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Bayesian statistics offers an alternative to classical (frequentist) statistics. It is distinguished by its use of

probability distributions to describe uncertain quantities, which leads to elegant solutions to many difficult

statistical problems. Although Bayesian demography, like Bayesian statistics more generally, is around

250 years old, only recently has it begun to flourish. The aim of this paper is to review the achievements

of Bayesian demography, address some misconceptions, and make the case for wider use of Bayesian

methods in population studies. We focus on three applications: demographic forecasts, limited data, and

highly structured or complex models. The key advantages of Bayesian methods are the ability to integrate

information from multiple sources and to describe uncertainty coherently. Bayesian methods also allow

for including additional (prior) information next to the data sample. As such, Bayesian approaches are

complementary to many traditional methods, which can be productively re-expressed in Bayesian terms.
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1. Introduction

The original paper of Thomas Bayes (1763) establish-
ing the theorem that bears his name was presented to
the Royal Society just over 250 years ago, two years
after Bayes’s death, by his friend Richard Price.
Not long afterwards, Bayesian demography was
born: in 1778, Pierre-Simon de Laplace, who later
extended Bayes’s theorem to a more general case,
applied this method of inference to estimating sex
ratios at birth for Paris and London (Laplace 1781
cited in Courgeau 2012). However, for about two
centuries, Bayesian demography remained largely
dormant. Only in recent decades has there been a
revival of demographers’ interest in Bayesian
methods, following the methodological and compu-
tational developments of Bayesian statistics. The
area is currently growing fast, especially with the
United Nations (UN) population projections
becoming probabilistic—and Bayesian (Gerland
et al. 2014).
The aim of this paper is to review the achievements

of Bayesian demography, address some misconcep-
tions about Bayesian approaches, and to make the
case for more widespread use of Bayesian statistical
methods, especially in currently underexplored

areas of population studies. We review, synthesize,
and evaluate three especially promising areas of
application: demographic forecasts, problems with
limited data, and highly structured and complex
models. In addition to its pedagogical purposes, the
paper contributes to the literature by offering sugges-
tions for new, uncharted applications of Bayesian
methods in demography. Throughout the paper we
try to show how traditional demographic methods
can be re-expressed in Bayesian terms, and how fruit-
ful this approach can be.
For each of the three areas mentioned above, we

discuss the main arguments put forward for the use
of Bayesian methods, and illustrate them with
selected examples from the demographic literature.
Whilst the current review has inevitably omitted
some particular pieces of work, we have attempted
to cover all the main applications of contemporary
Bayesian demography.
The paper is structured as follows. After this Intro-

duction, in Section 2 we present the basic tenets of
Bayesian statistics, with a particular focus on the
practical areas of application that are relevant for
contemporary demography, and critically evaluate
some related misconceptions. We further explore
three of these areas in more detail in Section 3,
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where we look at the following: population forecast-
ing; population modelling for small samples, sparse
or incomplete data; and the use of highly structured
and complex models in demography. Finally, in
Section 4, we discuss the future of Bayesian demo-
graphy, its prospects and challenges.

2. Bayesian statistics in a nutshell

2.1. A brief history of the Bayesian approach

In contrast to the objectivist interpretation of prob-
ability, in the Bayesian approach, probability is
typically interpreted as a representation of the sub-
jective beliefs of the person drawing an inference.
The objectivist approach, which is grounded on
different philosophical premises, has been the domi-
nant paradigm in statistics for most of the twentieth
century. The most prominent school of thought,
associated with Ronald A. Fisher, Jerzy Spława-
Neyman, Egon S. Pearson, Karl Pearson, and
others, linked probability with the frequencies of
events under study (see Courgeau 2012 for details).
The ‘frequentist’ school is mainly associated with
methods for estimation and inference based purely
on likelihood: the probability that a set of data was
generated by a model with given parameters,
treated as fixed, yet unknown. The frequentists
were critical of the Bayesian perspective, mainly
because of its explicit recourse to the notion of
subjectivity.
Philosophical differences aside, computational

demands also for a long time held back the practical
application of Bayesian statistics. The Bayesian para-
digm has made a slow but steady comeback to the
statistical mainstream only since the 1970s, at first
as a result of theoretical achievements (Savage
[1954] 1972; Lindley 1972; for an overview, see Ber-
nardo and Smith 2000). This process accelerated in
the 1980s thanks to rapid developments in fast com-
puting (Ntzoufras 2009). Owing to an increase in
computing speed, and the development of Markov
chain Monte Carlo (MCMC) methods (Geman and
Geman 1984; Gelfand and Smith 1990), compu-
tations that were once difficult or impossible are
now routine.
Currently, even though frequentist statistics still

dominates in introductory statistical curricula, Baye-
sian inference and methods are becoming increas-
ingly common in applied research in various fields,
including demography and other related population
sciences—from epidemiology (Broemeling 2013), to
paleodemography (Caussinus and Courgeau 2010),

to phylogenetics and historical linguistics (Greenhill
and Gray 2009). Also now helping to popularize
the methods are some useful introductory texts.
Lynch (2007) has written an excellent introduction
to a range of social science applications of Bayesian
methods, and Hoff (2009) an important general text-
book, which also includes many examples of appli-
cation in the social sciences. For demographers,
Bijak (2010) has produced a brief introduction to
Bayesian statistics for population sciences, with a
focus on migration.
Some of these developments are visible in trends in

relative frequencies of phrases (‘Ngrams’) used in
publications—in this case, in the digital Google
books collection. Figure 1 shows English-language
examples of such trends, smoothed with five-term
moving averages. The figure compares Bayesian stat-
istics, estimation, and methods (black lines) with clas-
sical/frequentist/likelihood statistics, estimation, and
methods (grey lines). Evidently, in digitized books,
Bayesian statistics has been mentioned more fre-
quently than classical/frequentist statistics since the
1980s. And even though classical/likelihood esti-
mation is currently mentioned over four times more
frequently in the Google books content, its relative
frequency is stagnant, unlike its steadily increasing
Bayesian counterpart. With respect to more practi-
cally oriented ‘methods’, the trends are even more
favourable to the Bayesian approaches.

2.2. Bayesian theory: key aspects

The foundation of Bayesian analysis is Bayes’s
theorem (1763), which can be stated as follows:

p(Unknowns | Data)

= p(Data | Unknowns) × p(Unknowns)
p(Data)

.

(1)

The ‘p’s in the equation denote probability distri-
butions, that is, probabilities or probability density
functions. The ‘unknowns’may be abstract quantities
such as regression coefficients, but may also be
potentially observable quantities such as births that
were missed by a registration system. The outcome
from a Bayesian analysis is a posterior probability
distribution for the unknowns, conditional on the
data. The posterior distribution is obtained by multi-
plying the likelihood, p(Data | Unknowns), by the
prior probability distribution, p(Unknowns), all
divided by p(Data), the marginal likelihood, that is,
the probability of obtaining a particular sample.
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The fact that the outcome of an analysis is a prob-
ability distribution is an important advantage of
Bayesian statistics. A probability distribution con-
tains a great deal more information than the point
estimate and standard error typically produced by a
frequentist analysis. For instance, examination of
the full distribution may reveal multiple modes, or
show the probability mass to be concentrated in a
certain area. But even more importantly, probability
distributions can be summarized in ways that are
more intuitively meaningful, both to laypeople and
fellow scientists. It is, for instance, legitimate to inter-
pret a Bayesian 95 per cent credible interval as
having a 95 per cent probability of containing the
true value. This is not the correct interpretation of
a frequentist 95 per cent confidence interval. The
‘95 per cent’ from such a confidence interval refers
to the proportion of hypothetical intervals that
would contain the true value if the study were repli-
cated many times. Converting a confidence interval
into a statement about the data at hand requires
further assumptions, like those described by a prior
(Jaynes 1976; Howson and Urbach 2006).
In addition, it is straightforward to derive substan-

tively meaningful quantities from a full probability
distribution. It is, for instance, easy and natural to
turn a joint probability distribution for age-specific
mortality rates into a probability distribution for
life expectancy. In contrast, turning point estimates
and standard errors for age-specific mortality rates

into a point estimate and standard error for life
expectancy is technically more complicated and
requires additional assumptions. Moreover, standard
frequentist methods do not always produce the
desired results when the numbers of deaths are
small (Eayres and Williams 2004).
The likelihood component p(Data | Unknowns) in

a Bayesian analysis is essentially the same as the like-
lihood in a frequentist analysis. In both cases it is a
model for how the data were generated, given a set
of parameters. A likelihood function might, for
instance, state that births follow a Poisson distri-
bution, with expected values that vary with age and
population size. The marginal likelihood, p(Data),
is fixed for any given data set and plays a minor
role in most applications.
The prior, p(Unknowns), is distinctively Bayesian.

It captures information about unknowns that is not
contained in the data. An example of a prior could
be a normal distribution with mean 1.8 and standard
deviation 0.2, N(1.8, 0.22), used to represent prior
beliefs about a total fertility rate in a given developed
country. Priors of this type, expressing quantitative
statements about a parameter, are an important
feature of applied Bayesian statistics. However,
when data are abundant, it is more common for
priors to have much less information content, and
to be restricted to qualitative features of the data.
For instance, a prior might state that a mortality
profile is expected to rise monotonically with age,

Figure 1 Frequencies for Bayesian and frequentist/likelihood search terms in Google books
Note: For caveats regarding the use of Google Ngrams in demography, see Bijak et al. (2014).
Source: Google books Ngram Viewer, http://books.google.com/ngrams, English corpus (accessed: 20 January
2014).
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or that neighbouring regions are likely to be more
similar than distant ones, or that household incomes
can be treated as independent draws from the same
distribution (Carlin 1992; Congdon 2010, Chapter
4). Indeed, priors may be even weaker than this, to
the point where they are ‘non-informative’, and are
dominated by the likelihood (Gelman et al. 2014,
pp. 51–5). For such cases, the results of the analysis
are often numerically close to their classical (fre-
quentist) equivalents.
In modern Bayesian analyses, priors are often hier-

archical. In other words, the parameters governing
the priors are themselves given ‘hyper-priors’ gov-
erned by ‘hyper-parameters’. For instance, let yasr
represent deaths of people of age a and sex s in
region r; and let xasr be the corresponding population
at risk. Then, the age–sex–region specific mortality
rates uasr might be estimated using the following
model, where the tilde ‘∼’ denotes ‘follows a distri-
bution’ and M stands for an arbitrary large number:

yasr � Poisson(uasrxasr)

log uasr � Normal(b0 + ba + bs + br, s2)

b0 � Normal(0, M2)

bs � Normal(0, M2)

ba � Normal(ba−1, t2A)

br � Normal(0, t2R). (2)

For the hyper-parameters, the following distribu-
tions can be assumed: s, tA, tR � Uniform(0, M).
The first equation in (2) is the likelihood. The

second equation gives the prior for the mortality
rates. The log-transformed rates are expected to
follow normal distributions, with means varying by
age, sex, and region. Each of the age, sex, and
region effects in turn has a prior; for instance, the
means for the age effects are expected to follow a
random walk without drift. In this example, the inter-
cept and sex terms, as well as all the standard devi-
ations, are given vague (not very informative) priors.
As discussed further in Section 3, hierarchical

models are an attractive way to model many popu-
lation processes, and lead to sensible estimates
when data are sparse. Frequentist versions of Baye-
sian hierarchical models exist, such as multilevel
models or random-effects models. However, hier-
archical models are particularly natural within the
Bayesian framework because of the blurring of the
distinction between observations and parameters,
with both being treated as draws from probability
distributions (Rubin 1984, p. 1154).
A computational shortcut when fitting a hierarch-

ical model is to obtain point estimates for hyper-

parameters using methods such as maximum likeli-
hood, and to plug these estimates back into the
model, treating them as known with certainty. This
is referred to as an empirical Bayesian approach (e.
g., Maritz 1970). The procedure needs to be used
with caution because treating hyper-parameters as
known when they are actually estimated, and using
the same data twice—once to estimate hyper-par-
ameters and again to estimate the remaining par-
ameters—can lead to estimates that are spuriously
precise. There are refinements of empirical Bayesian
methods that address these concerns (Carlin and
Louis 2009, Chapter 5), but the need to avoid esti-
mating hyper-parameters within a full probabilistic
model, and hence the motivation to use empirical
Bayesian methods, is declining, owing to advances
in computing power.
Finally, there is one set of applications where the

marginal likelihood p(Data) does play an important
role: Bayesian model selection and model averaging.
Here the model specification itself is treated as an
unknown (e.g., Raftery 1995). A set of alternative
models is considered, and the posterior probabil-
ity of selecting a particular model from this set,
p(Model | Data), is also calculated by using Bayes’s
theorem. This approach requires setting prior prob-
abilities for all the elements of the model space,
p(Model), and providing the likelihood function,
p(Data | Model), which is simply the marginal likeli-
hood for the more standard single-model case. Calcu-
lating the marginal likelihood can be non-trivial and
usually involves the use of sophisticated numerical
algorithms, an overview of which can be found in
Dellaportas et al. (2002). Once the posterior model
probabilities are estimated, they can be used either
to select the model with the highest data support,
or to average the outcomes of different models,
weighting them by these posterior probabilities. In
the latter case, model uncertainty is explicitly
included in the results.

2.3. Bayesian practice: computations and
decisions

In a sense, once a Bayesian has specified a prior and a
likelihood for a given data set, the modelling is fin-
ished. The result of the analysis—the posterior distri-
bution—is now completely determined via Bayes’s
theorem. In practice, describing the implied posterior
distribution can be challenging. Except in textbooks,
the posterior distribution rarely takes a standard
form such as a gamma or normal distribution, or
other priors from the so-called ‘conjugate families’,
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for which convenient analytical solutions exist (see
Gelman et al. 2014 for examples). More typically,
the posterior can be obtained as a marginal distri-
bution from the (multidimensional) joint probability
distribution. Determining the shape of the posterior
distribution, or even deriving some summary
measures, was once the greatest practical obstacle
to the use of applied Bayesian analysis.
Since the 1980s, many new methods for describing

the posterior distribution have been developed. The
dominant approach has been the MCMC (Gelfand
and Smith 1990; Gilks et al. 1996; Gelman et al.
2014). MCMC yields an approximate sample from
the posterior distribution. The analyst calculates
summary statistics, such as means or intervals, for
the approximate sample, and treats them as
summary statistics for the true posterior distribution.
There are two key reasons why MCMC methods

make tractable what would otherwise be intractable
challenges to modelling. The first is that they allow
the difficult problem of drawing a value from p(θ)
to be replaced by the easier problem of generating
a candidate value θ* and calculating p(θ*). The
second is that they permit a divide-and-conquer
approach: samples for the whole model can be con-
structed by successively sampling from each of the
components. The main disadvantage of MCMC
methods is that they can be computationally inten-
sive and slow.
One area where Bayesian statistics lags behind fre-

quentist statistics is user-friendly software for fitting
standard models (for an overview see Wiśniowski’s
contribution in Bijak 2010). Fitting a basic Bayesian
model typically requires more programming than
an equivalent frequentist model. BUGS (Bayesian
inference Using Gibbs Sampling) is the most
mature general-purpose user-friendly package for
Bayesian modelling (Lunn et al. 2009; Ntzoufras
2009), but it can struggle with large data sets or
complex models. Bayesian computation is, however,
an active field of research. New packages implement-
ing general-purpose algorithms or specific techniques
relevant to demography appear regularly on the
‘Bayesian Inference’ home page for the R program-
ming language. The programming effort required
for fitting a non-standard model, with features such
as constraints or non-standard distributions, is often
smaller for Bayesian models than it is for frequentist
ones, thanks to the flexibility of MCMC (Gilks et al.
1996). Moreover, there are now many books such
as Gelman and Hill (2006), Congdon (2010, 2014),
Kruschke (2010), and Marin and Robert (2014) that
use examples from the social sciences to teach Baye-
sian modelling and MCMC.

In coming years it seems likely that existing
MCMC methods will cede ground to newer, faster
techniques. Gelman et al. (2014), for instance,
promote the software package STAN as a successor
to BUGS. STAN combines standard MCMC with a
related technique called Hamiltonian Monte Carlo
(Neal 2011). Similarly, the statistical package INLA
produces extremely fast and accurate approxi-
mations for a general class of Bayesian models
(Rue et al. 2009).
In practical applications, the outcomes of Bayesian

analysis have also the potential to serve as a basis for
a formal decision support. Here, it is worth noting
that the axiomatic foundations of Bayesian analysis
are firmly rooted in statistical decision theory, and
in the notions of utility or loss functions (see
DeGroot [1970] 2004; and Bernardo and Smith
2000 for details; and Courgeau 2012 for a discussion).
If the results of a Bayesian analysis can be combined
with such utility or a loss function, reflecting the gains
or losses from making particular decisions based on
the unknown (estimated) quantities, the result is an
elegant statistical system for decision-making (e.g.,
DeGroot [1970] 2004).
In brief, an optimal Bayesian decision for a given

unknown quantity, described by a probability distri-
bution, is one that maximizes the expected utility,
or minimizes the expected loss. This approach
allows the analyst to reduce whole probability distri-
butions to point estimates, taking into account the
respective costs or gains from over- and under-esti-
mation, which need not be symmetric. Standard
examples of such point estimates include the follow-
ing: the median of the probability distribution for
symmetric linear loss (utility) functions; quantiles
for asymmetric linear functions; and the mean for
quadratic function (DeGroot [1970] 2004). In practi-
cal applications, such utility or loss functions could
measure the various outcomes—for instance, monet-
ary—of decisions based on uncertain demographic
parameters (for examples related to fiscal and other
macroeconomic implications, sustainability of
pension systems, or healthcare expenditure, see
Alho et al. 2008).

2.4. Criticisms and misconceptions

Critics of Bayesian statistics have traditionally por-
trayed the need to specify a prior as a weakness of
the Bayesian approach, on the grounds that it intro-
duces an unacceptable element of subjectivity. This
is an influential objection. It has, for instance,
deterred the use of Bayesian methods by national
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statistical agencies, which are sensitive to any charge
of subjectivity (Fienberg 2011; Pfeffermann 2013).
Bayesians typically respond to such charges with
three overlapping arguments: (i) some degree of sub-
jectivity is unavoidable in any non-trivial statistical
analysis; (ii) in many analyses, a wide range of sensi-
ble priors will lead to similar results; and (iii) in appli-
cations where it is impossible to avoid a substantial
degree of subjectivity, documenting the subjective
choices in the form of priors is a healthy and transpar-
ent practice.
A non-trivial statistical analysis—that is, an analy-

sis involving imperfect data and complex relation-
ships among variables—typically requires many
choices that cannot be decided from the data alone.
For instance, an analyst may have to choose
between several possible error distributions, several
plausible methods for dealing with missing values,
or several possible sets of explanatory variables.
These sorts of choices typically require knowledge
about the process generating the data beyond what
is contained in the data themselves. Such choices
are necessary whether the analysis is Bayesian or fre-
quentist, and arise in the specification of the likeli-
hood as well as the prior. It is therefore misleading
to say that priors make Bayesian analyses uniquely
subjective.
A fundamental property of most Bayesian models

is that, as the amount of data increases, the influence
of the prior on the results declines. Moreover, with
large, high-quality data sets and well-identified
models, it becomes feasible to use vague or non-
informative priors. Because demographers often
use large, high-quality data sets, they can often
avail themselves of such priors, and be confident
that their results are not overly sensitive to the selec-
tion of the prior. This approach—‘objective Baye-
sianism’—allows the data to dominate the
estimation process, and is argued to have desirable
epistemological properties, especially from the
point of view of the links with formal logic (William-
son 2013).
Besides the criticism of subjectivity, there are

several examples of misconceptions related to par-
ticular demographic applications of Bayesian
methods. The recent Bayesian population forecasts
of the UN (Gerland et al. 2014) have been criticized
as offering not much beyond simple extrapolations
from the past into the future, devoid of expert
input (see, e.g., the voices cited by Stukenberg
2014). This criticism is misplaced: Bayesian
methods allow for the inclusion of expert knowledge
formally and consistently in the models, through the
prior distributions of the parameters. This has been

done in the UN work by including informative
priors intended to offer guidance on long-term
asymptotic conditions in the absence of reliable
empirical evidence (e.g., Raftery et al. 2013). The a
priori information has been additionally augmented
by the calibration of forecasting uncertainty based
on the performance of the same model applied to
various shortened data series from the past (see
also the next section).
On the other hand, purely expert-based

approaches either ignore other sources of infor-
mation and uncertainty in the forecasts, such as
past data series, or are overly reliant on the knowl-
edge of experts. The use of the latter source on its
own—without data—may pose problems—for a
general discussion, see Lawrence et al. 2006; for a dis-
cussion of demographic examples of problems with
purely expert-based assumptions and the related
biases, see Oeppen and Vaupel 2002 or Keilman
2008. Such methods also usually do not attempt a
formal calibration of uncertainty.
In short, Bayesian analysis does indeed contain

explicit subjective elements, but it presents the sub-
jectivities in a transparent way, and makes it possible
to combine different types of information—data and
expert knowledge—in a coherent manner. More-
over, the results are described by whole probability
distributions, rather than just mean or median
points, and as such convey much more information.
An example of a practical misconception related to
this aspect can be found in Brücker and Siliverstovs
(2006), where Bayesian methods have been used
simply as an alternative method of estimating point
values of model parameters, which are presumably
posterior means, although the prior and posterior dis-
tributions are not discussed explicitly.
Despite the subjectivity of some elements of the

Bayesian approach, its transparency and coherence
are increasingly appealing to statistical demogra-
phers in many areas of application, examples of
which are reviewed and discussed next.

3. Key areas of demographic application

Despite the existence of Bayesian demographic
studies in the eighteenth century (Laplace 1781),
demography largely remained a deterministic exer-
cise until the middle of the twentieth century. As
argued by Courgeau (2012), this was largely due to
the proliferation of census-based information. In par-
ticular, the availability of population-level figures has
led to the problems of variability being largely
ignored. Only after the Second World War did the
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challenges of uncertainty and probability begin to
make a comeback within mainstream demography
(Courgeau 2012). As mentioned by Alho (1999),
there are examples of pioneering quasi-Bayesian
population research from that period, notably the
work of Leo Törnqvist’s group on Finnish population
forecasts (Hyppölä et al. 1949). A landmark paper by
Alho and Spencer (1985) provided an overview of
probabilistic population studies until the early
1980s, and also made a case for Bayesian analysis,
labelled as a ‘more elegant’ solution to the popu-
lation forecasting problem (Alho and Spencer 1985,
p. 314).
Since the 1990s, Bayesian demography has been

undergoing a revival, with a near-exponential
growth in related research output, especially in the
past decade. In this section, we examine the under-
lying driving forces behind this trend, for the three
areas of application: forecasting, limited data, and
highly structured and complex models. For these
three areas, we review the motivations behind the
use of Bayesian methods, and suggest some possible
ways in which their applications may expand into
new demographic territories over the course of the
twenty-first century.

3.1. Forecasting

Population forecasts, and their less accountable
cousins, population projections, are crucial for
many areas of public policy, and for a variety of plan-
ning applications, in the public, private, and third
sectors of the economy. That is why Booth (2006,
p. 548) is right to refer to forecasting as ‘the public
face of the [demographic] profession’. Partly in
response to the demand for forecasts, and partly
thanks to the adoption of methods from other disci-
plines of science, the past 30 years have witnessed
very rapid methodological developments in this
area (see Booth 2006 for an excellent overview).
As for successes in predicting populations, Xie

(2000, p. 670) observes that demography has been
‘fundamental in forecasting future states of human
societies … with a high degree of confidence’. This
success can be attributed largely to the persistent
regularities of some demographic processes, as well
as to the deterministic nature of the underlying
mechanism of population renewal. The latter mani-
fests itself through population accounting and popu-
lation momentum, with a lot of information being
already embedded in age structures. These character-
istics mark a clear contrast between quantitative
demography’s sphere of interest and those of other

social sciences, and increase the predictability of
populations, especially in the short term (Keyfitz
1981). Besides, as pointed out by Morgan and
Lynch (2001), demography is heavily reliant on
empirical data, which further strengthens the knowl-
edge base of the forecasts it produces.
However, the issues with forecast errors are also

well known, and have been extensively discussed,
together with the need to communicate the errors
to the forecast users (e.g., Keyfitz 1981; Keilman
1990; Alho and Spencer 2005). There are many
sources of forecast uncertainty, and from the point
of view of the forecasting process, six of these come
especially to the fore: uncertainties in baseline data,
model specification, model parameters, expert judge-
ment on the assumptions, length of the forecast
horizon, and the inherent randomness of the pro-
cesses being forecast. This diversity calls for an inte-
grated and coherent treatment of different types of
uncertainty, ideally within a single approach.
With regard to forecast uncertainty, a natural

advantage of Bayesian methods is that all different
sources of error can be potentially embedded in a
joint probabilistic forecasting model. Parameter
uncertainty is reflected through prior distributions,
which themselves can include the formally elicited
uncertainty of expert opinion. Specification of the
inherent randomness of the process forms a part of
the model design, which can also include additional
terms for baseline data errors. The issue of model
specification can be addressed by adopting Bayesian
model selection and averaging (Raftery 1995), as dis-
cussed in Section 2, and this has been done in several
demographic applications to estimation (Murphy and
Wang 2001) and forecasting (Bijak 2010; Abel et al.
2013a, 2013b).
This ability of Bayesian modelling to combine

different uncertainties in a coherent manner also
allows other approaches to population forecasting
to be expressed in a Bayesian form, such as those
based purely on expert opinion (Lutz et al. 2004),
or purely data-driven time-series models (for an
overview, see, e.g., Alho and Spencer 2005). These
forecasts can then be interpreted as being conditional
on the lack of uncertainty in the remaining aspects of
the modelling process, such as parameters or models.
In other words, these models could be seen as special
cases of a fully Bayesian approach. Recently an
attempt to reconcile the purely expert-based and
Bayesian approaches has been undertaken by
Billari et al. (2014), who proposed to give a Bayesian
interpretation to expert-based predictions, and to
treat expert inputs as data. This approach is subject
to the same caveats as other expert-based
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propositions, since it does not formally incorporate
the information carried by the time series of data.
Irrespective of a particular modelling approach,

the outcome of the whole forecasting process in the
Bayesian framework—a set of predictive distri-
butions—not only offers a natural description of
the overall uncertainty in the language of probabil-
ities, but also follows directly from the joint statistical
model and is very easy to derive and interpret (see,
e.g., Bernardo and Smith 2000). The forecast uncer-
tainty can be evaluated by assessing ex post, for
example, based on truncated series or against exter-
nal data, how well calibrated the probability distri-
butions are. In its basic form, this exercise looks at
whether the ex post distributions of forecast errors
—obtained by comparing the forecasts with actual
observations for a subset of data, such as a truncated
time series—at least roughly match the ones pre-
dicted ex ante from the statistical model. In some
cases, additional prior information gives an advan-
tage in that respect: for example, assuming a priori
low predictability of migration can often lead to
better calibrated forecasts (Bijak 2010). At a more
general level, Gneiting and Raftery (2007) have pro-
posed several scoring rules which can be applied to
produce a numerical summary of the calibration, as
well as precision (sharpness) of the error distribution.
Furthermore, the joint probabilistic model can

serve as a basis for deriving other conditional fore-
casts in a natural and straightforward manner, by
assuming that certain parameters or processes are
known without error. This can be interpreted as a
probabilistic equivalent of ‘what-if’ scenarios (Bijak
2010). Moreover, under the Bayesian framework,
predictions can be sequentially updated as soon as
new information becomes available (Dawid 1984).
Finally, probabilistic forecasts can serve as input for
a formal decision analysis aimed at supporting the
forecast users in their planning decisions, assuming
that the loss functions can be at least approximately
elicited from the decision-makers (Alho and
Spencer 2005; Bijak 2010). This possibility remains
still largely unexplored in demographic practice.
A further example of the usefulness of the Baye-

sian approach is age–period–cohort (APC) model-
ling, with clear forecasting applications, for
example, by using models from the extended Lee
and Carter (1992) family. The problem of the lack
of identifiability of individual age, period, and
cohort factors in a linear setting has long been
known (see Fienberg 2013 for a recent overview
and critique of some of the proposed approaches).
Given the need for ‘resolving the APC dilemma
using substantive judgment and knowledge’

(Fienberg 2013, p. 1982), Bayesian methods offer a
transparent and flexible alternative, by including
strong prior information on particular factors.
Examples of Bayesian APC models are given by
Nakamura (1986) and Berzuini et al. (1993), and in
the dedicated software, ‘BAMP’, designed by
Schmid and Knorr-Held (2007). It is worth noting
that the APC analysis is useful both for forecasting
and reconstructing past populations, as discussed in
Section 3.3.
Apart from the pioneering work of Törnqvist’s

group in Finland (Hyppölä et al. 1949), the main
developments in Bayesian population predictions
began in the 1990s, with seminal papers by Bernardo
and Muñoz (1993), on component-level population
forecasts for Valencia, Spain, and by Daponte et al.
(1997) on reconstructing the Iraqi Kurdish popu-
lation under Saddam Hussein’s regime. Bayesian
demographic techniques have also been applied to
non-human populations, with notable examples
including bowhead whales (Balaena mysticetus,
Raftery et al. 1995) and northern spotted owls
(Strix occidentalis caurina, Clark 2003). Since the
1990s, both the methodological development of
Bayesian methods and their areas of application
have been expanding rapidly, and there has recently,
especially since 2010, been a marked increase in the
flow of contributions to Bayesian literature.
In this upsurge of interest, all three components of

population change have received due attention from
demographers applying Bayesian methods. For
example, fertility forecasts have been presented by
Tuljapurkar and Boe (1999) for the United States,
and by Alkema et al. (2011) for the whole world,
the latter in the context of ongoing work on the
United Nations World Population Prospects (UN
WPP). Recently, Schmertmann et al. (2014) pro-
posed a method for predicting cohort fertility for
countries featuring in the Human Fertility Database.
Bayesian mortality forecasts have been chiefly

based on variants of the Lee and Carter (1992)
bilinear model, examples of which include Czado
et al. (2005) for France, Girosi and King (2008) for
the United States, and Li (2014) for China and
Taiwan. Girosi and King’s book—despite a some-
what misleadingly broad title, since it is entirely
devoted to mortality—addresses some of the short-
comings of the Lee and Carter model by analysing
mortality by cause of death and incorporating covari-
ates into the models. As alternatives, Lynch and
Brown (2001) have compared three Bayesian
models for compression and deceleration of mor-
tality rates, based on the classical Gompertz model,
logistic function, and a trigonometric transformation
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(arctangent). Lynch and Brown (2010), in turn, have
extended Sullivan’s method for reconstructing multi-
state life tables from period data, with potential
direct applications in multistate projections or fore-
casts. Finally, Raftery et al. (2013) have produced
forecasts of life expectancy for the whole world,
also in the context of the UN WPP work; recently
extended to a two-sex framework (Raftery et al.
2014).
For forecasting migration, a range of Bayesian

time-series methods has been proposed, firstly by
Gorbey et al. (1999) for flows between Australia
and New Zealand; subsequently for a selection
of European flows by Bijak (2010), and Bijak and
Wiśniowski (2010); and then by Abel et al. (2013a)
for environmental migration to the United
Kingdom. Recently, Wiśniowski et al. (2014) have
forecast Scottish migration after the 2014 referen-
dum on independence, using a probabilistic mixture
of two sets of forecasts, conditional on the referen-
dum outcome. Given the high level of uncertainty
and paucity of data on migration flows, many of
these forecasts were making full use of informative
priors, often based on explicitly expressed expert
opinion. Finally, for other forms of mobility,
examples include Congdon’s (2000) Bayesian fore-
casts of patient flows to hospitals.
Recent years have seen several other examples of

coherent Bayesian forecasts of whole populations,
combining the predictions made for individual demo-
graphic components. Abel et al. (2013b) have pro-
vided a tutorial for overall time series of fertility,
mortality, and migration for the United Kingdom,
without age (as in Bernardo and Muñoz 1993), but
with model uncertainty. The model has subsequently
been extended by Wiśniowski et al. (2015) to include
age by applying a common framework, based on the
Lee and Carter (1992) approach.
Finally, the existing component forecasts related to

UN WPP—Alkema et al. (2011) and Raftery et al.
(2013)—as well as the (so far) deterministic assump-
tions on migration have been combined in the proto-
type Bayesian population forecasts for the whole
world (Raftery et al. 2012; Gerland et al. 2014).
These models retain the use of double logistic
curves, which the previous work by the UN Popu-
lation Division has shown to work well in capturing
mortality and fertility transitions, but they reduce
the need for expert judgement by using formal stat-
istical models to estimate parameters and synthesize
multiple data sources. The methods use commonal-
ities between countries to help estimate trends in
countries with unreliable or missing data. Moreover,
the new methods account for uncertainty in the

parameter estimates and future rates, and all esti-
mates and forecasts come with measures of uncer-
tainty. Validation tests suggest that the models are
well calibrated and the confidence intervals pro-
duced by the models accurately reflect the true
level of uncertainty. The computer code to
implement the new methods is available through a
set of R packages, such as bayesPop, bayesTFR,
bayesLife, and bayesDem (for links, see Raftery
et al. 2012).
The development of methods for Bayesian fore-

casting of migration rates for the whole world is cur-
rently in progress (Azose and Raftery 2015). The
picture of future uncertainties that emerges from
the Bayesian methods so far has been quite different
from that suggested by the traditional scenario-based
projections issued by the UN Population Division.
Once the work related to the UN WPP is completed,
with well-calibrated assessment of uncertainty stem-
ming from all three components of population
change, this will become a very significant step
towards including Bayesian modelling in the meth-
odological state of the art of population forecasting.

3.2. Limited data

Besides forecasting, Bayesian methods are also very
well suited to two types of limited data frequently
encountered in demography: data that are sparse
and data that are unreliable or incomplete.
Demographers often work with data sets, such as

censuses or vital registration data, which are orders
of magnitude larger than the data sets used by
other social scientists. However, the ever-increasing
demand for disaggregated statistics, such as life
tables for small areas, or fertility schedules for
ethnic groups, means that demographers often deal
with sparse data. In other words, once events have
been cross-classified along multiple dimensions
such as age, sex, region, time, and population size,
the number of events within each cell or the
number of person-years of exposure can be small.
In a small country, it is common to encounter small
cell sizes even when working at the national level.
In New Zealand, for instance, it is common for
annual deaths of five-year-olds to equal zero. Small
numbers would pose no methodological problems
if, like survey statisticians, demographers were
mainly interested in ‘finite population’ quantities,
such as the number of deaths that actually occurred.
However, demographers are typically interested in
‘super-population’ quantities such as ‘current mor-
tality conditions’ (Vaupel 2002, p. 366). For instance,
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New Zealand demographers do not conclude that
five-year-olds have no chance of dying in years
when no five-year-olds in fact die.
One approach traditionally used in demography to

analyse sparse data is to combine cells until the
number of events within each cell is large enough
that random variation no longer dominates. An
alternative is to retain detailed classifications but to
draw a curve through the observed rates that tries
to pick out genuine changes in the underlying rates
while filtering out random fluctuations. A curve can
be obtained by fitting a low-dimensional parametric
model, such as a model life table, or a parametric
fertility, mortality, or migration schedule, by ‘gra-
duating’ the rates, or by fitting some sort of
general-purpose smoother, such as a spline (Preston
et al. 2000; Keyfitz and Caswell 2005). The challenge
with all these approaches is finding an appropriate
balance between robustness and sensitivity. Aggrega-
tions that are appropriate for a small region may be
unnecessarily coarse for a large region, for instance,
and a spline that works well over most ages may be
inappropriately smooth in the young adult groups.
Bayesian hierarchical models provide an elegant

solution to the problem of balancing robustness and
sensitivity. A hierarchical model is set up with likeli-
hood and prior that pull in opposite directions. The
likelihood pulls towards the ‘direct’ estimate, that
is, the estimate obtained by simply dividing the
observed number of events by the population at
risk. The prior pulls towards the predictions from a
model for the underlying rates, which, in demo-
graphic applications, typically contains a smooth
function of age. The posterior for the hierarchical
model is, as always, a compromise between likeli-
hood and prior, with the likelihood receiving more
weight in cells where there are relatively more obser-
vations, and the prior receiving more weight in cells
where there are fewer observations. The result is
that the hierarchical model is sensitive where it can
be, and robust where it needs to be (Gelman and
Hill 2006).
Figure 2 illustrates these points with estimates of

emigration rates from a Bayesian hierarchical
model for three New Zealand regions with varying
population sizes. The data on numbers of emigrants
come from departure cards filled out by everyone
entering the country. In 2014, the population of
females of Auckland, Porirua, and Mackenzie were
776,900, 27,300, and 2,000. The model gives the
most weight to the prior, and the least weight to the
direct estimates, in Mackenzie, where the number
of observations is smallest and the direct estimates
are most erratic. In Auckland, in contrast, the

model estimates are almost indistinguishable from
the direct estimates.
In recent years, the number of applications of hier-

archical Bayes models to demographic questions has
been growing rapidly. Representative examples
include the following: estimation of marriage rates,
including the probability of never marrying, for
seventeenth-century Italy (Rosina 2006); a study of
geographical variation in mortality in modern Italy
(Divino et al. 2009); a model of age at first birth in
Nigeria (Gayawan and Adebayo 2013); estimation
of mortality rates by migration status in New
Zealand (Richardson et al. 2013); estimation of ferti-
lity rates in over 5,000 municipalities in Brazil
(Schmertmann et al. 2013); and an analysis of inter-
generational ‘transmission’ of fertility patterns
(Osiewalska 2013). Some Bayesian principles, includ-
ing heavy reliance on prior information, have been
also used by Schmertmann (2012) in designing a cali-
brated-spline method for estimating the age patterns
of fertility.
Finally, if existing data are incomplete or unreli-

able, the analysts have little choice but to bring in
extra information not contained in the data them-
selves. One example is the IMEM (Integrated
Model of European Migration) project, which pro-
duced a migration flow matrix for 31 European
countries (Raymer et al. 2013). Only by incorporat-
ing information on accuracy, coverage, and defi-
nitions was it possible to produce sensible estimates
because the input data varied substantially for all
three characteristics. That information did not gener-
ally exist in quantitative form. Instead, it was elicited
from experts as prior distributions (Wiśniowski et al.
2013). Techniques for eliciting prior distributions
that accurately reflect the beliefs of subject-matter
experts have been reviewed in O’Hagan et al.
(2006). Having a standard method for incorporating
extra information of this type is an important
strength of Bayesian analysis. The extra information
is easier to incorporate in a Bayesian analysis and the
transparency of the process is increased, facilitating
criticism and replication.
Other applications of Bayesian modelling to pro-

blematic data involve, for example: models with con-
straints on parameters, such as the proportional
hazards model applied to breastfeeding durations
(McDonald and Prevost 1997); detecting underre-
porting of births in China by using discrete-time
hazard models and change-point regressions (Merli
and Raftery 2000); and adjusting published fertility
rates for specific subpopulations, such as the US His-
panics (Rendall et al. 2009). In historical demogra-
phy, Kasakoff et al. (2014) have explored
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genealogical data from the nineteenth century to dis-
entangle different correlates of individual wealth in
the north-eastern United States. As was the case
with forecasting, applications of Bayesian methods
to estimating demographic parameters and features
of different populations are currently developing
rapidly in many areas of population sciences.

3.3. Highly structured and complex models

The majority of models traditionally used for esti-
mation and prediction are either static or have
simple, one-directional dynamics, such as time-
series analyses. Real demographic systems,
however, typically include feedback loops, con-
straints, and rates that change over age, time, and
space. Data on different components of the
system may have to be assembled from different
sources, each with its own biases and different
levels of completeness. Moreover, demographic
systems typically give rise to many types of uncer-
tainty, arising from incomplete knowledge of his-
torical trends or causal mechanisms, or from

random variation in disaggregated counts. No
model can ever capture all these complexities, but
Bayesian methods, and particularly numerical tech-
niques such as MCMC, allow demographers to
build models that would be intractable using tra-
ditional statistical alternatives.
One example of a highly structured model made

possible by Bayesian methods is the framework for
subnational population estimation presented in
Bryant and Graham (2013). The framework is sum-
marized in Figure 3. The dark rectangles in the
figure represent known quantities, and the light rec-
tangles represent unknown quantities. Arrows rep-
resent probabilistic relationships.
The core of the model is a demographic account

(Rees 1979). The account describes all the demo-
graphic stocks and flows of interest, linked by
accounting identities, and disaggregated by variables
such as age, sex, region, and time. In a typical appli-
cation, the main aim of modelling is to infer values
for the demographic account.
Entries within an account typically exhibit strong

regularities; for instance, mortality rates have dis-
tinctive age profiles, and populous regions tend

Figure 2 Estimates of annual emigration rates for females aged 30–34 in three selected regions of New
Zealand, 1992–2014
Note: The light grey bands are 95 per cent credible intervals, the dark grey bands are 50 per cent credible inter-
vals, the pale lines are posterior medians, and the black lines are direct estimates.
Source: Customized tabulations from Statistics New Zealand.
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to stay populous. The overarching ‘demographic
model’ captures these regularities. Including the
demographic model in the framework means that
values within the demographic account that are
more demographically plausible receive higher
implicit weights. In turn, the individual data models
1, 2,… , K capture the relationships between the cor-
respondingK data sets and the demographic account.
For instance, a data model might state, in mathemat-
ical form, that data from the deaths registration
system capture 90 per cent of deaths on average,
with this relationship varying over age and region.
This framework has some important advantages

over more traditional approaches to population esti-
mation. All outputs from the model come with
measure of uncertainty. These measures include
uncertainty from random variation in demographic
events or reporting, uncertainty about demographic
rates, and uncertainty about the reliability of the
data sources. Because the model ‘predicts’ the con-
tents of each data set from the contents of the demo-
graphic account and the corresponding data model, it
is easy to deal with missing data, or data that are less
detailed than the account: the relevant parts of the
demographic account are simply omitted or aggre-
gated before they are supplied to the data model.
Some of the most ad hoc and time-consuming parts
of the population estimation process are thereby
avoided. Because the approach uses statistical
models to carry out such tasks as data evaluation
that are traditionally accomplished using expert jud-
gement, it is more transparent, and more amenable
to replication and automation.
Similar ideas of using Bayesian methods to build

complex demographic models for the purpose of

reconstructing populations have been discussed by
Wheldon et al. (2013, 2016). Their work, illustrated
by the example of the populations of Burkina Faso,
Laos, Sri Lanka, and New Zealand, is generic and
combines the elements of population reconstruction,
and a procedure for dealing with missing data. The
latter issue is a major problem, especially for many
less developed countries.
A second example of highly structured demo-

graphic modelling via Bayesian methods is the stat-
istical analysis of fecundity and conception, which
involves several structural challenges. Measures
such as the number of fertile days per cycle vary
from woman to woman, as well as varying over
time for the same woman. This variability may be
viewed as a noise to be smoothed away, or as an
object of interest in itself. Predictors such as fre-
quency of intercourse or daily temperature contain
substantial measurement error. Some data are ‘cen-
sored’, so that, for instance, the lengths of birth inter-
vals that were still open when recording finished are
not known. Fecundity itself follows a complicated
non-linear trajectory. Using Bayesian tools such as
hierarchical models and MCMC, scholars have
made considerable progress in all these areas (e.g.,
Dunson and Weinberg 2000; Dunson et al. 2002;
Dunson and Colombo 2003; McDonald et al. 2011).
A third example of the demographic treatment of

complexity is related to computational simulation
models that are not tractable analytically owing to
their complex structures, presence of non-linear
relationships, and possible feedback loops. Here,
the associations between model inputs and outputs
need to be unravelled. Several approaches have
been proposed, including Bayesian melding by
Poole and Raftery (2000), later extended by Ševčí-
ková et al. (2007), and statistical emulators—a
special class of meta-models of the underlying
complex computational models. The emulators are
usually based on Gaussian processes, which are also
typically analysed within a full Bayesian framework
(Kennedy and O’Hagan 2001; Oakley and O’Hagan
2002). A simplified approach also exists—so-called
Bayes linear—whereby uncertainty beliefs are
reflected by the measures of mean and dispersion,
rather than by the whole probability distributions
(e.g., Vernon et al. 2010).
There are trade-offs between Bayesian melding on

the one hand and emulator-based or Bayes linear
approaches on the other: the two last-mentioned
methods provide only approximate solutions, but
may be computationally less expensive to run,
especially in the Bayes linear case. Interesting argu-
ments for both approaches can be found, for

Figure 3 An example of a Bayesian framework for
subnational population estimation
Source: Adapted from Bryant and Graham (2013,
p. 594).
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example, in D. Poole’s discussion of Vernon et al.
(2010), and the authors’ subsequent rejoinder.
Demographic examples of Bayesian studies of

complex computational models include the appli-
cations of Bayesian melding in analysing the
dynamics of HIV epidemics (Alkema et al. 2007,
2009; Clark et al. 2012; Sharrow et al. 2013), and in
agent-based models of transport networks (Ševčí-
ková et al. 2007). Gaussian process emulators have
also been used to study an agent-based model of mar-
riage formation (Bijak et al. 2013). Agent-based
models are micro-level computational simulation
models, whereby the individual units of analysis
(agents) interact with each other and with their
environment according to some rules driving their
behaviour. These interactions yield macro-level pat-
terns that can be then compared with the empirical
observations (for details, see Billari and Prskawetz
2003). Given the increasing recognition of the com-
plexity of population processes, agent-based mod-
els and their analysis using meta-models constitute
a very promising path for further enquiries involving
the application of Bayesian methods.

4. Bayesian demography in the twenty-first
century

There are several distinct features of demography
that make it especially suited for Bayesian modelling.
First of all, the revived interest in uncertainty, and the
gradual shift from deterministic to probabilistic per-
spectives (Alho and Spencer 2005; Courgeau 2012),
point naturally to Bayesian methods because of
their ability to combine many different uncertainties
via probability distributions. Secondly, as discussed
above, in applied demography and population stat-
istics there is often a need to combine several data
sources, incorporate additional information and con-
straints, include expert knowledge, and deal with
sparse or messy data, all in a coherent manner.
Thirdly, as argued by Courgeau (2012), the increas-
ingly popular multilevel paradigm, combining analy-
sis at the levels of individuals, groups, and whole
populations, also naturally lends itself to the use of
Bayesian methods. This is even truer for the statisti-
cal analysis of complex computational models dis-
cussed in the previous section.
On the other hand, demography also has a lot to

offer to the methodology of Bayesian statistics.
First, its strong empirical orientation (Xie 2000;
Morgan and Lynch 2001), combined with a uniquely
detailed knowledge of some of the underlying mech-
anisms under study, such as population renewal, can

offer a unique testing ground for many Bayesian
methods. Second, demographers have already come
up with solutions to some specific estimation pro-
blems. An example here may be the Lee and
Carter (1992) model of mortality surfaces, and its
various extensions and revisions, such as those pro-
posed by Girosi and King (2008), who have empha-
sized the need to preserve good ideas from
demography that may be applicable in wider con-
texts. Third, given its policy relevance, demography
can offer statisticians a unique applied area for
experimenting with user engagement, communi-
cation of uncertainty, and public understanding of
statistics. Here, the only coherent framework cover-
ing different aspects of user engagement—from
uncertain models, estimates, and forecasts, to the
informed support of policy decisions and analysis of
their possible consequences—is Bayesian.
So, why should more demographers use Bayesian

methods, and what would be the value added
offered by such approaches to the twenty-first-
century population scientists? First, we believe that
the notions of risk and uncertainty will probably
gain more ground in social science, as an honest
and scientifically sound way of describing social
reality. A coherent description of uncertainty will
become crucial: end users will no longer remain sat-
isfied with point estimates or purely qualitative indi-
cations of reliability. Second, even in the age of Big
Data, such established techniques as Bayes’s
theorem will facilitate analysis by helping to avoid
false positives, which are one of the dangers of
using large-scale data mining techniques. Third, as
argued in Section 3, the analysis of complex social
phenomena, for example, by using computational
computer models, will also need recourse to a
formal language that can describe the underlying
mechanisms in a coherent, probabilistic fashion.
This work is still in its infancy although some promis-
ing ideas have already emerged, such as the use of
recursive Bayesian networks as a mathematical
language for describing causal mechanistic modelling
(Casini et al. 2011).
Recent rapid developments in Bayesian demogra-

phy provide grounds for optimism. As argued by
Courgeau (2012), the history of demography and
population studies in the past have been largely
cumulative, with new paradigms or perspectives,
such as longitudinal, event-history, or multilevel
modelling supplementing old ones, rather than repla-
cing them completely. We believe there are several
important reasons why this cumulativity constitutes
a very strong case for furthering the Bayesian per-
spective in twenty-first-century demography.
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Most importantly, as discussed above, the Bayesian
platform can be seen as a more general framework
encompassing some other probabilistic approaches,
especially the purely data-based and purely expert-
based ones, in a coherent manner. As such, Bayesian
approaches are complementary to many traditional
demographic methods, rather than being in direct
competition with them, since these traditional
methods can be productively re-expressed in Baye-
sian terms. The very essence of Bayesian inference
is based on the notion of continuity—constant updat-
ing of beliefs in the light of new evidence, in line
with the main tenets of the scientific method. It
allows incorporating new insights—quantitative
data, as well as expert views, some of which may
be qualitative—rather than reinventing the existing
knowledge base or, worse, ignoring it. The theory
and methods, as well as the logical and philosophical
underpinnings of Bayesian statistics are also continu-
ally developing, partially in response to various con-
temporary scientific challenges (for a discussion, see,
e.g., Williamson and Corfield 2002).
There are several challenges for the further devel-

opments of Bayesian demography, and for its prac-
tical applications. In our view, three of them are of
special importance. Firstly, there is a lack of training
in Bayesian methods at the undergraduate and post-
graduate levels in the social science and statistics
curricula. For Bayesian demography to gain
further momentum, more training opportunities—
some of which already exist, especially in the form
of elective courses—should be offered to practising
demographers and social statisticians. Second,
current computational methods are mainly targeted
at academic users, rather than practitioners:
although, as discussed above, there are few
general-purpose platforms, many Bayesian solutions
are bespoke. Until recently there was a distinct lack
of Bayesian modules in mainstream software, with
the current exception of R (Park 2015) and SAS
(SAS Inc., n.d.).
A separate, important challenge is the communi-

cation of uncertainty to the users so that they can
make the most of the information provided to them
via probability distributions (Bijak et al. 2015). This
problem is not limited to demographic or social
science applications, and there is already consider-
able work in this area more broadly (e.g., Spiegelhal-
ter et al. 2011). A related issue is connected to the
practical utility of the probabilistic outcomes of
population estimates and forecasts. A promising
practical extension of Bayesian estimation and fore-
casting consists of a formal decision analysis, intro-
duced briefly in Section 2.3, which could be used

for policy and planning purposes to mitigate the
expected uncertain outcomes.
Contemporary applied Bayesian statistics does not

emphasize the connection with the decision analysis,
and one does not have to commit to utility theory to
be a Bayesian—for example, prominent orthodox
Bayesians such as Lindley (1992) argue that the
main outcomes of any Bayesian analysis are whole
distributions rather than point estimates. However,
applications of Bayesian decision theory have been
suggested to solve practical problems, including
demographic ones. This approach could help select
appropriate values from the probability distributions,
which could be then used for policy or planning pur-
poses (see Alho and Spencer 2005; Bijak 2010). The
main methodological challenge here is the elicitation
of the utility or loss function from the users of the
analysis. Hence, despite the scarcity of concrete
applications so far, the framework is there if it is
needed, and in our view this is one of the important
directions for the practice of applied Bayesian demo-
graphy in the future.
We think that these features of Bayesian statistics

—and Bayesian demography—are really remarkable
for a 250-year-old invention, and that they bear
promise of many further exciting developments in
the applied population sciences throughout the
twenty-first century.
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