He) using both Flynn-Wall-Ozawa 
(FWO) and Kissinger-Akahira-Sunose (KAS).  

Conversion Maize cob Bean straw  

E (kJ mol− 1) R2 E (kJ mol− 1) R2  

FWO KAS FWO KAS FWO KAS FWO KAS 
0.1 153.56 152.72 0.9915 0.9845 179.59 180.4 0.993 0.9924 
0.2 192.35 192.93 0.9976 0.9974 215.63 217.69 0.9999 0.9999 
0.3 202.05 202.89 0.9976 0.9974 230.36 232.78 0.9929 0.9923 
0.4 210.55 211.63 0.9976 0.9973 229.89 231.96 0.9877 0.9867 
0.5 219.22 220.55 0.9976 0.9973 239.99 242.30 0.9927 0.9921 
0.6 229.58 231.19 0.9976 0.9973 252.84 255.56 0.9927 0.9920 
0.7 240.15 242.10 0.9975 0.9973 405.09 415.20 0.9899 0.9894 
0.8 257.52 267.43 0.9425 0.9587 – – – – 
Average 213.12 215.18   250.48 253.70    
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vs 1.5% [2]) since the resistance to thermal decomposition is in the order: hemicellulose < cellulose < lignin. 
Pyrolysis and combustion of bean straw and maize cob can be described by a kinetic function of the form (1 − α)n where n is the 

order of reaction which ranged from 9.0 to 10.3 and 6.3–13.3 for both feedstocks in air and He respectively (Tables 4 and 5). The n 
values are relatively constant which suggests that the reaction mechanism is likely independent of heating rate. The order of reaction in 
this study is comparable to values reported for the pyrolysis of the microalgae Chlorella vulgaris (n = 9) [23] and soybean (n =

8.19–17.31) [42]. 

4. Conclusion 

The combustion and pyrolysis of maize cob and bean straw in a thermogravimetric analyser occurred through moisture release, 
devolatilisation and char degradation. The produced gas during both pyrolysis and combustion contained H2O, CO and CO2 and their 
yields as well as the rate of feedstock degradation increased with increasing heating rate. Maize cob and bean straw have high volatile 
content, making them suitable feedstocks for thermochemical conversion methods. The activation energy in air was lower than in He 
which indicates that combustion is easier than pyrolysis from a reactivity viewpoint. Activation energy changed with conversion which 
indicates that the combustion and pyrolysis processes involve multiple reactions. Combustion and pyrolysis kinetic models were 
obtained, and the model can be used in predicting the combustion and pyrolysis behaviour of bean straw and maize cob. 
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Table 3 
Activation energy (E) and coefficient of determination (R2) of maize cob and bean straw in air (80% He + 20% O2) using Flynn-Wall-Ozawa (FWO) 
and Kissinger-Akahira-Sunose (KAS).  

Conversion Maize cob Bean straw  

E (kJ mol− 1) R2 E (kJ mol− 1) R2  

FWO KAS FWO KAS FWO KAS FWO KAS 
0.1 171.57 171.49 0.9937 0.9930 165.24 165.19 0.9317 0.9251 
0.2 197.68 198.60 0.9850 0.9836 188.05 188.59 0.9893 0.9883 
0.3 206.44 207.57 0.9938 0.9932 182.10 181.97 0.9919 0.9911 
0.4 201.63 202.30 0.9961 0.9957 175.10 174.29 0.9978 0.9976 
0.5 228.63 230.41 0.9938 0.9932 169.63 168.18 0.9958 0.9952 
0.6 287.10 291.46 0.9952 0.9949 120.16 115.37 0.9883 0.9859 
0.7 199.81 198.52 0.9920 0.9911 166.42 163.09 0.9932 0.9922 
0.8 124.64 118.21 0.9992 0.9989 165.36 161.49 0.9883 0.9864 
Average 202.19 202.32   166.51 164.77    

Table 4 
Reaction order (n) and pre-exponential factor (A) following pyrolysis in air (80% He +20% O2) in response to increased heating rate. The Activation 
energies of maize cob and bean straw are 202.26 and 165.64 kJ mol− 1 respectively.  

Heating rate Maize cob Bean straw  

n A (min− 1x1017) n A (min− 1x1014) 
10 10.0 8.14 9.3 3.00 
20 10.1 7.20 9.0 2.73 
30 10.2 7.02 9.3 3.27 
40 10.3 6.66 9.4 3.38  

Table 5 
Reaction order (n) and pre-exponential factor (A) following pyrolysis in an inert environment (He) in response to increased heating rate. The acti-
vation energies of maize cob and bean straw are 214.15 and 252.09 kJ mol− 1 respectively.  

Heating rate Maize cob Bean straw  

n A (min− 1 × 1018) n A (min− 1 × 1023) 
10 6.8 4.83 13.3 3.04 
20 6.4 1.83 12.8 2.31 
30 6.3 1.09 12.8 1.99 
40 6.3 1.02 12.5 2.37  
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