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ABSTRACT
Background  Many cancer patients do not obtain clinical 
benefit from immune checkpoint inhibition. Checkpoint 
blockade targets T cells, suggesting that tyrosine kinase 
activity profiling of baseline peripheral blood mononuclear 
cells may predict clinical outcome.
Methods  Here a total of 160 patients with advanced 
melanoma or non-small-cell lung cancer (NSCLC), 
treated with anti-cytotoxic T-lymphocyte-associated 
protein 4 (anti-CTLA-4) or anti-programmed cell death 
1 (anti-PD-1), were divided into five discovery and 
cross-validation cohorts. The kinase activity profile was 
generated by analyzing phosphorylation of peripheral 
blood mononuclear cell lysates in a microarray 
comprising of 144 peptides derived from sites that are 
substrates for protein tyrosine kinases. Binary grouping 
into patients with or without clinical benefit was based 
on Response Evaluation Criteria in Solid Tumors V.1.1. 
Predictive models were trained using partial least 
square discriminant analysis (PLS-DA), performance 
of the models was evaluated by estimating the correct 
classification rate (CCR) using cross-validation.
Results  The kinase phosphorylation signatures 
segregated responders from non-responders by 
differences in canonical pathways governing T-cell 
migration, infiltration and co-stimulation. PLS-DA resulted 
in a CCR of 100% and 93% in the anti-CTLA-4 and 
anti-PD1 melanoma discovery cohorts, respectively. 
Cross-validation cohorts to estimate the accuracy of the 
predictive models showed CCRs of 83% for anti-CTLA-4 
and 78% or 68% for anti-PD-1 in melanoma or NSCLC, 
respectively.
Conclusion  Blood-based kinase activity profiling for 
response prediction to immune checkpoint inhibitors in 
melanoma and NSCLC revealed increased kinase activity 
in pathways associated with T-cell function and led to a 
classification model with a highly accurate classification 
rate in cross-validation groups. The predictive value of 
kinase activity profiling is prospectively verified in an 
ongoing trial.

BACKGROUND
Tumors can evade T-cell-mediated destruc-
tion via the expression of immune check-
points, including the programmed cell death 
ligand-1 (PD-L1) and CD80 or CD86, that 
inhibit T cells that express programmed cell 
death 1 (PD-1) or cytotoxic T lymphocyte 
antigen 4 (CTLA-4), respectively. Immune 
checkpoint inhibitors (ICIs) against these 
receptors have been approved for a variety 
of malignancies and revolutionized their 
clinical management, in particular that of 
melanoma and non-small cell lung cancer 
(NSCLC).1–4 However, durable responses 
are only obtained in a minority of patients, 
whereas ICIs are associated with consider-
able side effects and costs. Therefore, robust 
and reliable predictive biomarkers to predict 
treatment response are urgently needed.

The cognate interaction between T cells 
and antigen presenting cells (APCs) via 
interaction of the T-cell receptor (TCR) with 
antigen presented in the context of HLA, 
results in activation of T cells after which 
T cells quickly upregulate CTLA-4 and/
or PD-1 as part of a negative feedback loop. 
As a result, T cells may display a reduced 
capacity to become activated, proliferate and 
exert specific effector functions. Currently, 
CTLA-4 is thought to play a major role during 
priming of a T-cell response in the lymph 
node where it directly prevents co-stimula-
tion of T cells via interaction of CD28 with 
its ligand CD80/86 on APCs. Moreover, 
CTLA-4 is constitutively expressed on regu-
latory T cells (Tregs), and Tregs can reduce 
expression of CD80/86 by trans-endocytosis 
thereby preventing activation of effector 
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T cells.5 PD-1 inhibits activation of pre-existing tumor-
specific T cells during the effector phase and is thought 
to dampen an immune response after antigen eradica-
tion in order to prevent immune pathology. Eventually, 
tumor eradication by T cells relies on TCR-mediated 
activation and downstream co-stimulatory signaling, 
which is tightly regulated by different tyrosine kinase 
mediated signaling pathways. For instance, activation of 
PI3K and deactivation of PTEN results in recruitment and 
activation of downstream signaling molecules like AKT, 
enhancing T-cell survival, proliferation and effector func-
tions.6 Under normal conditions, ligation of the inhibi-
tory receptors CTLA-4 and PD-1 results in recruitment of 
SHP2 phosphatases that dampens TCR signaling as well 
as CD28 signaling.7–9 As such, kinase activity may reflect 
anti-tumor T-cell activity and consequently could act as a 
predictor for clinical outcome after ICI therapy. In fact, 
peptide microarray technology to evaluate global kinase 
activities in tumor or blood has recently been applied as 
a biomarker strategy for response prediction to chemo-
therapy or targeted therapy in several cancer types.6 10–13

Previous efforts to predict the clinical response to ICI 
therapy yielded various biomarkers, including tumor 
mutational burden (TMB) and PD-L1 expression in 
tumor tissue for NSCLC.14 15 The predictive performance 
of these biomarkers may be sufficient in some studies,16 17 
yet are complicated by both the availability of tissue and 
intertumoral and intratumoral heterogeneity. Interest-
ingly, a number of blood parameters have been associ-
ated with response to anti-CTLA-4 and anti-PD-1/PD-L1. 
For example, the total number and composition of circu-
lating leukocytes were associated with clinical outcome, 
among which high lymphocyte and eosinophil counts, 
low monocyte count and low neutrophil to lymphocyte 
ratio (NLR). In addition, the absence of myeloid-derived 
suppressor cells and presence of classical monocytes or 
previously activated T cells was associated with better 
response rates or survival after ICI.18–28 Collectively, these 
studies indicate that the activation status and number 
of several immune cells in blood may provide mini-
mally invasive predictive biomarkers that are suitable for 
routine clinical use.

Whereas commonly used methods, including transcrip-
tomics and high-dimensional flow cytometry may reveal 
the outcome of certain incoming signals, they do not 
reveal the whole network of signal transduction pathways 
activated in cells, nor show at which point they are deregu-
lated in certain patients. Protein kinases are a large family 
of highly influential proteins which modify the activity, 
affinity and location of many cellular proteins in order 
to regulate cellular processes, in particular signal trans-
duction. Here, we argued that if some of the complex 
biological tumor-immune cell interactions determining 
the response to ICIs are also reflected in the plethora of 
immune cells in the blood, then kinase activity profiling 
of peripheral blood mononuclear cells (PBMCs) may be 
able to capture this. Therefore, we have explored the 
predictive performance of kinase activity profiling in 

PBMCs from advanced melanoma and NSCLC patients 
treated with anti-PD-1 or anti-CTLA-4 monotherapy.

METHODS
Patient population and study workflow
Patients with irresectable stage III/IV advanced mela-
noma or stage IV NSCLC were included if they had 
received intravenous monotherapy with either ipilim-
umab (anti-CTLA-4; 3 mg/kg every 3 weeks for four 
courses), nivolumab (anti-PD-1; 3 mg/kg every 2 weeks 
until a maximum of 2 years) or pembrolizumab (anti-
PD-1; 2 mg/kg every 3 weeks until a maximum of 2 years) 
as standard of care at the Erasmus University Medical 
Center (Rotterdam, The Netherlands), Leiden University 
Medical Center (Leiden, The Netherlands) or University 
Hospital Zürich (Zürich, Switzerland), all being referral 
hospitals. Patients who received ICI combination therapy 
or who were treated with a prior line of any form of immu-
notherapy were excluded, pretreatment with corticoste-
roids was not considered. Following written informed 
consent of the patients, blood samples were collected 
before the first administration of ICIs and after the last 
administration of any previous treatment if applicable.

Data collection
Binary grouping was performed according to patients 
with (responders) or without (non-responders) clinical 
benefit based on Response Evaluation Criteria in Solid 
Tumors V.1.1. For determination of best overall response 
(BOR), confirmation of a complete or partial response 
(CR/PR) was not required, but a minimum duration of 
90 days was required for stable disease (SD). Patients 
with a CR, PR or SD as BOR were considered to have 
obtained clinical benefit after ICIs and were defined as 
responders. Patients with progressive disease (PD) were 
defined as non-responders. Additionally, binary grouping 
was performed according to progression-free survival, 
measured from start of treatment to death or the first 
evaluation time point that PD is detected; the two groups 
included late (>140 days) or no progression (responders) 
versus patients with early progression within 140 days 
(non-responders). Clinical parameters and chemistry 
or blood parameters were evaluated at baseline and 
included age, gender, WHO performance score, patho-
logical tumor type, presence of brain metastases and 
serum lactate dehydrogenase (LDH) levels.

Preparation of PBMC lysate
Venous blood of patients was collected at baseline using 
either sodium-heparin or EDTA as anticoagulant, and 
isolation of PBMCs was done within 4 hours or within 
24 hours depending on the local study protocol (online 
supplemental table 1). PBMC were isolated by density 
gradient centrifugation and cryopreserved until further 
use. Erythrocyte lysis was only performed in the Mel-
CTLA4-B cohort if PBMC still contained considerable 
erythrocyte contamination after isolation. Importantly, 
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kinase activity was affected by erythrocyte lysis during 
PBMC isolation (online supplemental figure 1a). More-
over, overall reduced kinase activity was observed in 
PBMCs that were isolated after 24 hours from blood 
collected in EDTA anticoagulated tubes (online supple-
mental figure 1b).

Cryopreserved cells were thawed, washed with 
phosphate-buffered saline and lysed using ice-cold 
M-PER lysis buffer (Mammalian Protein Extraction 
Reagent, Thermo Fisher Scientific, Massachusetts, USA) 
containing 1:100 Protease Inhibitor Cocktail (Thermo 
Fisher Scientific). Cell lysate was obtained by centrifuga-
tion at 14.000 ×g for 10 min at 4°C. After centrifugation, 
the supernatant was snap-frozen in aliquots and stored at 
−80°C. The protein concentration was determined using 
the Bradford assay (Thermo Fisher Scientific) with bovine 
serum albumin (BSA) as the standard.

Kinase activity profiling
PBMC kinomic activity was measured using protein tyro-
sine kinase (PTK) PamChip-96 microarrays (catalog # 
86311, PamGene International BV, ’s-Hertogenbosch, 
The Netherlands) using standard manufacturer protocol. 
In short, the microarrays were blocked with 2% BSA 
(Calbiochem # 126609) to prevent non-specific binding. 
After blocking, the arrays were washed three times with 
1×PK buffer (50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 
0.01% Brij35, 2 mM DTT). For kinomic profiling 2 µg 
PBMC lysate protein was used in 40 µL PTK assay buffer 
(1×PK buffer, 10mM DTT, 400 µM ATP, 1×PTK addi-
tive (PamGene International BV), 1:400 Halt Phospha-
tase Inhibitors (Thermo Fisher Scientific), 0.01% BSA 
(Calbiochem), and fluorescein isothiocyanate-labeled 
antiphosphotyrosine antibody (PamGene). During incu-
bation, the reaction mixture was pumped up and down 
through the porous membrane for 60 cycles at 2 cycles/
min. Incubation and read-out of the microarrays was 
performed with 96 arrays in parallel on a PamStation-96. 
Typically, three to four technical replicates of each sample 
were measured in the same run. Time courses of peptide 
phosphorylation were followed by recording fluorescent 
images which were quantified by automated image anal-
ysis in Bionavigator 6.3.67 (PamGene). Analysis of signals 
was performed after local background subtraction in 
Bionavigator 6.3.67 interfaced to the open source statis-
tical program R 3.3.1 (R-project, www.​rproject.​org).

Analysis was specifically performed per cohort and 
comprised a quality check, removal of outlier replicates, 
data transformation and averaging of the kinase signal 
replicates. To check data quality, the first step was exclu-
sion of a low portion of arrays that showed clear visual 
defects (eg, broken membrane and large stains) or tech-
nical replicates clearly deviating from the other repli-
cates of the same samples. In the second step, data was 
log-transformed (CTLA-4 cohorts: Mel-CTLA4-A, Mel-
CTLA4-B) or normalized using the variance-stabilizing 
normalization (VSN) method (PD-1 cohorts: Mel-PD1-A, 
Mel-PD1-B, NSCLC-PD1). Prior to log-transformation, 

a small fraction of negative values in the (background 
corrected) signals was handled by setting all signals<1 or 
equal to 1. Signal-positive spots were required to show 
a positive trend in the recorded phosphorylation time 
course. Peptides for which such a trend could not be 
detected in >75% of the samples were excluded from 
further analysis. Effectively, 88 to 113 peptides were 
included for further analysis. Technical replicates of 
each patient sample were averaged resulting in a single 
kinase activity profile per included patient for subsequent 
analysis.

Principal component analysis (PCA) was performed on 
the transformed and filtered data and PCA scores were 
used to identify systematic variation, for example, as a 
result of different sub-cohorts and/or the use of different 
PamStation-96 microarray plates. Systematic variation 
was handled by applying ComBat29 batch correction, and 
outlier patient samples were removed. For the small Mel-
CTLA4-A cohort, no such correction was necessary. For 
the Mel-CTLA4-B cohort, a batch effect was observed and 
corrected for the batches in which samples were lysed 
together. A small number (ranging from one to eight) of 
outlier samples according to PCA scores or heat map visu-
alizations of the transformed profiles were removed. In 
most cases, these were samples showing low overall kinase 
activity. Other reasons for removing measured patient 
samples from the analysis was unavailability of clinical 
data or if, after re-evaluation, patients were observed not 
to fulfill the selection criteria.

Statistical analysis and bioinformatics
Kinase activity profiles were correlated to the clinical 
response to ICIs. Univariate (per peptide) analysis was 
performed using a two-sided two sample t-test with binary 
grouping as a covariate (responders vs non-responders). 
Peptides with p<0.05 were regarded as significant; in addi-
tion, the proportion of false discoveries in a set of signif-
icant peptides was estimated using the false discovery 
rate (FDR) method of Benjamini and Hochberg. Classi-
fication analysis was performed using partial least square 
discriminant analysis (PLS-DA) with patients divided in 
binary groups as previously described.13 In short, a clas-
sification model is trained using all tested peptides, that 
is, without prior peptide selection based on responder 
and non-responder differences. The resulting model is a 
set of coefficients (one for each peptide+an offset) that 
can be applied to new observations to obtain a score that 
predicts classification in either groups. For each cohort, 
the correct classification rate (CCR) was estimated using 
cross validation. Approximately 90% binomial CIs (CI90) 
for the CCR estimates were obtained using the exact 
method (note that a CI90 implies with 95% confidence 
that the CCR is higher than the lower limit). Prediction 
of kinases responsible for the changes in peptide phos-
phorylation in the kinomic profiles were obtained using 
the Upstream Kinase Analysis tool in Bionavigator 6.3.67 
(PamGene). Results were visualized by annotation to 
a kinase phylogenetic tree using the web-based Coral 
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tool (http://​phanstiel-​lab.​med.​unc.​edu).30 Additionally, 
Ingenuity Pathway Analysis (Qiagen, Hilden, Germany) 
was used to perform gene set enrichment analyzes using 
the delta and unadjusted p value of each peptide (two-
sided two sample t-tests). Pathway activation or inhibi-
tion were predicted by the z-score statistic, and further 
explored by the MAP tool (Qiagen, Hilden, Germany). 
Full access of the data sets generated during the current 
study is provided in the supplementary materials (online 
supplemental tables 2-6).

RESULTS
A total of 174 advanced cancer patients were enrolled and 
160 patients were evaluable for analysis (figure 1) because 
in 14 cases (8%), the patient samples had to be removed 
as they did not comply with the quality check (online 
supplemental figure 2). The study protocols between the 
centers were different with regard to the PBMC isolation 
protocol and the anti-coagulant used for blood collec-
tion. As a consequence, the different patient cohorts were 
not pooled for analysis, resulting in five distinct cohorts 

Figure 1  Schematic overview of the study. (A) Work flow showing that kinase activity was measured in baseline PBMC 
samples using a peptide microarray system consisting of identical arrays, each containing 144 unique protein tyrosine kinase 
phosphorylation sites. PBMC samples were isolated from blood collected before onset of ICI therapy. The kinase activity profile 
was analyzed using BioNavigator (PamGene), Coral tool (courtesy Cell Signaling Technologies) to annotate kinases onto a 
phylogenetic tree and ingenuity pathway analysis software (Qiagen) to perform gene set enrichment analysis. (B) Flow chart of 
the patient selection process. ICI, immune checkpoint inhibitor; NSCLC, non-small cell lung cancer; PBMC, peripheral blood 
mononuclear cells; PD-1, programmed cell death 1
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(figure  1), and protocol differences could be assessed 
for their effect on kinase activities. The baseline patient 
characteristics are provided in table  1. Patient cohort 
Mel-CTLA4-A was used as a discovery cohort for anti-
CTLA-4 and consists of 10 melanoma patients selected 
based on an equal distribution of responders and non-
responders. All responders in this cohort had SD >90 
days, thus precluding selection bias based on exception-
ally good and worse responders, only. The patients had 
a baseline blood LDH level that was not above 2× the 
upper limit of normal (ULN, ie, <250 U/mL) to avoid 
bias towards a known independent prognostic factor. The 
29 patients in cohort Mel-PD1-A functioned as discovery 
cohort for anti-PD-1 and had an almost equal distribution 
of responders (n=14) and non-responders (n=15). The 

mean baseline blood LDH level was not elevated above 2× 
ULN in the Mel-PD1-A discovery cohort, although some 
individual patients did have an elevated LDH above this 
threshold. The patients in the three other cohorts were 
used for cross-validation to assess the performance of 
response prediction by kinase activity profiling. Because 
of the lower response rate, patients in the MEL-CTLA4-B 
cohort were selected on equal distribution of responsers 
and non-responders, but again not based on patients with 
an exceptionally good or bad response. Patients in the 
other cohorts were not selected, apart from the exclusion 
criteria that they should not have received prior immuno-
therapy or combination checkpoint blockade. The mean 
baseline blood LDH level was higher and the range of 
values of individual patients larger in the cross-validation 

Table 1  Baseline patient characteristics

Mel-CTLA4-A Mel-CTLA4-B Mel-PD1-A Mel-PD1-B NSCLC-PD1

Total, n 10 29 29 36 56

Age, median (range) 59.3 (26 to 79) 58.3 (35 to 86) 64.0 (39 to 84) 61.6 (31 to 83) 63.1 (35 to 81)

Gender, n

 � Male 4 13 16 21 36

 � Female 6 16 13 15 20

Primary tumor, n

 � Melanoma 10 29 29 36 0

 � NSCLC 0 0 0 0 56

 � Adenocarcinoma 0 0 0 0 37

 � SCC 0 0 0 0 17

 � Large cell carcinoma 0 0 0 0 2

Treatment regimen, n

Anti-PD-1 0 0 29 36 56

 � Nivolumab 0 0 1 14 50

 � Pembrolizumab 0 0 28 22 6

Anti-CTLA-4

 � Ipilimumab 10 29 0 0 0

Prior therapy lines, n (%)

 � 0 4 (40%) – 20 (69%) 30 (83%) 1 (2%)

 � 1 4 (40%) – 9 (31%) 6 (17%) 46 (82%)

 � 2 2 (20%) – 0 (0%) 0 (0%) 7 (12%)

 � >2 0 (0%) – 0 (0%) 0 (0%) 2 (4%)

Prior immunotherapy, n

 � No 10 29 29 36 56

 � Yes 0 0 0 0 0

Cerebral metastasis, n (%)

 � No 6 (60%) – 17 (59%) 15 (42%) 0 (0%)

 � Yes 2 (20%) – 11 (38%) 2 (5%) 0 (0%)

 � Unknown 2 (20%) – 1 (3%) 19 (53%) 56 (100%)

LDH (U/L), median (range) 207 (168 to 247) 369 (283 to 881) 229 (124 to 359) 315 (128 to 1523) 269 (133 to 860)

All patients received immune checkpoint inhibitor monotherapy and did not receive any prior line of immunotherapy.
LDH, lactate dehydrogenase; NSCLC, non-small cell lung cancer; PD-1, programmed cell death 1; SCC, squamous cell carcinoma.
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cohorts when compared with the discovery cohorts 
(table 1).

Kinase activity profiles in PBMC of patients responding to 
checkpoint blockade
The correlation of kinase activity profiles with treatment 
response is visualized for the discovery cohort Mel-CTLA4-A 
using a heat map (figure 2a). A profound difference in 
kinase activity was observed between the responder and 
non-responders. Generally, the phosphorylation signal 
of peptides was higher in responders compared with 
non-responders. For 83% of the target peptides, a signifi-
cantly higher signal was found in responders compared 
with non-responders (two-sided two sample t-test, p 
value<0.05; FDR<5%). This overall increase in kinase 
activity was confirmed in the cross-validation cohort 
Mel-CTLA4-B (figure  2b), although less pronounced 
since only 23% of the target peptides displayed a signifi-
cantly higher signal in responders compared with non-
responders (two-sided two sample t-test, p value<0.05, 
FDR=18%). In addition, the relative increase in signal 
was higher in the Mel-CTLA4-A cohort (median Log2 fold 
change=0.84; SD=0.15; ~80% increase) compared with 
the Mel-CTLA4-B cohort (median Log2 fold change=0.40; 
SD=0.17; ~30% increase). This increase in signal 

appears to reflect systemic, non-specific signaling in the 
responders compared with the non-responders.

Discovery cohort Mel-PD1-A included melanoma 
patients who were treated with anti-PD-1. The profound 
higher kinase activities as observed in the responders 
in the two anti-CTLA-4 cohorts was not observed in the 
three anti-PD-1 cohorts. Therefore, the data was normal-
ized for overall kinase activity using the VSN method. As 
a consequence, the data reflects differences in the ratio 
between peptides on the array rather than the overall 
differences. Responder patients showed a different kinase 
activity profile when compared with non-responders 
(figure 3a). For 17% of the peptides in cohort Mel-PD1-A, 
a significant different signal was found in responders 
compared with non-responders (two-sided two sample 
t-test, p<0.05; FDR=29%). These differentially phosphory-
lated peptides represented both higher and lower signals 
in responders compared with non-responders. Likewise, 
differential peptide phosphorylation was observed in 
the cross-validation cohorts Mel-PD1-B and NSCLC-PD1 
(figure 3b–c). In Mel-PD1-B, 16 peptides (18%) displayed 
significantly differential signals for response (two-sided 
two sample t-test, p<0.05, FDR=25%) whereas NSCLC-PD1, 
18 peptides (19%) were significantly differently phos-
phorylated in responders compared with non-responders 

Figure 2  Baseline kinase activity profiles and response classification of patients treated with CTLA-4 blockade. Heat maps 
showing kinase activity of separate cohorts of melanoma patients who were treated with CTLA-4 immune checkpoing inhibitors. 
(A) Discovery cohort Mel-CTLA4-A and (B) cross-validation cohort Mel-CTLA4-B. Binary grouping of patients that either 
benefited or not from treatment (responders and non-responders, respectively) are shown. The rows represent patients sorted 
from top to bottom according to treatment response; the columns represent peptides sorted according to Pearson correlation 
coefficient with treatment response, such that the peptides with a relatively higher phosphorylation signal in the non-responders 
are shown at the left side of the map and the peptides with a relatively high signal in the responders are shown at the right side 
of the map. The values are scaled per column to zero mean and unit variance. Furthermore, classification analyzes of these 
cohorts are shown. (C) Discovery cohort Mel-CTLA4-A and (D) cross-validation cohort Mel-CTLA4-B. The bar graphs show for 
each patient the prediction index obtained by cross validation of a partial least square discriminant analysis model (see methods 
section). If the prediction index is >0, the patient is predicted to be a Responder. The color of the bars indicates the actual 
clinical response classification.
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(two-sided two sample t-test, p<0.05, FDR=24%). The 
specific differences in kinase activities differentiating 
responders and non-responders varied between cohorts.

A high percentage of patients is correctly classified for 
response by their kinase activity profile
To investigate the potential use of kinase activity profiling 
as a biomarker for response to ICI therapy, classifica-
tion analysis was performed using the binary grouping 
of responders and non-responders. Because of the 
kinase profile variation between the CTLA-4 and PD-1 
ICIs cohorts, a separate PLS-DA classification model 
was trained for each cohort and predictive scores for 
each patient were obtained using cross-validation. This 
resulted in a CCR of 100% (90% CI 74% to 100%) in the 
discovery cohort Mel-CTLA4-A and 83% (64% to 93%) in 
cross-validation cohort Mel-CTLA4-B (figure  2c and d). 

The CCR was 93% (80% to 99%) in the discovery cohort 
Mel-PD1-A, 78% (63% to 88%) in cross-validation cohort 
Mel-PD1-B, and 68% (56% to 78%) in the second cross-
validation cohort NSCLC-PD1 (figure 3d–f).

Upstream kinase and canonical pathway analysis identify 
kinases associated with T-cell function
Bioinformatics was applied to interrogate the biological 
processes underlying response or resistance to ICIs. Here, 
we have zoomed in on the anti-PD-1 cohorts as the overall 
increase of kinase activity in anti-CTLA-4 responders 
hampered proper identification of relevant and recog-
nized peptide targets. Identified kinases were annotated to 
a phylogenetic tree for protein tyrosine kinases (figure 4). 
In the discovery cohort Mel-PD1-A, predictions revealed 
that the vascular endothelial growth factor (VEGF) family 
kinases and feline sarcoma (FES)/FES-related (FER) 

Figure 3  Baseline kinase activity profiles and response classification of patients treated with PD-1 blockade. Heat maps 
showing the kinase activity of separate cohorts of melanoma patients who were treated with PD-1 immune checkpoint 
inhibitors. (A) Discovery cohort Mel-PD1-A, (B) cross-validation cohort Mel-PD1-B and (C) second cross-validation cohort 
NSCLC-PD1. See legend to figure 2 for details. Furthermore, the classification analysis of these cohorts are shown. (D) 
Discovery cohort Mel-PD1-A, (E) cross-validation cohort Mel-PD1-B and (F) second cross-validation cohort NSCLC-PD1. Again, 
see legend to figure 2 for details. NSCLC, non-small cell lung cancer. PD-1, programmed cell death 1.
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have relatively higher activity in responders compared 
with non-responders. Similarly, but less pronounced, the 
activity of TYRO-3, AXL and MER kinases of the TAM-
family and the tropomyosin receptor kinase (TRK)-
family were positively correlated with response in this 
cohort. In the cross-validation cohort Mel-PD1-B; however, 
the activity of several kinases, including the SRC family 
kinases, were negatively correlated with response. Inter-
estingly, the above observations were corroborated in the 
second cross-validation cohort NSCLC-PD1, where VEGF 
kinases were found to have higher activity and the SRC 

family kinases to have lower kinase activity in responders 
compared with non-responders. Canonical pathway anal-
ysis using Mel-PD1-A and NSCLC-PD1 cohorts revealed the 
importance of peptide targets involved in immune cell 
migration/leukocyte extravasation and co-stimulation 
of T helper cells. Finally, increased kinase activity in the 
STAT3, ERBB, VEGF and EGF signaling pathways were 
found to be related to response to anti-PD-1, whereas the 
PTEN activation was associated with resistance to anti-
PD-1 (figure 5 and online supplemental figure 3).

Figure 4  Identification of involved kinase families by phylogenetic tree analysis. Kinase activities that were measured for the 
anti-PD-1 treated cohorts, Mel-PD1-A (A), Mel-PD1-B (B) and NSCLC-PD1 (C) were exposed to the Coral tool to annotate 
kinases onto a phylogenetic tree (courtesy Cell Signaling Technologies). The coloring indicates the effect size (purple: increased 
phosphorylation; and orange: decreased phosphorylation in responders compared with non-responders), and the size of the 
circle indicates the specificity score of the corresponding kinase (a higher score indicates a higher likelihood to contribute to the 
observed phosphorylation changes). NSCLC, non-small cell lung cancer; PD-1, programmed cell death 1.

https://dx.doi.org/10.1136/jitc-2020-001607
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DISCUSSION
In this study, we have investigated whether the clinical 
response to ICIs is reflected by the kinase activity profile 
in PBMC. We observed differential kinase activity profiles 
between patients with and without clinical benefit, which 
were subsequently used to develop a predictive model 
with a high correct classification rate (68% to 100%) 
in metastatic cancer patients who were treated with ICI 
monotherapy.

The predictive power of kinase activity profiling positively 
compares to currently recognized biomarkers for response 
to ICIs. For instance, PD-L1 expression in the tumor has a 

sensitivity and specificity ranging from 58% to 85% and 49% 
to 60%, respectively, depending on the tumor type, applied 
cut-off or type of anti-PD-1 antibody.31 A similar predictive 
performance has been reported for TMB.32 The kinase 
activity profile, reported here, demonstrated a lower predic-
tive performance for response to PD-1 inhibitors in NSCLC 
compared with melanoma. Potentially, this is due to prior 
systemic treatments since nearly all NSCLC (98%) but only 
a few melanoma (28%) patients included in this study were 
pretreated, this may have impacted the outcomes of the 
kinase profiles.

Figure 5  Differential kinase activity involves canonical pathways associated with T-cell function analysis. Top canonical 
pathways according to kinase activities are schematically shown for cohort (A) Mel-PD1-A and (B) NSCLC-PD1. Orange 
(positive z-score) indicates a predicted upregulation of the pathway in patients who benefit from treatment (responders), blue 
(negative z-score) indicates a predicted downregulation of the pathway in responders. Gray represents canonical pathways 
without a predicted activity pattern. The significance value indicates the probability that involved kinases are associated with the 
canonical pathway by random chance alone, cut-off was set at a B-H p value>12. Ranking was based on the trend and z-score. 
NSCLC, non-small cell lung cancer.
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Responsiveness to CTLA-4 ICIs in melanoma was associated 
with higher overall kinase activity at baseline in responders 
when compared with non-responders, suggesting a generally 
more active immune system in responder patients. Indeed, 
higher pre-existing T-cell activity has been associated with a 
better response to CTLA-4 blockade in mouse models.33 34 
In line with reports on circulating immune-suppressive cells 
in metastasized patients,35 our findings may implicate that 
immune suppression is less pronounced in responder 
patients.

The melanoma or NSCLC patients showing a clinical 
response to PD-1 blockade displayed a more restricted kinase 
profile. Upstream and canonical pathway analysis of differ-
entially activated peptide targets extend earlier reports on 
the mechanism of action of PD-1 ICIs. First, high activity 
of TAM-family kinases, such as TYRO-3, AXL and MERTK, 
in responders fits findings by others that MERTK becomes 
activated in CD4+ and CD8+ T cells downstream of TCR 
signaling.36 Second, identification of pathways, such as 
extravasation and CD28 co-stimulation, extends outcomes of 
studies demonstrating the key importance of T-cell recruit-
ment and T-cell co-stimulation in anti-PD-1 responses.7 37 38 
Thirdly, higher activity in the VEGF pathway in responding 
patients with melanoma and NSCLC is in line with the 
finding that VEGF-A enhances the expression of PD-1 by 
cytotoxic lymphocytes in the tumor microenvironment in a 
mouse model.30 Also, in cancer patients, VEGF is implicated 
to (in)directly enhance PD-1 expression by intra-tumoral T 
cells, which may be reflected by higher PD-1 expression on 
circulating CD4+ cells and its association with better clinical 
outcome after ICI in melanoma.20 Finally, we also observed 
lower activity of the PTEN pathway in responding patients 
with melanoma or NSCLC. This may seem counterintuitive 
as loss of PTEN in tumor cells was associated with anti-PD-1 
therapy resistance.39 40 However, in T-cells PTEN functions as a 
negative regulator of TCR-signaling. In the absence of PTEN, 
TCR-mediated activation of T cells is strongly enhanced and 
thresholds for T-cell activation become less dependent on 
CD28 co-stimulation.41 Taken together, the above four lines 
of evidence argue that kinase acivities and pathways that 
are differentially present in melanoma and NSCLC patients 
who respond to anti-PD-1 reflect the presence of circulating 
tumor-specific T cells.38

Recently, the serine threonine kinase (STK) activity profiles 
in PBMCs from a small group of 28 metastatic NSCLC 
patients treated with nivolumab as well as healthy individ-
uals were reported.10 Baseline activity of the CAMK family 
and AGC family was higher in the group of patients with 
relatively lower survival after PD-1 blockade when compared 
with patients with longer survival or healthy individuals. The 
authors suggested that this probably reflects multiple lines of 
prior systemic treatment (including tyrosine kinase inhibitors 
(14%) or bevacizumab (39%)). We did not observe differ-
ences in these kinase families because we determined the 
PTK instead of STK activity profiles in PBMC lysates.

Our study has some limitations. Although cross-validation 
led to correct classification rates that varied from 68% to 100% 
in separate patient cohorts, the underlying kinase activity 

profiles were not fully consistent. This may be due to differ-
ences in the study populations. For instance, the baseline 
serum LDH levels showed a greater heterogeneity between 
patients of cohort Mel-PD1-B (median LDH 315 U/L; range 
128 to 1523) when compared with cohort Mel-PD1-A (median 
229 U/L; range 124 to 359). Serum LDH is considered a clin-
ically significant prognostic factor for metastatic melanoma26 
and is incorporated in the M1 subcategory of current TNM 
cancer staging protocols.42 More importantly, differences in 
the kinase activity profiles may also be affected by the fact 
that for this exploratory study we did not apply standard-
ized protocols for PBMC isolation across the patient cohorts, 
neither was pretreatment of patients with corticosteroids or 
systemic treatment other than immunotherapy taken into 
account. We did notice that the overall kinase activity was 
affected by erythrocyte lysis during PBMC isolation and by 
the timespan between PBMC isolation and blood collection 
when EDTA was used as an anticoagulant. Indeed, EDTA by 
capturing Ca2+ may negatively influence PTK activity.43 More-
over, considering the relatively large number of kinase spots 
that were determined in modest patient cohorts, prospec-
tive validation with sufficient power is needed before it may 
be clinically applicable for treatment selection. Finally, the 
kinase activities point at major involvement of T-cell pathways 
governing migration, tissue infiltration and co-stimulation. In 
this study, we used PBMC lysates for kinase activity profiling 
of individual patients, yet, kinase activity profiling of specific 
immune subsets may further improve the response predic-
tion and provide more detailed insights in the biological 
mechanisms of response and resistance to ICIs.

In conclusion, we have demonstrated the potential of 
kinase activity profiling of PBMCs for response prediction 
after ICI in separate cross-validation patient cohorts. In 
a first attempt to address the remaining challenges, the 
standardization of PBMC isolation protocols and the 
interrogation of kinase activity in subsets of immune cells 
has been incorporated in a currently ongoing prospec-
tive study to validate the predictive value of kinase activity 
profiles in PBMCs for ICI response.
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