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Abstract 

Exposure to environmental toxicants can lead to epimutations in the genome and an increase in differential DNA methylated regions 
(DMRs) that have been linked to increased susceptibility to various diseases. However, the unique effect of particular toxicants on the 
genome in terms of leading to unique DMRs for the toxicants has been less studied. One hurdle to such studies is the low number of 
observed DMRs per toxicants. To address this hurdle, a previously validated hybrid deep-learning cross-exposure prediction model is 
trained per exposure and used to predict exposure-specific DMRs in the genome. Given these predicted exposure-specific DMRs, a set 
of unique DMRs per exposure can be identified. Analysis of these unique DMRs through visualization, DNA sequence motif matching, 
and gene association reveals known and unknown links between individual exposures and their unique effects on the genome. The 
results indicate the potential ability to define exposure-specific epigenetic markers in the genome and the potential relative impact of 
different exposures. Therefore, a computational approach to predict exposure-specific transgenerational epimutations was developed, 
which supported the exposure specificity of ancestral toxicant actions and provided epigenome information on the DMR sites predicted.
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Introduction
Epigenetics studies the alterations to subsequent protein expres-
sion and gene expression that do not change the DNA sequence 
[1]. Epigenetics is defined as “molecular processes and factors 
around DNA that regulate genome activity, independent of DNA 
sequence, and are mitotically stable”. Epigenetic changes typically 
involve the induction, repression, or silencing of gene expres-
sion through epigenetic modifications such as DNA methylation, 
non-coding RNA (ncRNA), chromatin structure, and histone mod-
ifications [2].

One of the most studied epigenetic modifications of DNA is 
DNA methylation, but much remains to be learned about the 
underlying mechanisms. DNA methylation refers to the addition 
of a methyl group to the fifth carbon of primarily cytosine at a 
CpG nucleotide site [3]. This process can modify gene expression 
without changing the DNA sequence. In addition, studies show 
that DNA methylation influences the expression of genes and the 
regulation of protein binding [4]. These alterations in epigenetics 

develop gene expression patterns that can cause adverse clini-

cal outcomes, such as allergies, obesity, schizophrenia, cancer, or 

Alzheimer’s disease, to name a few [5, 6].

Although the DNA sequence does not change with environ-

mental effects, the governing methylation dramatically alters in 

response to the environment [5]. Environmental epigenetics is the 

main molecular mechanism that helps to promote phenotypic 

and physiological alterations [7, 8]. Various environmental factors 

such as nutrition, stress, or exposure to toxicants can alter the 

epigenome [9]. In addition, environmental factors early in devel-
opment can permanently change the cellular molecular function, 
impacting later life diseases or phenotypes [7].

Examples of transgenerational inheritance are well studied in 
the literature. Many environmental toxicants have been shown 
to correspond to the transgenerational inheritance of increased 
disease susceptibility. For example, atrazine is a common her-
bicide in the USA and can cause the deterioration of multi-
ple organs in animals [10]. Atrazine increases the risk of testis 
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Figure 1: architecture of the hybrid DL-ML model. The model consists of two components: a deep neural network and a traditional ML classifier. The 
DMR sequence is input using a 5 × 1000 one-hot encoding, which is fed into two Convolutional Neural Network (CNN) blocks, each consisting of two 1D 
CNNs followed by a max pooling layer. The output of the last block is flattened, then passed to two dense layers, and then passed into a SoftMax layer 
that makes an internal prediction. After the deep neural network is trained, the output of the first CNN block is used as features to the ML classifier, in 
this case XGBoost. The XGBoost classifier makes the final prediction as to whether the input sequence is a DMR

disease, kidney disease, prostate disease, and an altered age at 
puberty [11]. Glyphosate is another commonly used herbicide 
in the USA that is capable of inducing the transgenerational 
inheritance of disease and germline (e.g. sperm) epimutations 
[12]. Pesticides increase the risk of developing neurodegenera-
tive diseases, including Parkinson’s disease, Alzheimer’s disease, 
attention deficit hyperactivity disorder, and amyotrophic lateral 
sclerosis [13–15]. Dichloro-diphenyl-trichloroethane (DDT) is a risk 
factor for obesity transgenerationally and also induces increased 
rates of testis, ovary, and kidney pathologies [16, 17]. Various 
environmental toxicant exposures increase the risk of different 
diseases. Predicting regions of the genome susceptible to develop-
ing into transgenerational epimutations will improve the ability to 
diagnose and prevent these diseases.

Previous work [18] shows that a hybrid deep machine learn-
ing (DL-ML) model can accurately predict a DNA region’s likeli-
hood to be differentially methylated (DMR) as a result of ances-
tral exposure to nine environmental toxicants: atrazine [11], 
DDT [19], glyphosate [20], vinclozolin [21], pesticides perme-
thrin and N, N-diethyl-meta-toluamide [22], dioxin [23], jet fuel 
[24], methoxychlor [25], and plastics bisphenol A and phtha-
lates [26]. The hybrid DL-ML model (see Fig. 1) takes advantage 
of the deep learning network’s ability to learn complex features 
from input DNA sequences, while the ML model overcomes the 
weakness of the DL model due to fewer training examples by 
using the DL features as input to a boosted random forest clas-
sifier. Using the hybrid DL-ML-based model helps identify DMRs 
across the whole genome beyond those revealed in the training
samples.

However, learning a model to predict DMRs across all expo-
sures can cause over-generalization [18]. One approach to address 
over-generalization is to determine a core set of predictions, which 
is the intersection of the predictions made by several trained

Table 1: method for finding the stopping point (SP) for each expo-
sure. SP is computed as the minimal number of random subsets of 
the predicted DMRs, that when intersected together, result in the 
empty set. SP represents the number of models that must be train-
ing, and their DMR predictions intersected, to arrive at a core set 
of predicted DMRs that exclude noisy predictions due to variance 
in the models

Finding the right number of models for exposure

1. N = # DMRs predicted by one trained hybrid model for exposure
2. R = all regions in genome
3. SP = 0
4. Repeat

a. R’ = randomly choose N regions from all regions in genome
b. R = R intersect R’
c. SP = SP + 1

5. Until R is empty
6. Return stopping point.

models, each randomly initialized. The number of trained mod-
els necessary to generate the core set is computed as the stopping 
point (see Table 1). Also, many of the DMRs for the aforemen-
tioned nine exposures are unique. Therefore, another approach 
to address over-generalization is to learn individual models for 
each exposure. In addition, the mechanism by which epigenetic 
effects are realized may involve a preponderance of DMRs rather 
than a specific DMR signature, which would lead to an over-
generalized model if focused on finding such an elusive signature. 
An exposure-specific model specialized to the exposure can iden-
tify common and unique predicted DMRs not revealed in the 
training data. Such a model also helps to recognize the toxicants to 
which an individual’s ancestors were exposed and allows for early 
preventative treatment to avoid more long-term severe outcomes. 
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Table 2: the stopping point, the number of training DMRs, the average number of predicted DMRs in one model, the core set of DMRs, 
and the unique regions in each exposure for the training DMRs and the core set of predicted DMRs, all for chromosome 7. The same 
6636 non-DMRs were used for training in each exposure

Exposure S.P. Training DMRs Predicted DMRs Core set DMRs Unique training DMRs Unique core DMRs

DDT 6 1543 14 370 3184 520 525
Atrazine 2 243 697 258 112 74
Methoxychlor 3 423 12 476 4474 222 258
Glyphosate 1 5 4 4 5 1
Vinclozolin 2 220 1375 978 70 58
Jet Fuel 27 1973 78 122 21 899 776 2282
Pesticide 15 1145 55 819 15 259 314 1069
Dioxin 79 2431 90 910 35 634 1264 12 760
Plastics 165 12 504 134 884 n/a 10 295 n/a

Table 3: location of the unique DMRs on chromosome 7 for each exposure

 DDT

Atrazine

Methoxychlor

Glyphosate

Vinclozolin

Jet Fuel

Pesticide

Dioxin

Results
Exposure-specific models were used to identify DMRs unique to 
each exposure and common across multiple exposures. These 
DMR sets were analyzed using four techniques: (i) visualize the 
location of the DMRs, (ii) identify transcription factor (TF) matches 
in the DMRs, (iii) identify genes associated with the DMRs, and (iv) 
identify common motifs in the DMRs. The results of this analysis 
for the whole genome are provided in the supplemental mate-
rials. Supplementary Tables S1–S6 show the number of unique 
DMRs in each chromosome for each exposure. Supplementary 
Figs S1–S22 visualize the location of the unique DMRs in each 
chromosome for each exposure. Supplementary Tables S7–S28 list 
the TF matches in each chromosome for each exposure. Supple-
mentary Tables S29–S50 list the genes associated with the unique 
DMRs in each chromosome for each exposure. Supplementary 
Figs S23–S44 show the common motifs found in each chromo-
some for each exposure. Given the size of the analysis results 
for the whole genome, only results for chromosome 7 are shown 
here to demonstrate the analysis in a succinct form. Chromo-
some 7 was chosen somewhat arbitrarily but demonstrates the 
types of conclusions that can be drawn from results on other 
chromosomes.

Table 2 summarizes the data and results for each exposure 
for chromosome 7. Glyphosate and plastics exposures were not 
included in subsequent analysis due to their outlier properties. 
Table 3 shows the location of the unique DMRs in the other seven 
exposures for chromosome 7. 

Motif Alignments for Unique DMRs
After composing the unique DMR set for each exposure, the TOM-
TOM tool is used to find the known motifs in the unique regions 
for each exposure [27]. Table 4 shows the matches found in the 
unique DMRs in each exposure for chromosome 7. Vinclozolin has 
only one motif alignment with its unique DMRs (L8GDR2_ACACA), 
and so is not included in the table for brevity. In the case of chro-
mosome 7, each of these motifs had only one match to the unique 
DMRs. In other chromosomes, there were some cases of more than 
one match, but these cases were rare. The complete results for all 
chromosomes are included in Supplementary Tables S7–S28. 

The results in Table 4 indicate several motifs that have known 
associations to the exposure. Atrazine is an herbicide that has 
been shown to have negative effects on amphibians, such as 
disrupting their endocrine systems and causing developmental 
abnormalities, cancer risk, and neurological problems [28]. Bd11a 
is a gene in amphibians that encodes a TF binding that regulates 
the genes and has a role in cancer progress [29]. It is possible 
that exposure to atrazine could affect the expression or activity 
of Bd11a or its binding to DNA. Another TF match with unique 
DMRs of atrazine is Mef2c. Mef2c is known to play critical roles 
in the development and function of multiple organs and tissues, 
including the heart, skeletal muscle, and brain [30].

With regard to dioxins, some studies have suggested that expo-
sure to it may be associated with an increased risk of certain 
types of cancers [31], which may involve the dysregulation of 
genes controlled by TFs like Zpf384. Early growth response 3 is 
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Table 4: transcription factor matches found in the unique DMRs in each exposure for chromosome 7. The TOMTOM tool is used to find the 
known motifs in the unique regions for each exposure. Vinclozolin has only one motif alignment with its unique DMRs (L8GDR2_ACACA), 
and so is not included for brevity

DDT Atrazine  Methoxychlor Jet Fuel Pesticide  Dioxin

Zfp110 Cic Zfp523 Klf6 Pou2f2 Prdm6 Bhlhe3 Zpf422 Srebf2
Mecom Zzz3 Zfp354a Zfp580 Zbtb37 Lin54 Nfib Zpf287 Foxp2
Tcf7l2 Rbpj Bd11a Zfp641 Zfp90 Zfp189 Nfia Zpf384 Zfp212
Mef2d Cdc5l Zfp513 Klf4 Glis3 Foxi1 Nfx1 Prdm6 RGD1304587
Irf8 Tbx4 Mef2c Glis2 Rara E2f7 Lin54 Prdm4 Rest
Gata1 Mga Stat2 Klf3 Cdx4 Neurod1 Hmg20b Zbtb26 Egr3
Trps1 Tbx5 Zfp449 Cdx2 rdm1 Mef2d Pitx1 Zfp3
Gata2 Tbx1 Rreb1 Zfp382 Znf354b Pou4f2 Zfp189 Nr5a1
Gata4 Tbx6 Sp4 Mynn Zfp41 Scrt1 Zbtb12 Nr2f2
Gata6 Nfactc3 Dbx1 Gli3 Neurod1 Nr6a1 Nr4a1
Etv2 Ikzf3 Zfp410 Gli1 Yy1 Bcl6 Esrrg
Vdr Zbb48 Zscan10 Gli2 Gli3 Zfp829 Esr1
Thra Nr3c1 Zfp770 Rel Klf1 Zfp513 Nr4a2
Thrb Esrra Zfp787 Ar Klf9 Zfp410 Rarb
Zbtb12 Sox10 Nr2e3 Zfp24 Ebf1 Ctcf Nr2e1
Smad4 Zfp283 Nhlh1 Zfp143 Zfp128 Zfp1 Rxra
Myrf Hox6 Nr5a2 Ets1 Myrf Thrb Rxrb
Jund Mxf1 Nr5a1 Tbx2 Sox10 Thra Rarg
Mzf1 Onecut2 Esr1 Sox14 Zfp524 Zfp281 Ppard
Jun Foxp2 Esrrg Sox9 Znf454 Klf5 Nr2f1
Atf7 Rxrb Sox13 Nhlh1 Zfp467 Nr2e3

Sox2 Sox6 Ascl1 Klf16 Spi1
Tbx20 Klf10 Nfkb2
Zbtb26 Klf11 Gl3
Dpf3 Klf14 Nfe2
Rfx5 Klf12 Nwurod1
Rreb1 Sp3 Bhlha15
Elf Znf354b Stoh1
Et1 E2f8 Runx1
Ets2 E2f7 Mycn
Zscan10 Foxk2 Foxa1

a TF that plays a role in the regulation of gene expression in 
response to various stimuli, such as growth factors, cytokines, 
and environmental toxins. Dioxins, which are highly toxic envi-
ronmental pollutants, have been shown to activate early growth 
response 3 in some studies [32]. Additional motifs shown in Table 4 
may suggest previously unknown effects of the exposures on the
genome.

Genes Overlapping Unique DMRs
Table 5 shows the overlapping genes associated with the unique 
DMRs in each exposure for chromosome 7. DDT, atrazine, and vin-
clozolin do not have any overlapping genes. Only a sample of the 
genes overlapping dioxin is shown in this table for brevity. A com-
plete list of all overlapping genes for all chromosomes is included 
in Supplementary Tables S29–S50. 

Previous studies show that there are several connections 
among the associated overlapping genes and the exposures. As 
an example, anti-Müllerian hormone is an important regula-
tor of folliculogenesis in the ovary and can be dysregulated by
dioxin [33].

Most Repeated Motifs in the Unique DMRs
Figures 2–8 show the top five most repeated motifs in the 
exposure-specific DMRs for chromosome 7. Results for the whole 
genome are included in the Supplementary Figs S23–S44. The 
focus here is on motifs that are unique to one exposure. While 

Table 5: overlapping genes associated with the unique DMRs 
in each exposure for chromosome 7. Rat gene locations were 
obtained from the Rat Genome Database (https://rgd.mcw.edu) 
and aligned with the predicted unique DMRs. None were found 
in the unique DMRs for DDT, atrazine, and vinclozolin

Dioxin Jet fuel Methoxychlor  Pesticide

Atxn10 Acvrl1 Cand1 Gzmm Phlda1 Best3
Baz2a Adcy6 Dbx2 Npff Pphln1 Cnn2
Bik Adm2 Gtsf2 Sppl2b R3hdm2 Cyp2b1
Bin2 Akap8l Ilvbl Spryd3 Rapgef3 Endou
Btg1 Amh Mtss1 Tssk5 Tac3 Fzr1
Card10 Apof Olr1045-ps Zfp707 Tmem117 Kif21a
Ccn4 Apol11a Olr1073 Tspan31 Map2k2
Cct2 Apol3 Ptprq Zc3h10 Pdxp
Cdc34 Apol9a RGD1560979 Zfp7 Pglyrp2
Cdc42ep1 Arc RGD1561871 Znf7
Cdk17 Arfgap3 RGD1565356
Cdpf1 Arhgap45 Scyl2
Celf5 Arhgap8 Tafa2
Celsr1 Arhgef25 Them6
Cenpm Arsa Tmem65
Cfap54 Asap1 Tph2
Chadl Asic1
Cradd Cry1

DMRs require the presence of CpGs, the motifs discovered here 
are less likely to contain CpGs, since they are not unique to a par-
ticular exposure. The 1 kb DMRs may contain motifs that do not 
overlap with the CpGs within the DMR.

https://rgd.mcw.edu
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Figure 2: top-five most repeated motifs in the unique DMRs for DDT in chromosome 7. The motifs were identified using the MEME-ChIP discovery tool 
(https://meme-suite.org), using default web parameters, except the motifs were input from the “CIS-BP 2.00 Single Species DNA” database for R. 
norvegicus, and the number of motifs to find was set to five. The MEME tool’s default constraints on motif minimum width (6), maximum width (50), 
and E-value ≤ 0.05 were used

Figure 3: top-five most repeated motifs in the unique DMRs for vinclozolin in chromosome 7. The motifs were identified using the MEME-ChIP 
discovery tool (https://meme-suite.org), using default web parameters, except the motifs were input from the “CIS-BP 2.00 Single Species DNA” 
database for R. norvegicus, and the number of motifs to find was set to five. The MEME tool’s default constraints on motif minimum width (6), 
maximum width (50), and E-value ≤ 0.05 were used

Figure 4: top-five most repeated motifs in the unique DMRs for pesticide in chromosome 7. The motifs were identified using the MEME-ChIP discovery 
tool (https://meme-suite.org), using default web parameters, except the motifs were input from the “CIS-BP 2.00 Single Species DNA” database for R. 
norvegicus, and the number of motifs to find was set to five. The MEME tool’s default constraints on motif minimum width (6), maximum width (50), 
and E-value ≤ 0.05 were used

https://meme-suite.org
https://meme-suite.org
https://meme-suite.org
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Figure 5: top-five most repeated motifs in the unique DMRs for 
methoxychlor in chromosome 7. The motifs were identified using the 
MEME-ChIP discovery tool (https://meme-suite.org), using default web 
parameters, except the motifs were input from the “CIS-BP 2.00 Single 
Species DNA” database for R. norvegicus, and the number of motifs to find 
was set to five. The MEME tool’s default constraints on motif minimum 
width (6), maximum width (50), and E-value ≤ 0.05 were used

The motif visualizations indicate some patterns specific to 
certain exposures. For example, the common motifs in the DMRs 
unique to DDT (Fig. 2) show a predominance of the smaller ACA 
motif, which is associated with DNA-binding in the malaria par-
asite targeted by the pesticide DDT [34]. The common motifs 
in the DMRs unique to jet fuel (Fig. 6) show a predominance of 
the smaller GTG motif, which is associated with increased DNA-
binding of TCF4 [35], and jet fuel (naphthalene) has been observed 
to inhibit the TCF4 binding [36]. The common motifs in the DMRs 
unique to atrazine (Fig. 7) show a predominance of the smaller 
TCT motif, which is associated with transcription of protein gene 
promoters [37], and atrazine has been observed to impact the 
transcription and regulatory processes [38].

Common DMRs Across all the Exposures
The above analyses were performed on the common DMRs across 
all exposures. Table 6 shows the number of DMRs common to at 
least N exposures. The analysis focused on the DMRs that were 
common among at least five (N = 5) exposures.

Table 7 shows the locations in the whole genome of the DMRs 
common to at least five exposures. Not surprisingly, the DMRs 

Figure 6: top-five most repeated motifs in the unique DMRs for jet fuel in chromosome 7. The motifs were identified using the MEME-ChIP discovery 
tool (https://meme-suite.org), using default web parameters, except the motifs were input from the “CIS-BP 2.00 Single Species DNA” database for R. 
norvegicus, and the number of motifs to find was set to five. The MEME tool’s default constraints on motif minimum width (6), maximum width (50), 
and E-value ≤ 0.05 were used

Figure 7: top-five most repeated motifs in the unique DMRs for atrazine in chromosome 7. The motifs were identified using the MEME-ChIP discovery 
tool (https://meme-suite.org), using default web parameters, except the motifs were input from the “CIS-BP 2.00 Single Species DNA” database for R. 
norvegicus, and the number of motifs to find was set to five. The MEME tool’s default constraints on motif minimum width (6), maximum width (50), 
and E-value ≤ 0.05 were used

https://meme-suite.org
https://meme-suite.org
https://meme-suite.org
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Figure 8: top-five most repeated motifs in the unique DMRs for dioxin in chromosome 7. The motifs were identified using the MEME-ChIP discovery 
tool (https://meme-suite.org), using default web parameters, except the motifs were input from the “CIS-BP 2.00 Single Species DNA” database for R. 
norvegicus, and the number of motifs to find was set to five. The MEME tool’s default constraints on motif minimum width (6), maximum width (50), 
and E-value ≤ 0.05 were used

Table 6: the number of core DMRs common to at least N different 
exposures for each chromosome. A total of seven exposures are 
used for this analysis; glyphosate and plastics are excluded. None 
of the core DMRs are common to all seven (N = 7) exposures on any 
chromosome. Some core DMRs are present in six (N = 6) different 
exposures, and as expected the number of common core DMRs 
increases as the constraint on the number of common exposures 
declines. Note that the N exposures that each core DMR has in 
common do not need to be the same N exposures, but any N of 
the seven exposures

 # Core DMRs common to N exposures

Chr N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7

1 37 504 26 982 18 883 4989 372 11 0
2 29 388 22 191 15 659 4315 285 4 0
3 24 534 17 511 12 018 2717 176 5 0
4 23 642 16 616 11 175 2897 226 10 0
5 22 512 17 591 12 315 3385 199 6 0
6 19 812 13 654 9008 2450 143 7 0
7 19 487 15 410 10 921 2665 132 5 0
8 20 241 14 038 9056 1850 109 7 0
9 16 106 12 457 8230 1931 162 8 0
10 18 806 13 521 9135 1639 113 2 0
11 10 973 8608 5750 1440 115 3 0
12 10 717 8119 6859 990 55 6 0
13 13 947 11 022 7718 2018 155 6 0
14 13 883 11 739 8242 1846 165 5 0
15 13 445 11 132 7314 1678 112 7 0
16 11 733 9798 6532 1521 91 4 0
17 12 355 10 514 7774 1467 99 4 0
18 11 576 8942 5940 1467 152 1 0
19 10 121 7583 5300 1106 70 4 0
20 8177 7602 6511 1183 70 1 0
X 12 470 8625 6772 3229 241 2 0
Y 314 254 292 194 9 0 0
Total 361 743 273 909 191 404 46 977 3251 108 0

are uniformly distributed within chromosomes and across the 
whole genome. However, higher concentrations as well as sig-
nificant gaps can be observed in some chromosomes. Table 8 
shows the known motifs found in the common DMRs in each 
chromosome, and Table 9 shows the overlapping genes associated 
with the common DMRs. Figures 9–12 show the top three most 
repeated motifs among common DMRs for each chromosome. 
These results indicate potential common mechanisms by which 

most toxicants affect the genome. Observations can be contrasted 
to those in previous work [18] that identify motifs in the features 
extracted from the DL network. Feature motifs do not neces-
sarily represent common patterns in DMRs, but can also repre-
sent patterns in non-DMRs that are useful to discriminate them
from DMRs.

Discussion
A hybrid DL-ML approach that has previously shown success at 
predicting DMRs [18] was used to identify core sets of DMRs per 
exposure and then unique DMRs within these core sets. Analysis 
shows that there are unique DMRs associated with each exposure, 
and the exposure-specific models are a better solution to identify 
these unique DMRs.

Results in previous work show that the hybrid model has high 
accuracy on the data constructed from nine different exposures 
[18]. However, training only one model on DMRs from all nine 
exposures results in high variance and large numbers of predicted 
DMRs The actual number of DMRs is likely fewer than the num-
ber predicted. This is addressed by intersecting the predictions of 
several models to identify a core set of DMRs that are predicted by 
every model.

This paper focuses primarily on analyzing the unique DMRs in 
each exposure. The unique DMR prediction in the whole genome 
is used to find biologically relevant features through visualiza-
tion of DMR locations, motif analysis, and gene associations. This 
can indicate the unique effects of each toxicant on the forma-
tion of different DMRs. Analysis of the common DMRs across most 
exposures is also presented. The presence of predicted exposure-
specific DMRs suggests such DMRs could be used to assess expo-
sures within individuals and populations. The presence of such 
transgenerational exposure specific biomarkers may allow in the 
future the ability to determine ancestral exposure and how that 
may impact an individual’s health in the future. Further research 
on exposure epigenome predictions could be used as a diagnostic 
tool in the areas of toxicology and medicine.

The DL-ML approach represents a new direction in the analy-
sis of genomic data. The presence of genomic phenomena is often 
based on a quantitative analysis of laboratory results, e.g. in the 
case of this study, a DNA region is labeled as a DMR based on a 
threshold on the experimentally determined probability that the 
region is differentially methylated. The choice of this threshold 

https://meme-suite.org
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Table 7: the locations of the common DMRs (common to N = 5 exposures) on each chromosome in the whole genome

Chr Visualization

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

X
Y

can significantly vary the number of regions labeled as DMR. Using 
machine learning, a set of high-confidence DMRs can be used for 
training the ML models, which can then make predictions about 
DMRs elsewhere in the genome. More analysis is needed to con-
firm that the ML-based predictions are more accurate, but if so, 
this approach reduces the need to precisely tune the confidence 
threshold, allows a more nuanced selection of DMRs rather than 
using a single threshold, and can identify DMRs that would not 
meet even minimally restrictive thresholds due to inconsisten-
cies in the experimental process. While other ML approaches may 
be used for this purpose, the hybrid DL-ML approach is uniquely 
suited for two reasons. First, using the DL network to learn and 
extract features relieves the analyst from the burden of handcraft-
ing features for ML. Second, using a non-DL classifier for the final 
DMR prediction avoids the typical need for large datasets when 
using a DL classifier alone. Thus, the hybrid DL-ML approach is 
uniquely positioned to succeed at this new approach to ML-based 
analysis of genomic data.

The approach described in this paper is focused on predicting 
exposure specific DMRs vs all non-DMRs in each model. How-
ever, one possible future direction is to view the problem as a 
one-vs-rest learning task by revising the definition of the nega-
tive samples. The models can still be trained with DMRs in each 
exposure as the positive samples, but with the DMRs in other 
exposures as the negative samples. In this case, the models would 
predict unique exposure specific DMRs directly. Another future 

direction is to apply a similar approach to the analysis of disease-
specific DMRs. Models can be trained on DMRs associated with 
each disease vs non-DMRs or the DMRs from other diseases. Sim-
ilar to the current approach, a core set of predicted DMRs can be 
identified for each disease, and then the DMRs unique to each dis-
ease and common to all diseased can be isolated and analyzed. 
Several observations suggest the environment has a significant 
impact on disease etiology [9]. Identifying exposure-specific and 
disease-specific DMRs can lead to a diagnostic tool for predicting 
susceptibility to certain diseases based on epigenetic mutations 
from ancestral exposures. However, more data are needed from 
human studies and from alternative analysis methods to validate 
the clinical viability of the approach. Future studies are needed 
to incorporate the use of computational approaches such as the 
hybrid deep learning to help facilitate future use of epimutations 
as biomarkers for exposure and disease. The procedure can be 
used on a variety of datasets, and so is not specific to DNA methy-
lation or the analysis used. Observations demonstrate the hybrid 
deep learning approach can be used as a prediction tool for further 
epigenome studies.

Methods
The goal is to first identify a DNA region’s susceptibility to develop 
an environmentally induced transgenerational alteration (i.e. a 
DMR) for each individual exposure based on a DL-ML model’s 
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Table 8: transcription factor matches found in the common DMRs 
(common to N = 5 exposures) on each chromosome in the whole 
genome. The TOMTOM tool is used to find the known motifs in 
the common DMRs

Chr Overlapping genes Chr Overlapping genes

1 Tbx20 12 Zbtb26

2

Zfp287

13

Foxa3
Sox10 Zfp287
Hnf4a Zfp182
Zfp105 Foxp2

3

Zfp287 Prdm6
Zfp879

14
Tbx20

Prdm6 Zfp105
Zfp105 15 Zfp105
Zbtb26

16

Foxg1

4

Foxr1 FOXQ1_RAT
Zfp287 Foxa3
Sox10 Foxl2
Zfp105 Nr1d1

5

Tbx20 Nr1d2
Zfp105 Foxp2
Zbtb26

17

Msantd3

6

Foxg1 Tbx20
Foxl2 Zfp105
Sox10 Zbtb26

7
Nr1d2

18

Prdm6
Zbtb26 Zfp105

8

Sp3 Zbtb26
Tbx20
Zfp287

20
Tbx20

Klf9 Zfp24
Klf4

X

Hdx
Prdm6 Zfp287
Zbtb26 Zfp182
Zfp28 Zfp422

9 Tbx20 Y Zfp449

10

Foxf1
Tbx20
Nr1d2
Zfp105

11 Rreb1

prediction. Then, the unique DMRs for each exposure can be iden-
tified and their existence suggests unique effects of individual 
exposures and potentially a means to detect ancestral exposure 
to the toxicants.

The overall method consists of several steps for each exposure 
dataset: (i) define positive and negative samples for the training 
process; (ii) train a hybrid DL-ML model to predict exposure-
specific DMRs in the whole genome; (iii) find the proper number of 
models to address model variance and indicate how many models 
are required to identify a core set of predicted DMRs; (iv) train this 
number of hybrid DL-ML models and use these models to predict 
DMRs across the whole genome; (v) identify the core set of pre-
dicted DMRs, i.e. the DMRs predicted by all models; (vi) extract the 
unique DMRs in the core sets for each exposure; and (vii) search 
for known motifs, genes, and TFs associated with these unique 
DMRs.

The Skinner laboratory at Washington State University has pro-
duced several datasets based on the rat genome that identify 
the DMRs in the F3 generation after exposure of the F0 genera-
tion to one of nine toxicants: atrazine [11], DDT [19], glyphosate 
[20], vinclozolin [21], pesticides permethrin and N, N-diethyl-
meta-toluamide [22], dioxin [23], jet fuel [24], methoxychlor [25],

Table 9: overlapping genes associated with the common DMRs 
(common to N = 5 exposures) on each chromosome in the whole 
genome. Rat gene locations were obtained from the Rat Genome 
Database (https://rgd.mcw.edu) and aligned with the common 
DMRs No known genes overlapped the common DMRs in chromo-
somes 4, 6, X, and Y

Chr Overlapping genes Chr Overlapping genes

1

Ascl3
11

Pcnp
Ganab Tra2b
Irx1

12

Ache
L3mbtl3 Stag3
Syvn1 Vom2r-ps91
Trnas-gcu3 Vps37b

2

Anp32e
13

Glrx2
Bhlhe22 Nsl1
Cct3 14 Noa1
Khdc4

15
Kctd9

Lysmd1 Mrpl57
Plrg1

16

Ing1
Ppid Jund
Trnar-ucu3 Klf2

3

Naif1 Mak16
Snap23 Mpv17l2
Zfp341 Ncoa4

4 – Sap30

5
Trnas-aga1

17
Gmnn

Orc1 Msrb2
6 –

18

Chmp1b

7

Dusp6 Mtmr1
Hoxc12 Pcdhgb7
Polr2e Prdm6
Tnrc6b Rps14

8

Chrna5

19

Dhx38
Fez1 Dus2
Npat Hook2
Plekho2 Nip7
Trnar-acg2 Slc9a5

9
Dazl 20 Pou5f1
Klhdc3 X -

10
Trnal-uag2 Y -
Trnar-ucu4

and plastics bisphenol A and phthalates [26]. Vinclozolin is used 
as both an agricultural fungicide and pesticide. Dioxin is a highly-
toxic byproduct of the manufacture of chlorinated compounds, 
such as some herbicides, but also occurs naturally. Atrazine and 
glyphosate are commonly used herbicides. DDT is an insecticide 
that was used extensively in the 1950s and 1960s to combat insect-
borne diseases such as malaria but has since been banned in the 
USA due to adverse health and environmental effects. Methoxy-
chlor is an insecticide that was intended as a replacement for DDT, 
but was also banned in 2003 due to adverse health effects. Jet fuel 
(JP-8) is a hydrocarbon mixture used commonly by the military 
but has been found to be potentially toxic to the immune system, 
respiratory tract, and nervous system [39].

In these studies, the F0 generation consisted of gestating 
female rats divided into ‘control’ (no exposure) and ‘exposure’ 
(exposed to the toxicant) groups. The offspring of the F0 genera-
tion comprised the F1 generation. Males and females in the control 
or exposure groups of the F1 generation were bred to obtain the 
F2 generation. Then, the F2 generation rats were bred to obtain 
the F3 generation. The initial direct exposure of the gestating 
female F0 generation rats also exposes the developing F1 gener-
ation fetus and the germ cells within the F1 generation, resulting 

https://rgd.mcw.edu
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Figure 9: top three motifs found in the common DMRs (common to N = 5 
exposures) for chromosomes 1-6. Motifs were identified using the 
MEME-ChIP discovery tool (https://meme-suite.org), using default web 
parameters, except the motifs were input from the “CIS-BP 2.00 Single 
Species DNA” database for R. norvegicus, and the number of motifs to find 
was set to three. The MEME tool’s default constraints on motif minimum 
width (6), maximum width (50), and E-value ≤ 0.05 were used

in a direct exposure to the F2 generation. Therefore, the F3 gen-
eration represents the first descendants with no direct exposure 
to the toxicant. Identification of DMRs of the DNA between the 
control and exposure lineage F3 generations indicates that the 
DMR was exposure-induced through epigenetic transgenerational 
inheritance [9].

The procedure for identifying DMRs in the transgenerational F3 
generation involved a methylated DNA immunoprecipitation pro-
cedure followed by next-generation sequencing. The genome was 
divided into 1000bp regions, and DMRs with a specific pathology 
were identified. A P value was calculated for each of the 1000bp 
regions indicating the probability the region is not a DMR (non-
DMR). Those regions whose P value < 10−6 comprise the DMR set 
which constitutes the positive examples (DMRs) in the training 
examples used to train the hybrid DL-ML models. All molecular 
data have been deposited into the public database at NCBI under 
GEO #s: GSE113785 (vinclozolin), GSE114032 (DDT), GSE98683 
(atrazine), GSE155922 (jet fuel), GSE157539 (dioxin), GSE158254 
(pesticides), GSE158086 (methoxychlor), GSE163412 (plastics), and 

Figure 10: top three motifs found in the common DMRs (common to 
N = 5 exposures) for chromosomes 7-12. Motifs were identified using the 
MEME-ChIP discovery tool (https://meme-suite.org), using default web 
parameters, except the motifs were input from the “CIS-BP 2.00 Single 
Species DNA” database for R. norvegicus, and the number of motifs to find 
was set to three. The MEME tool’s default constraints on motif minimum 
width (6), maximum width (50), and E-value ≤ 0.05 were used

GSE152678 (glyphosate). In previous work [18], all the DMRs from 
all these datasets were used to train the model. In this work, a sep-
arate model is trained on each dataset using only the DMRs from 
that dataset.

In these experiments, the number of DMRs meeting the P
value threshold is a small fraction of the entire genome. However, 
regions that do not meet the P value threshold are not neces-
sarily non-DMRs Thus, we seek a definition of a non-DMR that 
makes sense biologically and ideally is close to the number of 
DMRs to create a balanced training set for the learning model. 
Three constraints were considered for defining non-DMRs: (a) a 
region containing no CpGs, (b) a region which is a CpG-island (CpG-
density > 10%), and (c) a region whose P value is greater than a spe-
cific threshold. The regions satisfying constraint (a) are non-DMRs 
because differential methylation is not possible without CpGs. The 
number of additional non-DMRs added by including constraints 
(b) and (c) was typically only 1-2% of the number of no CpG 
non-DMRs from constraint (a), but their addition as non-DMRs 
has a significant impact on whole-genome prediction. Therefore, 
regions satisfying constraints (a) and (b) were used as negative 
examples (non-DMRs) in the training set. The other constraint (c) 

https://meme-suite.org
https://meme-suite.org
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Figure 11: top three motifs found in the common DMRs (common to 
N = 5 exposures) for chromosomes 13-18. Motifs were identified using the 
MEME-ChIP discovery tool (https://meme-suite.org), using default web 
parameters, except the motifs were input from the “CIS-BP 2.00 Single 
Species DNA” database for R. norvegicus, and the number of motifs to find 
was set to three. The MEME tool’s default constraints on motif minimum 
width (6), maximum width (50), and E-value ≤ 0.05 were used

was considered for inclusion in the non-DMR samples but resulted 
in decreased performance.

The hybrid DL-ML model detailed in [18] takes a 1000bp region 
of the DNA sequence as input and produces a classification for 
the region as to whether it will be susceptible to environmental 
exposure as evidenced by differential methylation. The method 
is a hybrid model shown in Fig. 1 and consists of a DL network 
that is trained using the dataset and a traditional ML classifier 
that is also trained using the dataset, but with the input region 
re-expressed using features extracted from a layer of the deep 
learning network. The 1000bp DNA sequences are input to the 
DL network using a one-hot encoding, i.e. a 5 × 1000 array, where 
each column indicates which base-pair (A, C,G, T,N) is present. The 
network is trained using the training DMRs and non-DMRs. The 
training data are re-input to the trained network, and the out-
puts of the first convolutional layer are used as new extracted 
features to re-express each training example. The re-expressed 
training data are then used to train the XGBoost classifier. The 
prediction of the XGBoost classifier is used as the final prediction 
of DMR or non-DMR. The trained hybrid model is used to classify 
each region across the whole genome as to whether a region is sus-
ceptible to form a DMR in response to an ancestral environmental 
induced exposure. The hybrid DL-ML method has been successful 

Figure 12: top three motifs found in the common DMRs (common to 
N = 5 exposures) for chromosomes 19, 20, and X. No motifs were found in 
chromosome Y. Motifs were identified using the MEME-ChIP discovery 
tool (https://meme-suite.org), using default web parameters, except the 
motifs were input from the “CIS-BP 2.00 Single Species DNA” database for 
R. norvegicus, and the number of motifs to find was set to three. The 
MEME tool’s default constraints on motif minimum width (6), maximum 
width (50), and E-value ≤ 0.05 were used

at identifying DMRs not present in the training set [18]. The hybrid 
model has also been shown to outperform DL alone, ML alone, and 
alternative approaches to DMR prediction [18].

One issue with the hybrid approach is that the model’s predic-
tion has high variance. For example, two models trained on the 
same data can result in a significant difference in the set of DMRs 
predicted by the models. The variance is due to randomness in 
the training process, such as random initial weights and shuffling 
of training data. Even though one hybrid model predicts far fewer 
DMRs than all possible regions (based on the number of regions 
with at least one CpG), a model predicts nearly 20% of the genome 
as DMRs. There is a trade-off between two objectives for train-
ing the hybrid model, i.e. maintaining high model accuracy while 
avoiding overly general predictive models. To address this issue, 
multiple models are trained, and a core set of DMRs predicted by 
all models is identified. To find the proper number of trained mod-
els, a stopping point (SP) is defined, which indicates how many 
models are required to show a correlation among the core set of 
predicted DMRs. Given that a single model predicts N DMRs, if a 
set of N 1000bp regions were repeated selected at random from 
the genome, the SP is defined as the number of randomly selected 
sets of regions that would need to be intersected together for the 
intersection to be empty. If the same number of models are trained 
and their predicted DMRs intersected, then any DMRs remaining 
would have high certainty of being DMRs; these DMRs comprise 
the core set. The process used to determine SP for each exposure 
is shown in Table 1.

The next step is to define the core set of predicted DMRs as the 
intersection of the predicted DMRs from SP independently trained 
models. After generating the core set of DMRs for each exposure, 
the unique set of DMRs for each exposure can be determined. A 
unique DMR for an exposure is a region predicted as DMR in only 
that specific exposure. Once the unique DMRs for each exposure 

https://meme-suite.org
https://meme-suite.org
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are identified, these DMRs are further analyzed by visualizing their 
locations on the genome, identifying known motifs among the 
DMRs, identifying genes associated with the DMRs, and identifying 
recurring motif patterns in the DMRs.

Table 2 summarizes the data and results for each exposure: 
the SP, the number of positive training samples in chromosome 
7 (Training DMRs), the average number of predicted DMRs by a 
model (Predicted DMRs), the number of DMRs in the core set 
(intersection of DMRs predicted by SP models), and the number 
of unique regions in each exposure based on the training DMRs 
and based on the core DMRs as predicted by the whole-genome 
models. There were 6636 non-DMRs used for training in each 
exposure for chromosome 7. Due to the high number of training 
and predicted DMRs for the plastic exposure, identification of the 
core set of DMRs was prohibitive in time (training 165 models), 
and the core set is likely to be very large, which would tend to 
obscure unique DMRs in other exposures. Therefore, the plastic 
exposure DMRs were excluded from subsequent analyses. On the 
other extreme, there were only a small number of training DMRs, 
predicted DMRs, and unique DMRs for glyphosate. Table 2 shows 
only one unique core DMR for glyphosate on chromosome 7. For 
many chromosomes, there were zero DMRs for glyphosate. There-
fore, the glyphosate exposure DMRs were also excluded from the 
analysis.

After composing the unique DMR set for each exposure, the 
TOMTOM tool is used to find the known motifs in the unique 
regions for each exposure [27]. Previous studies showed that 
methylated DNA fragments prevent the binding of TFs [1, 2]. As 
an example, CpGs are able to prevent binding TFs [1]. Identi-
fying TF motif matches in unique DMRs can help in predicting 
the potential downstream effects of DNA methylation changes on 
gene expression and cellular processes. For example, if a TF bind-
ing site is differentially methylated in a cancer cell, it may affect 
the expression of downstream genes involved in tumor growth and 
progression. To find the TF binding specificity alignments, Cat-
alog of Inferred Sequence Binding Preferences (CisBP) is used as 
the reference database (http://cisbp.ccbr.utoronto.ca/). CisBP is an 
online database of TF binding specificities. CisBP currently incor-
porates data from over 700 species covering more than 300 TF 
families, totaling more than 390 000 TFs (of which over 165 000 
have at least one DNA binding motif). This method maps motifs 
across and within species, using DNA binding domain similarity
thresholds [40].

The next analysis is to identify genes overlapping the DMRs 
unique to each exposure. Gene overlap occurs when a known gene 
shares the same region of a nucleotide sequence in a genome 
[41], where in this case the sequence is a 1000bp DMR unique 
to a particular exposure. Rat gene locations were obtained from 
the Rat Genome Database (https://rgd.mcw.edu). This experiment 
provides insights into the functional implications of DNA methyla-
tion changes. DMRs that overlap with genes are more likely to have 
functional consequences on gene expression and may be directly 
involved in disease development.

The next step in the analysis is to identify repeated motifs in 
each set of exposure specific DMRs. The top five repeated motifs 
in each set of exposure specific unique DMRs were identified 
using the MEME-ChIP discovery tool (https://meme-suite.org). The 
default parameters in the web-based interface were used for all 
runs, except the motifs were input from the “CIS-BP 2.00 Single 
Species DNA” for Rattus norvegicus, and the number of motifs to 
find was set to five. The MEME tool’s default constraints on min-
imum width (6), maximum width (50), and E-value ≤ 0.05 were 
used. The MEME-ChIP tool searches for matches to a motif in 

both the forward primary sequence and the reverse complement 
sequence. But the motifs are visualized in the forward primary 
sequence order. These motifs can help to visualize distinct proper-
ties of the DMRs across different exposures. Computational meth-
ods for comparing motifs [27] may uncover more global patterns 
in the differences of motifs across different exposures.

The final step of the analysis is to apply the previous analysis 
steps to the common DMRs across all the exposures. Identifying 
the common DMRs across all the exposures can provide insights 
into the shared pathways and biological processes affected by dif-
ferent exposures. Table 6 shows the number of DMRs common 
to at least N exposures. None of the core DMRs are common to 
seven or more exposures. Since there were not any common DMRs 
across all the exposures, the DMRs that were common among at 
least five (N = 5) exposures were studied.
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