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ABSTRACT: Despite its prominence for characterization of complex
mixtures, LC−MS/MS frequently fails to identify many proteins. Network-
based analysis methods, based on protein−protein interaction networks
(PPINs), biological pathways, and protein complexes, are useful for
recovering non-detected proteins, thereby enhancing analytical resolution.
However, network-based analysis methods do come in varied flavors for
which the respective efficacies are largely unknown. We compare the
recovery performance and functional insights from three distinct instances
of PPIN-based approaches, viz., Proteomics Expansion Pipeline (PEP),
Functional Class Scoring (FCS), and Maxlink, in a test scenario of valproic
acid (VPA)-treated mice. We find that the most comprehensive functional
insights, as well as best non-detected protein recovery performance, are
derived from FCS utilizing real biological complexes. This outstrips other
network-based methods such as Maxlink or Proteomics Expansion Pipeline (PEP). From FCS, we identified known biological
complexes involved in epigenetic modifications, neuronal system development, and cytoskeletal rearrangements. This is
congruent with the observed phenotype where adult mice showed an increase in dendritic branching to allow the rewiring of
visual cortical circuitry and an improvement in their visual acuity when tested behaviorally. In addition, PEP also identified a
novel complex, comprising YWHAB, NR1, NR2B, ACTB, and TJP1, which is functionally related to the observed phenotype.
Although our results suggest different network analysis methods can produce different results, on the whole, the findings are
mutually supportive. More critically, the non-overlapping information each provides can provide greater holistic understanding of
complex phenotypes.

KEYWORDS: mouse, critical period, visual acuity, valproic acid (VPA), neuroepigenetics, HDAC, proteomics, protein networks,
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■ INTRODUCTION

Proteomics profiling is essential for direct analysis of the
molecular players (proteins) partaking in biological processes
but is limited by coverage, consistency, and generally small
sample size issues.1 Although these can be remedied by
extensive experimental procedures, e.g., subcellular fractiona-
tion2 or high resolution setups,3 such brute force methods are
time-consuming, expensive, and non-scalable. Network-based
methods capture relationships between functionally related
proteins, therefore allowing recovery of proteins that are
undetected but likely to be in the sample. In this way, they offer
a fast and cost-effective solution to limited coverage and
reproducibility. This has direct implications for important
biological studies including cancer.4 However, they do come in
different forms that may produce different outcomes. There-
fore, a comparative functional and performance (recovery)
analysis is necessary. We tested and evaluated, using proteomics
data derived from valproic acid(VPA)-treated mice, three types

of protein−protein interaction network (PPIN)-based meth-
ods: a cluster discovery-based approach, Proteomics Expansion
Pipeline (PEP); a feature-based approach, Functional Class
Scoring (FCS); and an association-based approach, Maxlink.
Using networks, more accurate identification of present

proteins (recovery) can be attained by identifying cliques or
clusters closely associated with identified proteins. For example,
protein relations can be described by a graph where pairs of
nodes symbolizing proteins are connected by an edge. The
edge can represent protein co-expression assembled from
previous knowledge and experiments, physical binding, or
genetic interaction. Within this graph, cliques (sets of nodes
where every pair of nodes are connected) and highly connected
clusters (sets of nodes where a high percentage of node pairs
are connected) are indicative of modularity (e.g., a protein
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complex). Once these cliques or clusters are identified, they can
be used for postprocessing on the identified proteins; the
identification in a sample of many proteins A1, ..., An from a
network-identified clique5 provides reasonable evidence that a
protein C, which is in the same clique as proteins A1, ..., An,
should also be present in the sample. Examples of “cluster
discovery” approaches include Clique Enrichment Analysis
(CEA)6 and Proteomics Expansion Pipeline (PEP).1,7 CEA
identifies proteins belonging to a fully connected subgraph or
clique. PEP follows a similar approach but uses a more relaxed
cluster identification algorithm, CFinder.5 “Cluster discovery”
approaches define clusters by protein identifications, but this is
potentially unstable as it is particularly subject to network
completeness and nature of the cluster prediction algorithm.
In contrast, “feature-based approaches” define the clusters a

priori and are immutable. To disambiguate, we term such
clusters “features”. One example is FCS (Functional Class
Scoring).8 Here, overlaps (hit rates) are obtained by comparing
the identified protein list against features such as predicted
and/or real biological complexes. A key advantage of FCS is
that a p-value can be determined using class-label random-
ization methods. This empirically generated p-value is
important: Venet et al.9 demonstrated that distribution of
values in real data is acutely different from theoretical
distributions and hence p-values derived from the latter have
little relevance or bearing.
The third class of methods is “association-based”. From a set

of high-confidence seeds, new candidates are identified and
ranked on the basis of the number of network links to seeds. An
example is Maxlink, developed by Ostlund et al.,10 for
identifying novel cancer genes. This method is more relaxed
than “cluster discovery” approaches and does not depend on
the choice of clustering algorithm.
Cluster-based methods are the most commonly used type of

tool in network analysis. Although more relaxed, association-
based methods are seldom used. Feature-based methods are the
newest class of methods developed for proteomic analysis.
Although radically different from more conventional analyses,
this class of methods is the only type able to resolve both the
consistency and coverage issue with low false positive rates.11,12

An evaluation of the pros and cons of each method is given in
Table 3 and elaborated under Results and Discussion.
To the best of our knowledge, there is no current gold

standard data set for which all of the proteins within a data set
are known. While this does somewhat limit the robustness of
performing evaluation studies on network-based methods, it is
possible to gain insight based on specific experimental data.
Here, we study these methods by applying them to mass-
spectrometry-based proteomics data derived from valproic acid
(VPA)-treated mice using two protein search criteria. VPA is
used medically as an anticonvulsant and a mood stabilize, but
also has positive effects on learning and memory.13 It has a role
in epigenetic remodeling through its histone deacetylase
inhibitor activity and has a tangible impact on neuronal
differentiation.14 VPA prompts the differentiation of hippo-
campal neural progenitor cells into neurons but also prevents
differentiation into oligodendrocytes and astrocytes.15 In a
screen of several psychoactive drugs in rats, it has been shown
that only VPA exerted clear definable increase in acetylation.16

Studies in rats showed that HDAC inhibitor treatments, such as
VPA and trichostatin A (TSA), increased visual evoked
potentials and recovered their visual acuity after long-term
monocular deprivation17,18 Recently, we found that VPA also

exerts its effect via miRNA complex regulation, in particular the
BAF/npBAF and histone deacetylases (HDAC) complexes.19

Figure 3 shows a proposed model for VPA activity.
Treatment of wild-type adult mice with VPA over a 2-day

period readjusts miRNA, gene, and protein levels in the brain.
At structural and phenotypic levels, VPA-treated mice showed
an increase in dendritic branching and spine morphology and
also improved visual acuity. As the biological mechanisms are
not well understood for this phenotypic response, the first part
of this work uses the aforementioned network-based methods
for functional analysis. The second part comparatively analyzes
the relative performances (recovery) of the methods.

■ MATERIALS AND METHODS

Animals

Adult C57BL/6 mice of either sex were used. Animals were
maintained on a 12 h light/dark cycle and had access to food
and water ad libitum. All animal protocols have been approved
by the Institutional Animal Care and Use Committee (IACUC)
in the Agency for Science, Technology and Research, A*STAR.
Visual cortex tissue was excised under a dissecting microscope
and used for protein, RNA extraction, and iTRAQ assays.

Drug Administration

Valproic acid (VPA; 200 mg kg−1, i.p; Sigma-Aldrich) was
dissolved in sterile saline. The same volume of vehicle solution
was injected into control animals. VPA or vehicle solution
(Veh) was injected every 12 h into wild type postnatal day-56
adult mice. The mice were sacrificed after 2 days of drug
administration for gene expression array and proteomics
iTRAQ profiling.

RNA Extraction

Total RNA was isolated from the visual cortex using RNase
Easy kit (Qiagen). For every qPCR experiment, independent
pairs of visual cortex from 3 or 4 mice were used as biological
replicates: Veh- and VPA-treated. For every microarray
experiment, independent pairs of visual cortex from 4 mice
were used as biological replicates: Veh- and VPA-treated.

Gene Expression Array Profiling

The quality of the total RNA was verified by an Agilent 2100
Bioanalyzer profile. From each sample, 10 μg of total RNA was
labeled, hybridized to Affymetrix Murine Genome 430
GeneChips according to the Affymetrix protocols, and scanned
at the Biopolis Shared Facilities, A*STAR. All analyses were
performed using standard statistics-based Affymetrix GeneChip
Software; statistical algorithms were implemented using
Affymetrix Microarray Suite version 5.0.

Proteomics Biological Sample Preparation

Frozen visual cortical samples were lysed at 4 °C with ice-cold
lysis buffer [2% SDS; 0.5 M triethylammonium bicarbonate
(TEAB) with Complete Protease Inhibitor Cocktail (COM-
PLETE, Roche, Mannheim, Germany) and phosphatase
inhibitor cocktail (PhosSTOP, Roche)] by intermittent
vortexing and sonication (amplitude, 23%; pulse, 5 s/5 s for
5 min) using a Vibra Cell high intensity ultrasonic processor
(Jencon, Leighton Buzzard, U.K.). The lysates were centrifuged
at 20 000g for 30 min at 4 °C. The supernatant was collected
and stored in aliquots at −80 °C (longer term) or at −20 °C
(shorter duration). Protein quantification was done using
Bicinchoninic Acid Protein Assay kit.
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In-Gel Tryptic Digestion and Isobaric Labeling

The samples were subjected to denaturing polyacrylamide gel
electrophoresis (PAGE) for the purpose of removing the non-
protein interfering substances. Briefly, 500 μg of protein from
each condition was run on an 8% stacking−25% separating gel.
Proteins that migrated into the 8% layer were retarded by the
25% layer, thus concentrating them in a narrow strip at the end
of the stacking gel. The diced gel bands were then reduced (5
mM tris(2-carboxyethyl) phosphine, 60 °C, 1 h) and alkylated
(10 mM methyl methanethiosulfonate in isopropanol, room
temperature, 15 min) before being digested with 10 ng/μL of
sequencing-grade modified trypsin (Promega, Madison, WI) for
overnight at 37 °C. The peptides were extracted with 50%
ACN and vacuum centrifuged to dryness. The dried peptides
were reconstituted into 0.5 M TEAB and ethanol and labeled
with respective isobaric tags of 4-plex iTRAQ Reagent Multi-
Plex kit (Applied Biosystems, Foster City, CA) as follows:
sham, 114; 2 + 0, 115; 2 + 4, 116; 2 + 24, 117. The labeled
samples were combined after 2 h and dried in a vacuum
centrifuge.

Strong Cation Exchange (SCX) Chromatography

The dried iTRAQ-labeled peptide was reconstituted in Buffer A
(10 mM KH2PO4; 25% ACN; pH 2.85) and fractionated using
a PolySULFOETHYL A SCX column (200 × 4.6 mm; 5 μm;
200 Å) (PolyLC, Columbia) as mentioned previously on a
Prominence HPLC system (Shimadzu, Japan) in a 50 min
gradient with Buffer B (10 mM KH2PO4, 25% ACN, 500 mM
KCl (pH 3.0)). Eluted fractions were collected every 1 min and
then pooled into 25 fractions, depending on the peak
intensities, before being dried in a vacuum centrifuge. The
dried fractions were desalted through C18 Sep-Pak Vac reverse
phase cartridges (Waters, Milford, MA) and stored at −20 °C
till MS analysis.

LC−MS/MS Analysis Using QSTAR

The iTRAQ-labeled desalted peptides were reconstituted with
0.1% formic acid (FA) for MS analysis. Each sample was
analyzed three times using a QSTAR Elite Hybrid MS (Applied
Biosystems/MDS-SCIEX), coupled to an online HPLC system
(Shimadzu, Japan). For each analysis, 30 μL of peptide solution
was injected and separated on a home-packed nanobored C18
column with a picofrit nanospray tip (75 μm i.d. × 15 cm, 5 μm
particles) (New Objectives, Wubrun, MA). Mobile phases A
(0.1% FA in 2% ACN) and B (0.1% FA in 100% ACN) were
used to establish a 90 min HPLC gradient with an effective flow
rate of 0.2 μL/min, obtained from a constant flow of 30 μL/
min using a splitter. The mass spectrometer was set to perform
data acquisition in the positive ion mode. Precursors with a
mass range of 300−2000 m/z and calculated charge of +2 to +4
were selected for fragmentation. The three most abundant
peptide ions above a 5 count threshold were selected for each
MS/MS spectrum. The selected precursor ion was dynamically
excluded for 30 s with a 30 mDa mass tolerance. Smart
information-dependent acquisition was activated with auto-
matic collision energy and automatic MS/MS accumulation.
The fragment intensity multiplier was set to 20 and maximum
accumulation time was 2 s. The peak areas of the iTRAQ
reporter ions reflect the relative abundance of the proteins in
the samples.

Mass Spectrometric Raw Data Analysis

The spectral data acquisition was performed using the Analyst
QS 2.0 software (Applied Biosystems/MDS SCIEX). Protein-

Pilot Software 2.01 (Applied Biosystems, Foster City, CA) was
used for peak list generation, protein identification and
quantification against the International Protein Index (IPI)
rat database (version 3.40; 79,354 sequences; 41,861,410
residues).20 Although deprecated, the IPI database still provides
a relatively high-quality search that can be compared against a
more current and larger database. A concatenated target-decoy
database search strategy was also employed to estimate the false
discovery rate (FDR).21 FDR was calculated as the percentage
of decoy matches divided by the total matches (i.e., #decoy/
(#decoy + #target)). The user-defined parameters of the
software were configured as follows: (i) Sample Type, iTRAQ
4-plex (Peptide Labeled); (ii) Cysteine alkylation, MMTS; (iii)
Digestion, Trypsin; (iv) Instrument, QSTAR Elite ESI; (v)
Special factors, None; (vi) Species, None; (vii) Specify
Processing, Quantitate; (viii) ID Focus, biological modifica-
tions, amino acid substitutions; (ix) Database, concatenated
‘target’ and ‘decoy’ (the corresponding reverse sequences); (x)
Search effort, thorough.22 For iTRAQ quantitation, the peptide
for quantification was automatically selected by Pro Group
algorithm to calculate the reporter peak area, error factor (EF)
and p-value. The resulting data set was auto bias-corrected to
get rid of any variations imparted due to the unequal mixing
during combining different labeled samples.
The Paragon algorithm was used for the peptide identi-

fication, which was further processed by the Pro Group
algorithm where isoform-specific quantification was adopted to
trace the differences between expressions of various isoforms.
The Proteinpilot software employed iTRAQ reporter ion peak
area for quantification. Details of the quantification algorithm
can be found in the supplier’s manual. The resulting data set
was auto bias-corrected to get rid of any variations imparted
due to the unequal mixing during the combining of different
labeled samples. Subsequently background correction was also
performed to eliminate any background ion signal due to non-
target peptides, coeluting with the target peptide. A total of 396
proteins were identified, but of these, only 291 have determined
quantification ratios.
A second round of peptide/protein identification was

performed by scanning the MS against the UniProtkb database
(con_Xuni_mouse_12032010; sequences 125176; 67,329,692
residues) using ProteinPilot (Paragon) (v2.01). Similar search
parameters were usd as before with false discovery rates
deployed using target-decoy database search and set to <1%
FDR. 789 proteins were identified. This is a superset of the
originally identified proteins identified by matching against IPI.
The 498 (= 789 − 291) additional proteins are used for
recovery analysis of the individual network-based methods.
They are referred to as the set D in Recovery Performance of
Network-Based Methods.

Mouse PPIN Construction

We built an expanded mouse PPIN by merging data from two
data sources, MppDB23 and IntNetDB.24 MppDB is a mouse
protein−protein interaction (PPI) database, and we used the
reference set of mouse PPI data collected over five PPI
databases: DIP, BIND, MIPS, MINT, and IntAct. This network
is rather sparse, with limited information. The Human PPI
(IntNetDB) network however is much more extensive and
well-studied. We thus used IntNetDB to map interologs from
human PPIN to mouse and merged this with the MppDB data
set. IntNetDB comprises both human PPI data and predicted
PPI based on several model organisms including mouse.
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Functional homogeneity/coherence is evaluated by the smallest
shared biological process (SSBP) score, which is calculated in
three steps: (1) find all the GO terms shared by each pair of
genes, (2) find the number of other genes also sharing these
GO terms, and (3) get the GO term with the smallest gene
count.24 While the SSBP to some extent addresses issue of
reliability by using information from GO, it is not clear that the
SSBP of interologs (in mouse) would necessarily have high
SSBP. This is a caveat that needs be noted as a limitation of our
analysis.
The resultant combined network (IntNetDB + MppDB)

consists of 10,307 nodes and 124,866 edges.

Cluster Prediction Algorithm

SPICi is an extremely fast and powerful clustering algorithm
able to deal with large networks with good performance
speeds.25 It also performs well in its ability to recover known
biological complexes and functional modules. By applying
SPICi on our constructed mouse PPIN, 701 complexes were
obtained with an average cluster size of 6.55.

Functional Class Scoring (FCS)

Complexes are derived from CORUM database26 or are
predicted on the basis of our combined mouse PPIN. For
functional analysis, human complexes were used instead of
mouse as the latter is quite limited. Moreover, we performed
similar complex analysis using human complexes in earlier work
using different data platforms, e.g., Affymetrix 140 2 mouse
mRNA microarray chips, and we wish to further understand
what the proteomics data reveal.19 Since protein complex

information is simply used to identify biologically coherent or
related proteins, the species-specific constitution is not of direct
or utmost importance.
Critical complexes are identified in this way: For each

complex, a hit rate is calculated as the ratio of present proteins
in a complex Np against N, the total number of proteins in a
complex (Np/N). A random complex of size N is generated
from the reference list, and an artificial hit rate is calculated.
This is performed 1000 times to create an empirical null
distribution. The p-value is the number of times the hit rate is
larger than the artificial hit rate divided by 1000.

Proteomics Expansion Pipeline (PEP) and Critical Predicted
Complex Identification

Predicted clusters were generated using the PEP method
described in Goh et al.7 Differentially expressed proteins
(expression ratio ≥1.2 or ≤0.8) were used as seeds and mapped
onto the integrated mouse PPIN (nodes, edges). They were
then expanded to include their first-degree neighbors.
Identification of overlapping clusters was performed using
CFinder.5 The clusters were then scored and ranked by the
following method:

=
∑ =S

E

n
i
n

i1

where S is the calculated score, and E is the expression value for
a detected protein (if protein is underexpressed, then the
reciprocal score is used). For more information on the PEP
method, refer to the pipeline diagram (Figure 1).

Figure 1. Schematic of the 3 network-based methods. (A) FCS. The hit-rate of each complex (real/predicted) is measured against the MS protein
list. Randomization via class-label swopping is used to generate p-value. (B) PEP. MS protein list is first filtered for seed proteins. The expansion step
is done in relation to the PPIN. Clique analysis is then performed to obtain tightly connected clusters. The clusters are then scored and ranked. (C)
Maxlink. MS protein list is first filtered for seed proteins. Connections of every node in the network to these seeds are counted and ranked.
(Abbreviations: FCS, Functional Class Scoring; MS, mass spectrometry; PEP, Proteomics Expansion Pipeline; PPIN, protein−protein interaction
network). For detailed explanations, refer to Materials and Methods.
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Maxlink

We let the network G be composed of nodes V and edges E.
From the set of seeds X ∈ V (expression ratio ≥1.2 or ≤0.8),
the set of non-seeds Y is derived (Y = V − X). The set of linked
proteins L are those proteins in Y that have at least 2
connections to proteins in X. That is, L = {y ∈ Y |2 ≤ |{x ∈ X |
(x,y) ∈ E}|}.
Precision-Recall Analysis

To evaluate whether higher ranked complexes are more reliable
in recovering proteins and whether they recover more proteins,
significant complexes from FCS are ranked by p-value in
ascending order. Proteins are ranked on the basis of the best
complex they are in and inherit the corresponding p-value. For
each level n (p-value < n), the precision and recall are calculated
based on the recovery for that level.
We let U be the set of proteins at some level n where p-value

< n, and V is the set of detected proteins. Precision is calculated
as U ∩ V/U, and recall is calculated as U ∩ V/V.

■ RESULTS AND DISCUSSION
The overall analyses are as follows: (1) We performed a first
pass proteomic analysis to gauge the quality of information as
well as their relevance to the observed phenotype. (2) We
subsequently built on this by examining the results from PEP,
Maxlink, and FCS in a concurrent manner. This involves first
using FCS to build an initial model, followed by augmentation
with PEP complexes, and last checking for testable candidates
using Maxlink. Details are given below. (3) To understand how
congruent or varied the network based methods are, we first
checked the extent of functional term variation between the 3
methods, the extent of protein overlap, and recovery perform-
ance. (4) Since FCS performed the best (precision and recall),

we subsequently built a precision-recall graph to check whether
the distribution of real proteins is concentrated in the region
where the p-value is highly significant. (5) Finally, we end off
with a critical evaluation on the pros and cons of each method.

Proteomics Data First-Pass Analysis

Of 396 protein identifications, only 291 reported quantification
ratios. Regression analysis of the latter revealed excellent
correlations (adjusted R-value = 0.822; p-value ≤ 2.2 × 10−16)
between both samples (116/114 and 117/114, where 116 and
117 are the MS channels corresponding to samples while 114 is
the control); see Supplementary Figure 1. 116/114 and 117/
114 are biological replicates, and hence some variability is
expected. The average expression value is used for downstream
analysis.
A total of 155 of 291 proteins met the standard cutoff criteria

for differential expression (≥1.2 or ≤0.8). GO terms analysis
reveals enrichment for neurological development and projec-
tion/dendritic growth. For a full list of the differential proteins
and their functional annotations, refer to Supplementary Table
1. However, GO term enrichment using gene lists is not very
informative. It is not known how these proteins interact with
each other in order to achieve the observed phenotype. The
enriched GO terms may not be stable if additional proteins
were uncovered. Networks offer the possibility of contextualiz-
ing the protein lists both for functional analysis and recovery.

Integrative Functional Analysis Based on FCS, PEP, and
Maxlink: A Plausible Approach

Although network-based methods are powerful, it is time-
consuming to exhaustively analyze and validate the network-
identified proteins of any single method. Moreover, integration
of outputs can be difficult. Instead, we propose a simple yet
logical approach involving these three methods by drawing on

Figure 2. Combined analysis: a plausible approach. On the basis of our proposed biological model, we can group significant FCS complexes (as they
have well-defined functions and are real) accordingly. This provides a functional model in which we suggest how complexes act in concert to effect
the phenotype as opposed to just single genes. We can further augment the model with information from cluster-discovery methods such as PEP.
Shown are two predicted PEP clusters with highly relevant functional terms but no correspondence with the FCS analysis. This allows enrichment
and expansion of the analysis. Maxlink allows identification of novel proteins that do not necessarily exist within the context of a cluster. Of the top
Maxlink proteins, YWHAZ, also known as 14-3-3, is involved in a wide variety of functions as a transcription factor and promiscuous binder. This is
in agreement with our observations that VPA treatment results in a reshifting of the gene expression mechinary (Abbreviations: FCS, Functional
Class Scoring; MS, mass spectrometry; PEP, Proteomics Expansion Pipeline; PPIN, protein−protein interaction network).
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their individual strengths to bolster functional analysis; see
Figure 2.

Building an Initial Model with FCS (CORUM)

FCS (using biological complexes from CORUM26) utilizes
informative biological features with defined functions and stable
components. By building on and expanding the proposed
model for VPA activity (Figure 3), significant complexes can be
implicated (Figure 2).

Human complexes were used because they are more
extensive.19 Moreover we have prior insight as similar genomics
analysis of the same biological samples using Affymetrix 430 2.0
chips (mouse) was performed.19 Also, the reference mouse
network (on which the Maxlink and PEP are performed)
comprises many human network elements via homology
transfer.
Expectedly, a large number of epigenetically related

complexes were significant (HDAC-related, SWI/SNF and
LARC) (p ≤ 0.05). Epigenetic modifications can lead to the
activation of other genes, but this requires activation of gene
expression machinery including the spliceosome, CDC5L, and
nop56p complexes, which are observed to be overexpressed.
This further leads to the significant activation of complexes
involved with synaptic formation (Polycystin-1), cytoskeletal
reorganization (Profilin 1, Emerin, Arp2/3 and beta-AR
receptosome), as well as neuronal development (BAF27 and
MeCP228).
For further details on FCS significant complexes, refer to

Supplementary Table 3.

Augmenting with PEP Complexes

The primary limitation of using existing biological complexes is
non-exhaustive representation. For instance, if complexes
involved in neuronal differentiation are nonrepresented,26

then these functionalities will not be reflected. Hence, FCS-
based model can be further enhanced/augmented with
predicted complexes from PEP and FCS (using predicted
complexes).
Figure 2 shows two instances of top predicted complexes in

PEP with related functionalities not found among real protein
complexes. In particular, the PEP clusters (YWHAB, NR1,
NR2b, ACTB, and TJP1) as well as (YWHAB, RAF1, NR1,
NR2b, PRKCE, SRC and YWHAG) further add value to the
analysis. This group of proteins is involved in a variety of
functions related to neuronal plasicity and development. These
include detection of stimulus involved in sensory perception,
negative regulation of neuron apoptosis, synaptic transmission,
axonogenesis, regulation of synaptic plasticity, neuromuscular
process, and adult locomotory behavior. More relevantly, it
implicates additional terms such as learning, memory,
regulation of dendrite development, and associative learning.
In particular, NR1 and NR2B are important in visual/ocular
dominance plasticity;29,30 see Supplementary Table 2 for details
and associated p-values.
Also consistent with the FCS (CORUM)26 results is the fact

that several of the PEP predicted clusters are involved in
transcriptional/translational processes as well as in epigenetic
remodeling processes; see Supplementary Table 2. An example
of the former is (LMNB1, CDK1, and PLEC), which is
involved in multiple functions including cell cycle, cell aging
processes, and DNA conformational change. On the latter, a
cluster comprising HDAC231 with HSPA8, MORF4l1, COQ6,
SIN3A, and PHF20 is involved in negative regulation of cell
projection organization and chromatin remodeling.
These are particularly interesting as epigenetic regulation (via

chromatin remodeling) may play an important role in effecting
synaptic plasticity. Moreover, this predicted complex is novel
and has no counterpart in CORUM. Aside from SIN3A, which
is known to be associated with HDAC1/2 in some complexes
such as the MeCP2-SIN3A-HDAC complex, the remaining
components are unique, and intricately associated via protein−
protein interactions.

Augmenting with FCS (Predicted Complexes)

As the constructed network is large (10307 proteins, 124866
interactions), choice of clustering algorithm is important. SPICi
was selected due to its ability to quickly predict complexes from
large networks.25 It was also shown to be good at recovering
biologically relevant complexes and submodules.25 A total of
701 complexes (size 3 and above) were predicted with an
average size of 6.55; 74 of these complexes were found to be
significant at p-value ≤0.05.
On neuronal development, the complex comprising CDC42,

ARHGEF2, MYBBP1A, PRKCI, PPP2CB, CYFIP1, SMAR-
CA4, USP9X, YWHAG, YWHAH, YWHAZ, PNMA2, USP7,
PPP2R1A, YWHAB, KCTD20, DOCK7, 1110012J17RIK,
PNMA1, and CYFIP2 is heavily involved in neuronal
development processes (Neurogenesis, nervous system devel-
opment and neuron differentiation). Interestingly, this group of
proteins is also intricately involved with apoptosis, but it should
not be that surprising, considering that apoptosis is also
required for system development and formation.

Figure 3. Proposed biological action of VPA treatment. VPA activates
HDAC, which in turn epigenetically turns on the expression of genes
involved in synapse formation, nerve growth activation, and
cytoskeletal reorganization. The combined effects of these three
activities result in the phenotypic observation of increased dendritic
growth. This in turn contributes to synaptic plasticity and enhanced
visual acuity. (Abbreviations: HDAC, histone deacetylase; VPA,
valproic acid).

Journal of Proteome Research Article

dx.doi.org/10.1021/pr301127f | J. Proteome Res. 2013, 12, 2116−21272121



On cytoskeletal reorganization, the top cluster consisting of
ACTN1, ADD1, CAP1, CAPZA1, CAPZB, PPP1R12A, WDR1,
CORO1C, ARPC3, ARPC4, 2900064A13RIK, ACTR3,
ARPC2, and CORO7 is relevant since it is involved in
cytoskeletal reorganization and neuronal growth cones
necessary for visual cortical area maturation, which is reportedly
important.32 In our observation, valproic acid also induces
dendritic spine growth,33 and the regulation of dendritic spines
are determined by actin-signaling pathways34 and may
contribute to long-term synaptic plasticity.35 In fact, structural

rearrangements have been shown to be effective in promoting
plasticity in adult age.36

The third top cluster comprising GRM3, CACNA1A,
DNM1, GABRB3, GAD1, GDI1, GNB2l1, GRIA2, GRIK2,
NR1, NR2b, RPH3A, SLC1A3, SPNA2, STX1A, STXBP1,
SYN2, SYNGR1, SYT1, TEX2, PI4KA, SLC6A1, ABAT,
GABBR1, and NOVA1 is involved in synaptic transmission
processes. We note that some of the components here are also
found in the PEP clusters, e.g., NR1 and NR2b (Figure 2). This
cluster is particularly interesting as γ-aminobutyric acid

Table 1. Comparative GO Term Analysis of the Three Methods
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(GABA)ergic, N-methyl-D-aspartate (NMDA), and cholinergic
receptors are thought to be involved in visual cortex plasticity in
animal studies.37 It is widely believed that NMDA receptor-
dependent forms of synaptic modification, such as long-term
potentiation (LTP) and long-term depression (LTD), are
essential for developmental plasticity in the visual cortex. These
changes can be theoretically accounted for by mechanisms of
LTD and LTP assuming that the properties of synaptic
plasticity are “metaplastic” to keep synaptic strengths within a
useful dynamic range.38 This metaplasticity results from
activity-dependent regulation of NMDAR subunit composition.
Since both the channel properties and the intracellular binding
partners of NMDARs rely on the NR2 subunit present in the
heteromer, experience-dependent changes in NR2A/2B ratios39

can alter the receptor function and the LTP threshold.40

Another interesting component of this cluster is that
GABAergic circuitry proteins (GAD1, GABRB3, GABBR1)
are also implicated. We do know that the use of related
benzodiazepines, such as diazepam, can initiate closure of visual
cortical plasticity prematurely by enhancing GABA-mediated
transmission acting through GABAA receptors to elict its
effects.41 However, administering diazepam during adulthood
does not elicit the reactivation of plasticity seen42 when
administering VPA and recovery of amblyopia is observed.17

Thus, it is plausible that VPA mediates its effects mainly
through the HDAC inhibition and, to an extent, different
GABA receptor subtype and decreasing GABA inhibition.
The TNR, SDCBP2, NFASC cluster is focused on synapse

organization.
For further details on significant FCS-predicted complexes

and the p-values, refer to Supplementary Table 4.

Seeking Individually Testable Targets with Maxlink

Given limited time and resources, Maxlink can be a useful
means of experimental prioritization. There are two ways this
can be achieved: First, a highly linked protein could be a
coordinator of various complexes that are up-regulated. Because
these complexes are related by being located in a highly
concentrated area of seeds, these particular complexes may be

worth testing first. The highly linked protein YWHAZ fits this
description as it is a promiscuous binder and also capable of
acting as a transcription factor, able to control several different
functionalities/complexes. YWHAZ (Maxlink rank 1) is a
member of the 14-3-3 family of proteins that mediate signal
transduction by binding to phosphoserine-containing proteins.
The 14-3-3 proteins have been reported to be positively
correlated to critical period plasticity.30 A coordinative protein
may not necessarily be located within a densely connected
region itself and hence may be missed by the “cluster discovery”
methods.
A second way Maxlinked proteins can be used for

experimental prioritization is to check whether it is found in
a variety of significant and functionally relevant FCS (real/
predicted) or PEP complexes. For example, SRC (Maxlink rank
2) is uncovered in a novel PEP complex that also plays an
important role in memory and forebrain development (Figure
2). Furthermore, its high connectivity to seeds denotes
importance.
See Supplementary Table 5 for the list of linked proteins.

Understanding GO Term Variations between the Three
Methods

To compare the results from a functional and more general
perspective, Table 1 summarizes the significant GO terms for
each of the observed phenotypic traits. Despite overall
agreements, there are slight differences in represented
functionalities and associated significance values. It is
unsurprising that these variations exist due to differences in
recovery overlaps, but they could potentially lead to partial or
incomplete analysis.

Overlaps Analysis

The Venn diagrams in Figure 4 illustrate the degree of overlaps
between the 3 network-based methods (reported and
recovered). Two sets of analyses here utilizing different
versions of FCS (predicted complexes, green; real complexes,
purple) were performed. Using real complexes did recover
more proteins. On the other hand, utilizing predicted
complexes for FCS only slightly decreased the number of

Figure 4. Overlaps between the three network-based methods. Analysis was repeated twice with FCS utilizing predicted complexes (green) and real
complexes (purple). Interestingly, the results in both cases are rather consistent. Also, in both cases, the overlaps between Maxlink and PEP were
deeper than with FCS. The latter also reports the highest number of additional proteins not picked up by the other two methods (Abbreviations:
FCS, Functional Class Scoring; MS, mass spectrometry; PEP, Proteomics Expansion Pipeline; PPIN, protein−protein interaction network).
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proteins reported. However, on the whole, the results did not
differ significantly.
For significant predicted complexes with FCS, 115 proteins

are common to all 3 methods; Figure 4 (left). PEP and Maxlink
has a very deep overlap of 765 (650 + 115) proteins. In fact,
this accounts for most of Maxlink’s reported proteins. Only 44
proteins are truly uniquely detected by Maxlink and not
discovered by the other 2 methods.
For significant real complexes with FCS, 180 proteins are

common to all 3 methods; Figure 4 (right). PEP and Maxlink
has a very deep overlap of 765 (585 + 180) proteins. Only 47
proteins are truly uniquely detected by Maxlink and not found
by the other 2 methods.
The consistent deep overlap between Maxlink and PEP is not

unexpected. PEP and Maxlink relies on PPINs and associations
with seeds (requirement for threshold definition). This is unlike
FCS, which uses predicted/real complexes and no threshold.
PEP essentially detects densely connected clusters of proteins
whereas Maxlink is a direct link counting method. This
accounts for why PEP recovers more proteins generally.
FCS has 653 (real) and 474 (predicted) proteins uniquely

detected by it. Although 242 (180 + 10 + 52) proteins are
shared with the other two methods, in both cases FCS reports a
very large number of additional proteins. This could be because
there is a very large number of biological complexes that cannot
be picked up/detected from the network. A second reason is
that these biological complexes are larger, thereby implicating a
larger number of additional proteins.

Recovery Performance of Network-Based Methods

To understand which of the 3 network-based methods
performs best in recovering additional proteins, we performed
a comparative examination. Let A be the set of identified
proteins. For each network-based method, let B be the total set
of proteins reported. For PEP, it would be the proteins from all
the predicted clusters. For Maxlink, it would be all the proteins
interacting with the detected proteins. For FCS, it would be all
the proteins comprising significantly identified features (real or
predicted complexes). For each method, the set of additional
predicted proteins, C, is therefore (B − A). We let D be the set
of additional proteins identified at less stringent identification
thresholds (789 − 291 = 498). The recovery performance
(precision) of each method can be expressed as a proportion, |
(C ∩ D)|/|C|. That is, the proportion of predicted proteins that
can be verified at a less stringent identification threshold. The
sensitivity/recall, i.e., the proportion of additional proteins
identified at the less stringent identification that are successfully
predicted, can be expressed as |C ∩ D|/|D|.
Table 2 shows the recovery performance of each method. In

terms of precision and recall (sensitivity), the contrast between
using predicted complexes/network information and real
biological complexes is stark: FCS using real complexes greatly

outperforms the other 3 network-based methods. Among the
prediction-based methods, FCS (Predicted) performs best in
recall followed by Maxlink and PEP. FCS (Predicted) and
Maxlink have similar precisions, whereas PEP’s is lower.
Comparing seed-based methods PEP and Maxlink, the lower
precision of PEP suggests that many of the seeds could be
network hubs. Therefore, more proteins were reported that
may not be reported in D (see above).
The relatively poor performance using pure networks may be

due to undeterminable false positive/negative rates. This may
be further compounded via the inclusion of network elements
based on homologous mapping.
The results here suggest that despite the contemporary

popularity of network-based analysis, conclusions drawn from
network-identified elements need to be considered carefully
and with sufficient alternative backing evidence. Real biological
complexes appear to capture far more relevant information that
is not reflected in or extractable from contemporary biological
networks.

Precision-Recall Analysis of FCS (Complexes)

Given that real complexes are able to recover most of the
detected proteins with a high level of precision, and since a p-
value is calculable, we are interested in finding out whether the
majority of detected proteins are concentrated in the upper
echelons of significant complexes.
The precision-recall/sensitivity graph (Figure 5 left) shows

that when p-value is very significant (close to 0), sensitivity is
relatively low but quickly maximized while precision remains
optimal. When p-value is ≤0.05 (pink zone, Figure 5 left),
precision and sensitivity are both maximized (as reported in
Table 2). This means that the significant complexes are able to
recover the majority of detected proteins while minimizing false
positives. The histograms (Figure 5 right) shows the
distribution of p-values for detected proteins and non-detected
proteins. Most detected proteins have a highly significant p-
value, whereas undetected proteins have reported p-values that
are usually greater than 0.05.
Since FCS was performed with the initial detected set of 291

proteins, its strong ability to correctly identify additional
proteins (from the expanded set of 789) at the significant level
demonstrates the efficacy of this approach as a recovery
method. The strong recovery of proteins using real complexes
also augurs well for feature-based methods such as Proteomics
Signature Profiling (PSP).12

Strengths and Weaknesses of Each Method

Table 3 summarizes the pros and cons of each of the methods.
The chief strengths of feature-based network analysis methods
such as FCS are that they are less dependent on the reference
biological network (can utilize real biological data classes, e.g.,
complexes), independent of the use of arbitrary thresholds on
the data, and that the discovered features are essentially
immutable (do not depend on the supplied proteomics data).
As this form of analysis is more stable, it allows for more robust
comparisons against other data sets, e.g., comparing significant
features instead of individual genes can greatly simplify analysis.
There are two major down sides, however, the minor being that
it is computationally more expensive to generate a new
empirical distribution for every feature being tested. Still, given
that we should not expect the data to fit a theoretical
distribution anyway, it is worthwhile. The more major down
side, however, is that complex databases such as CORUM may
not be very comprehensive (non-exhaustive representation).

Table 2. Protein Recovery Performance of the Various
Network-Based Methods

method
novel suggested

proteins
recovered
proteins recall precision

PEP 1037 158 0.317 0.152
Maxlink 822 226 0.454 0.275
FCS
(predicted)

638 224 0.450 0.351

FCS
(complexes)

895 477 0.958 0.533
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Hence, if the real complex causing a phenotype is not
represented in the database, it will be missed completely.
The key advantage of Maxlink is that it is a more relaxed

method and can recover proteins that are not necessarily found

within a densely connected cluster or clique. Maxlink can be
truly powerful if many of the known proteins associated with
the phenotype, and the underlying functional profile are known.
In this way, not only would links to known associated proteins

Figure 5. Significant FCS complexes captures most detected proteins. (Left) Precision-recall graph showing that precision and recall is maximized
early on when p ≤ 0.05 (pink zone). (Right) Histograms showing p-value score distributions for detected and non-detected proteins. Detected
proteins mostly belong to FCS-significant complexes where p ≤ 0.05, whereas undetected proteins are mostly in the nonsignificant zone where p >
0.05. This accounts for the extreme left shift in the precision-recall graph.

Table 3. Pros and Cons of Each Network-Based Method
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be important, but penalities for nonassociated protein links can
also be imposed in the discovery of novel associated proteins.
The strength of PEP is that it uses the idea that many of the

relevant activities in the network should be proximal to the
location of differential proteins/seeds. Hence, by first
identifying these anchor points, it should be possible to
confidently recover and identify a good number of lower
confidence proteins.
A common disadvantage of Maxlink and PEP are they

require the imposition of a threshold on the proteomics data,
which is subjective. They are also highly susceptible to the
quality of the reference PPIN, which may be beset with false
positives.

■ CONCLUSIONS

Network-based profiling is useful in enhancing the analytical
outcome of proteomics experiments. We demonstrate here a
plausible approach in comparing and combining the analytical
results of a feature-based approach (FCS) with cluster
discovery approach (PEP) and association-based approach
(Maxlink). We expand our biological roadmap with significant
FCS complexes and then augment this with additional
knowledge from novel predicted complexes from PEP.
Selection for experimental validation as well as uncovering
non-cluster-based associated proteins can be uncovered using
Maxlink. We also report some novel VPA-associated clusters
that are biologically relevant to the observed phenotype.
Recovery analysis suggests that FCS utilizing real complexes

far outperforms any method predicated on biological networks
(including FCS). While this suggests that network quality is far
from optimal, it also denotes that any conclusions or insights
drawn from biological networks need to be rigorously backed
with supporting biological information drawn elsewhere.
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