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ABSTRACT

Motivation: Complementing its traditional role in structural studies
of proteins, nuclear magnetic resonance (NMR) spectroscopy
is playing an increasingly important role in functional studies.
NMR dynamics experiments characterize motions involved in
target recognition, ligand binding, etc., while NMR chemical shift
perturbation experiments identify and localize protein—protein and
protein-ligand interactions. The key bottleneck in these studies is
to determine the backbone resonance assignment, which allows
spectral peaks to be mapped to specific atoms. This article develops
a novel approach to address that bottleneck, exploiting an available
X-ray structure or homology model to assign the entire backbone
from a set of relatively fast and cheap NMR experiments.

Results: We formulate contact replacement for resonance
assignment as the problem of computing correspondences between
a contact graph representing the structure and an NMR graph
representing the data; the NMR graph is a significantly corrupted,
ambiguous version of the contact graph. We first show that by
combining connectivity and amino acid type information, and
exploiting the random structure of the noise, one can provably
determine unique correspondences in polynomial time with high
probability, even in the presence of significant noise (a constant
number of noisy edges per vertex). We then detail an efficient
randomized algorithm and show that, over a variety of experimental
and synthetic datasets, it is robust to typical levels of structural
variation (1-2 A), noise (250-600%) and missings (10-40%). Our
algorithm achieves very good overall assignment accuracy, above
80% in a-helices, 70% in B-sheets and 60% in loop regions.
Availability: Our contact replacement algorithm is implemented
in platform-independent Python code. The software can be freely
obtained for academic use by request from the authors.

Contact: gopal@cs.purdue.edu; cbk@cs.dartmouth.edu

1 INTRODUCTION

Nuclear magnetic resonance (NMR) spectroscopy is playing an
increasingly important role in studies of proteins beyond the
determination of their 3D structures. For example, since NMR
is performed in solution, it can gather information regarding
dynamics (Kay, 1998; Palmer III et al., 1996) and structure-function
relationships under varying conditions (Montelione et al., 2000).
Similarly, solution NMR is a vital tool in assessing ligand binding
for drug development (Hajduk et al., 1997; Shuker et al., 1996)
and can also help characterize protein-protein interactions (Chen
et al., 1993). These applications of NMR are significant even if the
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structure has already been determined by X-ray crystallography or
a high quality homology model is available.

Unfortunately, the data collected in NMR studies are in terms
of the resonance frequencies of the atomic nuclei, which are
not readily predictable. “Resonance assignment” determines the
previously unknown mapping between the atoms in the protein
and the observed resonance frequencies, so that the information
about binding, dynamics, etc. can be properly interpreted. Backbone
resonance assignment has been well-studied within the context of
structure determination (Bartels et al., 1997; Jung and Zweckstetter,
2004; Lin et al., 2002; Moseley and Montelione, 1999; Vitek et al.,
2005, 2006; Xu et al., 2000; Zimmerman et al., 1997). However, the
standard protocols used in that context require much more (and more
expensive) experimentation than is necessary for the dynamics and
interaction studies mentioned above. While the standard protocols
and assignment approaches could still be employed for those
studies, using an available structure offers the potential to reduce
the experimental complexity and circumvent traditional barriers to
interpretation. Our goal is to develop computational techniques that
enable assignment from a minimalist set of experiments that require
only I5N-labeled sample rather than the much more expensive
13C—ISN—labeling used in standard protocols.

Here we formulate the problem of assignment given a structure
and minimalist NMR data as the contact replacement problem
(Fig. 1). A contact graph representing a protein structure has
vertices for the individual amino acid residues in the protein
and edges between nearby pairs. A particular form of ‘interaction
graph’ representing NMR data has vertices for NMR-probed
‘pseudoresidues’ (which correspond via an unknown mapping to
the real residues), and edges between pairs that, if they were nearby,
would explain the data. The NMR edges are essentially the contact
edges, significantly corrupted by experimental noise and ambiguity
(around 5 noisy edges per correct one). The contact replacement
problem is then to uncover the correspondences between these
graphs for a given protein.

The name ‘contact replacement’ for our problem is inspired by the
names for the analogous problems ‘molecular replacement’ in X-ray
crystallography (Rossman and Blow, 1962) and ‘nuclear vector
replacement’ in NMR (Langmead and Donald, 2004; Langmead
et al., 2004). In molecular replacement, initial data interpretation
is aided by matching against available structural information from a
related protein. Likewise, in nuclear vector replacement, residual
dipolar coupling data are matched against predictions from an
available structure (or high-quality model). Contact replacement and
nuclear vector replacement are complementary, relying on different
types of NMR data with different information content (distances
versus orientations). The contact replacement problem is related
to threading (sequence—structure alignment), but for threading,
residues are in sequential order for both the sequence and the
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Fig. 1. Contact replacement. Both an existing 3D structure and NMR data (based on the through-space NOESY experiment) are represented as graphs. The
interaction graph representing the NMR data is essentially a corrupted, ambiguous version of the contact graph representing the structure. The goal is to

uncover the correspondence.

structure, whereas here we have no information about the sequential
order of the pseudoresidues.

Various versions of what we are calling here contact replacement
have previously been studied. Our Hierarchical Grow-and-Match
(HGM) algorithm (Xiong and Bailey-Kellogg, 2007) uses a branch-
and-bound algorithm to find the complete ensemble of consistent
correspondences between contact graphs and NMR graphs, and
can handle significant noise and sparsity. However, due to the
combinatorics of the problem and the branch-and-bound approach,
HGM is effectively restricted to well-defined regions of secondary
structure. The ST2NMR program (Pristovek ez al., 2002) casts
assignment given a 3D structure and NMR data as an optimization
problem, and uses a Monte Carlo approach to find explanations of
the data in terms of distances in the structure. While ST2ZNMR was
shown to be effective for some test data, it requires very specific
experimental set-ups and can provide no guarantees or insights into
the information content of the data. We tested it on a number of
different datasets, and found the accuracy to be fairly low and
quite sensitive to the order of the input data (Xiong and Bailey-
Kellogg, 2007). PEPMORPH (Erdmann and Rule, 2002) uses graph
representations of the structure and data, but augments them with
residual dipolar coupling data in order to compute matchings.
Our earlier work on graph-based approaches to NMR assignment,
Jigsaw (Bailey-Kellogg ef al., 2000) and random graph algorithms
(Bailey-Kellogg et al., 2000; Kamisetty er al., 2006), were able
to effectively uncover secondary structure patterns; our random
graph model enabled us to prove that the randomized methods have
optimal performance in expected polynomial time. However, these
approaches were all restricted to uncovering generic prototypes of
secondary structure elements, rather than matching NMR data to an
arbitrary 3D structure.

Contribution: This article presents the first efficient algorithm
to solve the contact replacement problem for entire proteins.
We first show that by combining connectivity and type, and by
exploiting the random structure of the noisy edges and vertex
labels, one can provably determine unique matchings in polynomial
time with high probability, even in the presence of significant
noise, i.e. a constant number of noisy edges per vertex. Since the
NMR interaction graphs we are studying have up to five times
as many noise edges as correct ones, the ability to handle this
degree of noise is important. This result significantly improves
over previous results on finding long paths in noisy NMR graphs
(Bailey-Kellogg et al., 2005). We then detail a simple and efficient

randomized algorithm that works very well in practice. To do so,
we build upon our earlier work on random graph algorithms in
NMR (Bailey-Kellogg et al., 2000; Kamisetty et al., 2006), which
used connectivity information alone to uncover large, regular
structures (o-helices and P-sheets) in NMR graphs. We now
integrate connectivity information with amino acid type information
(ambiguous labels on the vertices) in order to uncover large
corresponding fragments in NMR and contact graphs for complete
structures. We significantly extend our reuse paradigm to efficiently
uncover these correspondences. Instead of backtracking upon
finding an inconsistency in a growing correspondence, the reuse
approach seeks to maintain the (mostly good) structure by applying
local fix-up rules to address just the source of the inconsistency.
Our empirical results show that this approach is quite effective in
practice, relatively insensitive to both noise in the NMR graph and
structural variation in the contact graph.

2 APPROACH

We first summarize the representations of the input contact
graph and NMR interaction graph; for details see Bailey-Kellogg
et al.(2000,2005) and Kamisetty ef al. (2006).

Contact graph: G*=(V*, E*), where V* is a set of residue
positions and E* is a set of pairs of nearby residue positions. In
particular, we place an edge when a pair of protons is within a
specified distance threshold (say, 3, 4 or 5 A). Each vertex v is
labeled with its amino acid type, a(v).

NMR interaction graph: G=(V,E), where V is a set of
pseudoresidues of unknown correspondence to the residues and
E is a set of pairs of pseudoresidues that may have interacting
protons (i.e. an interaction would explain a peak in the NOESY
spectrum). Such a graph can be compiled from a set of four 5N
spectra (HSQC, HNHA, TOCSY and NOESY), and has a number
of properties (Kamisetty et al., 2006; Pristovek et al., 2002; Xiong
and Bailey-Kellogg, 2007):

* Each vertex is labeled with a secondary structure type, either
a or B, as determined from HNHA.

* Each vertex is labeled with a list £ of possible amino acid
types. We use here the classes output by RESCUE (Pons and
Delsuc, 1999), which employs a two-level neural network to
estimate amino acid type from proton chemical shifts. The first-
level associates a pseudoresidue with one of the 10 type classes
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(IL,A,G P, T, V, KR, FYWHDNC, EQM and S) with very high
accuracy (avg: 91.9%, min: 88.1%); amino acids within a class
are treated as indistinguishable.

¢ Each edge is labeled with an interaction type based on the
chemical shift ranges. We use only HN and HY, since a structure
model’s side-chain atomic coordinates are usually less reliable,
and we have not found their inclusion to aid the results.

¢ Each edge has a match score s, evaluating the quality of the
edge as an explanation for the peak. Typical scoring rules
(Giintert et al., 2000; Vitek et al., 2004, 2005; Zimmerman
etal., 1997) compare absolute or squared difference in chemical
shift; except for noise (reasonably modeled as Gaussian), the
correct edge should match exactly and have the best score. Here
we score edges by error probability, i.e. how likely it is that an
edge could be generated by noise. In this way, missing edges
are naturally penalized since they contribute a score of zero.

x/leGexp_(A(e)z/z"zv where A(e)

is the chemical shift difference for edge e, and o is the SD of
chemical shift difference distribution.

The score is thus —log(l -

Due to the nature of the >N NOESY (HN-!N for one vertex
and 'H for the other), the NMR interaction graph is directed. For
consistency, we adopt the same convention for the contact graph.

We assume for simplicity that the contact graph is ‘correct’—
it represents exactly those interactions that are physically present
[thus its designation as G* = (V*, E*)], and all the errors are in the
NMR graph. The NMR interaction graph G constructed from NMR
data is substantially corrupted from G*, and has an unknown vertex
correspondence. We now formalize our problem in its cleanest form.

ProBLEM 1. (Contact replacement). We are given a contact graph
G* = (V* E*) and an NMR interaction graph G = (V, E). The goal
is to find a bijection m from V* to V that matches amino acid classes
and maximizes the score of the edges in E that correspond to edges in
E* Formally, if m(v*) = v, then we must have a(vx) € £(v). The score
is computed as Z( ex.e)ecS(€), where the mapping c between E*
and E is induced by m as ¢ ={((u*,v¥), (u,v))|(u* ,v¥) € E*,(u,v) €
E,mu*)=u,m(v*)=v}.

One feature of proteins particularly relevant here is that they
are made of chains of amino acids. Thus the contact graph has
an embedded Hamiltonian path from N terminus to C terminus (in
addition to numerous through-space edges connecting residues at
any sequential distance). Ignoring missing edges, the NMR graph
has a corresponding Hamiltonian path. Our analysis and randomized
algorithm both make use of this property, by focusing on finding the
Hamiltonian path while ‘bringing along’ the additional edges for
scoring purposes.

We note that the contact replacement problem is NP-hard in
general, since it contains as a special case the following NP-hard
problem: Given a unweighted Hamiltonian graph (undirected or
directed) H find a Hamiltonian path in H (i.e. assuming that there
are no constraints on vertex labels and all edge scores are the
same). We note that the above problem remains NP-hard even when
restricted to sparse Hamiltonian graphs, e.g. directed Hamiltonian
graphs with maximum out-degree two (Plesnik, 1979) or undirected
Hamiltonian graphs with degree at most three (Garey et al., 1976).
The problem has been shown hard to approximate in directed graphs:
it is not possible to find paths even of superpolylogarithmic length

in constant out-degree Hamiltonian graphs unless Satisfiability can
be solved in subexponential time (Bjorklund et al., 2003). For
undirected Hamiltonian graphs, the best known algorithms give
longer paths (e.g. of length nf2(1/10glogn)y in Hamiltonian graphs
in polynomial time (Feder and Motwani, 2005; Feder et al., 2002;
Gabow, 2004). We note that the above algorithmic results do not
apply to our problem because we have additional information (amino
acid classes) for the vertices. More importantly, NMR interaction
graphs are not arbitrary graphs and indeed have a special structure
as captured by the random graph model described next.

2.1 Random graph model for NMR interaction graph

In order to develop and analyze effective algorithms, we must
consider and model the nature of the relationship between the ideal
contact graph G* and the observed NMR interaction graph G.
We note that traditional G(n, p) random graph models (Bollobas,
2001) essentially add noise edges randomly and independently.
However, the noisy edges in an NMR interaction graph are not
arbitrarily distributed. Instead, chemical shift degeneracy is the key
source of noise in these graphs, imposing a particular correlation
structure among noise edges. We have developed a random graph
model that properly captures the noise in NMR interaction graphs
(Bailey-Kellogg et al., 2005; Kamisetty et al., 2006).

DEFINITION 1. (M (G*, w) random graph). The model M (G*, w)
‘generates’ a random graph from the (correct) graph G*, where w
is a parameter that determines the number of noisy edges generated
per correct edge. Let T be a random permutation of V*. Denote
by 1(v) the index of veV* in the permutation. We then consider
as ambiguous all vertices within a ‘window’ of size w around
a particular vertex. For each edge of G* additional edges are
generated as follows. Consider an edge (u* ,v*) € E*. Then for each
u in the window of width w around 1t(u*)(i.e.|nt(u*) — w(u)| <w) we
add the edge (u, v*) to the random graph.

This model captures the way in which uncertainty in the data
leads directly to ambiguity in the edges posited in an NMR graph.
In particular, NMR spectra represent interactions between atoms as
peaks in R2 or R3, where each dimension indicates the coordinates
(resonance frequencies, in units called ‘chemical shifts’) of one of
the interacting atoms. Uncertainty in the measured chemical shifts of
the protons thus leads to ambiguity in matches, and the construction
of noise edges. When two vertices have atoms that are similar in
chemical shift, they will tend to share edges—each edge for the
one will also appear for the other. Since there is no systematic,
global correlation between chemical shifts and positions of atoms
in the primary sequence or in space, we simply model chemical
shift similarity according to a random permutation. The model can
be extended in order to generate synthetic data (e.g. incorporating
edge scores, accounting for missing edges, etc.); see Section 5 for
our actual simulation testbed. We use this basic model in the next
section to analyze the contact replacement problem.

For amino acid types, we assume a simple independent model
for the purpose of analysis. (Of course, in practice we know the
actual amino acid types for the contact graph.) In particular, let
A be the set of amino acid types and D be some fixed probability
distribution over A (e.g. 1/20 for each, or using empirically observed
frequencies). Assume without loss of generality that for all a € A, the
probability that a is chosen, Pr(a), is greater than g, where g > 0 is
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some fixed constant. We assume that a vertex is labeled by sampling
independently at random from D.

3 THEORETICAL ANALYSIS AND IMPLICATIONS

We present a theoretical analysis to show that the contact
replacement problem can be solved with high probability in
polynomial time. For the analysis, we assume that the NMR
interaction graph G = M(G*, w) is generated from the correct
contact graph G* = (V*, E*) which is a Hamiltonian path of length
n (= number of amino acids). For now, we assume no edge weights,
no breaks and no other sources of noise (additions and deletions);
the result can be generalized. We also assume that for each vertex,
the true amino acid type is in the amino acid class labeling the
vertex, and that it is a non-trivial class, i.e. it is not A itself (refer to
the model above). The contact replacement problem now reduces to
finding whether there is a Hamiltonian path in G that is equivalent
(defined below) to that of the Hamiltonian path G*.

DEFINITION 2. (equivalence). We say that a subgraph H = (V|
E1) of G is equivalent to a subgraph (i.e. subpath) H* = (V5, Ep)
of G*, denoted as H=H?*, if and only if there is a bijection m :
V1 — Vy such that for every vi € Vi, a(m(v)) € €(v1) and there is
an edge e=(uy,v1) € Eq iff there is an edge (m(uy),m(vy)) € E».

In the following, ‘with high probability (whp)’ means with
probability at least 1—1 /nQ(l) where n is the number of amino
acids in the protein.

THEOREM 1. Under our M(G¥* w) random graph model, if
w = O(1), then the contact replacement problem can be solved in
polynomial time whp.

PrOOF. Without loss of generality, we will assume that |[A|=2
(A is the set of amino acid types). The proof can easily be made
to work without this restriction. The proof hinges on the following
claim.

Claim: Fix a (sub)path P of length k = ¢ log n in G*, where ¢ > 0
is a constant (fixed in the proof). Then the following hold whp.

(a) There is a unique subgraph H of G, such that H=P, i.e. there
is no other subgraph H' of G such that H' =P.

(b) There is no other subgraph Q of G* such that P=0Q.

We will first show (a).

Since G = M(G*, w) (i.e. generated by our random graph model),
we know that there exists a subgraph H of G such that H=P. We
now show that H is unique. Let the two amino acids be a and
b, with probabilities of occurring p, and 1—p,, respectively. Let
q = max{py, 1 —pg}. By our assumption on the size of A, g is a
constant (<1). The path G* induces a natural ordering of vertices of
G. We bound the probability of finding another path (subgraph)

H' of G that is equivalent to P by the following expression:

k—1
Pr3H'=P)< n(; )(%)" gk

k'=0
The reasoning is as follows. Let k’ be the number of noisy edges
in H'; k' can vary between 0 and k — 1, and hence we sum over all
possibilities. The first term is the number of different ways of fixing
the starting vertex. There are at most(},) ways of choosing vertices
from which the noisy edges emanate. The third term bounds the

probability that the noisy edges form a path between them with
the amino acid labels matching those of the corresponding vertices
in P. The last term is the probability that the amino acid labels for
the correct vertices match. We can bound the sum as follows (note
that we take 0o¥ = 1):

k—1 , , )
Pr3H'=P} < n(%’,’)k (%)k gk
k'=0
k=1 o b
= X e
k/:O

Plugging k = ¢ log n, the above sum is bounded by

clogn , )
Pr{3H'=P} < n Y. (%V)k q(clogn)—k
k'=0
clogn .
< n Z (%)ch]ogn
k'=0
clogn , ]
< n Z (%)k O(nclogq)
k'=0
clogn
< n Y 0o /nclogd/a)
k'=0
clogn
< nY o(/n%)
k'=0
= 0/n)

if ¢ is a sufficiently large constant.
We now show Claim (b). We bound the probability that there is
some subgraph Q of G* such that P = Q:

Pr{30="P} <ng~.

The first term in the bound is the number of different ways of fixing
the starting vertex of Q and the second term bounds the probability
that a particular Q is identical to P. If k = ¢ log n, for a sufficiently
large constant c, the above probability is bounded by 1/n.

Using the above claims we can design the following polynomial-
time algorithm. The algorithm finds a subgraph H in G of length ¢
log n (where c is fixed in the above claim) such that it is equivalent
to some subgraph P of G*. Once such a subgraph is found, it will be
a unique match in G* whp (by the above claim). The algorithm then
repeats this process until the full equivalent mapping is found. The
subgraph H can be found by an exhaustive search, starting at some
vertex and examining all possible paths of length ¢ log n. There are
only at most w€ 1087 = O(n¢ 198W) (j.e. a polynomial number) of
possible paths and hence the search can be done in polynomial time.
One of these paths in G will be a unique match with a corresponding
path in G*. [ |

We note that the above theorem can be extended to the case when
there are missing (correct) edges in the NMR graph G’as shown in
the following corollary.

COROLLARY 1. Suppose G contains a path P’ of length at least c
log n (where c is as fixed in the above theorem) that is equivalent to
a subgraph H* of G*. Then P' can be found and matched correctly
with H* whp.

The above analysis shows that the contact replacement problem
can be solved in polynomial time if w = O(1), i.e. there is at most
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a constant number of noisy edges per vertex. This is significant for
two reasons. First, in practice, typically the number of noisy edges
per vertex is a constant (around 5). Second, if there is no amino acid
information, the randomized algorithm of (Bailey-Kellogg et al.,
2005; Pandurangan, 2005) can find long paths (of length at least
Q(n/ log n)) in polynomial time only if the number of noisy edges
per vertex is at most one. Our analysis here shows that this threshold
barrier can be surmounted by using amino acid type information.
Our experimental results validate this theoretical prediction.

4 METHODS

In practice, the simplified model and algorithm used in the analysis
may not be fully applicable, in particular because some edges may be
missing and some amino acid type information may be erroneous (the
correct type for a contact graph vertex not included in the class for
the corresponding NMR vertex). Such errors result in ‘breaks’ in the
correspondence between a contact graph and NMR graph. Thus we seek
to find a set of disjoint paths (‘fragments’) in the NMR graph that
together match the Hamiltonian path in the contact graph. Given such an
equivalence, we score all corresponding edges, including the non-sequential
ones. By basing our algorithm on paths, we take advantage of our long-
path result from the previous section, while by including all edges in the
score, we take advantage of all available information to better control the
search.

A key insight of our algorithm is that in searching for good matchings,
the best ones tend to share a lot of substructure. (Our results below
on assignment ambiguity, Fig. 5, illustrate.) In branching-based searches,
such shared substructure can appear on many different branches, making
exhaustive search very inefficient and causing backtracking to perform
wasteful undoing and redoing. In contrast, we use more efficient local fixes
to resolve inconsistencies and continue searching with most of the structure
still intact.

Figure 2 gives the pseudocode for our algorithm. The algorithm maintains
(and fixes up) a single set F of fragments, with a mapping m to the
contact graph that is always consistent (i.e. fragments do not overlap). Some
fragments may not be mapped, meaning that under the current matching,
they are considered noise. On each iteration, the algorithm sequentially
extends one fragment, adding an NMR vertex that will correspond to the
next residue position in the sequence. Several things could happen upon
growing to that vertex; see Figure 3. In the simplest case, the algorithm
picks up an unmatched NMR vertex (and its fragment) and simply extends
the matching. However, it may run into a conflict and need to fix up the
current matching. If a fragment wants to grow to a vertex in the middle of
another fragment, then the other fragment is split at the point of conflict
to allow its suffix to be taken away. If the growth results in a mismatch of
amino acid type or of alignment, then a realignment is attempted. Matching
the fragment somewhere else in the contact graph may result in a consistent
matching, or may produce another conflict, potentially fixed by replacing
part of the conflicting fragment with the new fragment. To keep each step
simple enough, we only recursively handle the conflict at this point if it’s
simple enough to fix. The algorithm repeats until convergence. In practice,
we run a fixed number of iterations, and keep track of m through the iterations
in order to analyze the distribution of good solutions.

At several places in the algorithm, we choose an option ‘with probability
according to its score.’ In general, the score refers to the total score of NMR
edges matched to contact graph edges (refer again to the graph definition for
our scoring function). Since we are using discrete amino acid classes, we
require that the matched contact amino acid type be a member of the NMR
amino acid class. In choosing an edge from u, we only consider the edges
along the current path, while in choosing an alignment or whether or not
to splice, we consider the total of all edges before versus after the possible
change.

m
Fe{{v}|veV)
Repeat until convergence:
Choose at random a vertex © € V' with no successor in £
Choose an edge (u, v} € E, for some v, with probability
according to score
/I Try to grow from u to v at current alignment
Let f,, and f, be the fragments in F' containing » and v
fu — fu + suffix of f, starting at v
fv < prefix of f, before v
If f, is empty, remove it from F
If m(v) is defined and m(u) is undefined and
fu can be aligned ending at m(v) — 1
Update m to align fu, i.e., m(u) « m(v) — 1, etc.
Else if m(u) is defined and m(v) is undefined and
fv can be aligned starting at m(u) + 1
Update m to align fo, i.e., m(v) « m(u) + 1, etc.
Else
Il Try to realign
Let f = {p1, ..., P } be the fragment with u and v
Choose an alignment f' = [¢,4 + n] starting from
position ¢, with probability according to score
If any portion of f” already has some other fragment
aligned there
Choose to splice that out or to keep it,
with probability according to score
Update m
Recursively handle spliced-out subfragments,
if they are large enough and can be aligned

/I matching, from G to G*
/l each v starts in its own fragment

Fig. 2. Randomized algorithm for contact replacement: given a contact graph
G*=(V*,E*) and NMR graph G = (V,E), determine the matching m.

5 RESULTS

Table 1 summarizes the datasets, both experimental and synthetic,
that we used to validate our algorithm. The proteins are of
moderate size for typical NMR studies, and this collection has
representative structural diversity and assignment difficulty. We used
three experimental datasets from previous contact-based assignment
work (Kamisetty er al., 2006; Xiong and Bailey-Kellogg, 2007),
including human glutaredoxin (PDB ID: 1JHB), core binding factor
g (PDB ID: 2JHB) and the catalytic domain of GCNS5 histone
acetyltranferase (PDB ID: SGCN). For brevity, and since assignment
is based on structure, we refer to each protein by its PDB ID. The
noise rate (average number of noisy NMR edges per contact edge)
is as high as 5.4 (1JHB a-helices) and the missing rate as high as
51.8% (5GCN loops). Since such complete experimental datasets
are a rare commodity, in order to more broadly test our approach,
we also used a set of previously generated synthetic datasets (Xiong
and Bailey-Kellogg, 2007) based on chemical shift data deposited in
the BMRB. These synthetic datasets include noise edges according
to Gaussian noise with variance 0.02 (corresponding to a standard
0.05 'H match tolerance) and missing edges according to observed
statistics correlating the missing probability with the interatomic
distance (Doreleijers ef al., 1999): d < 3 A, missing 21%; 3 <d <
4 A, missing 41%.
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Fig. 3. Reuse-based growing and aligning. Contact graph and NMR residues in the same column are matched. There are two amino acid types (empty squares
and filled circles), which must match. (a) Growing from a matched fragment ending in u to an unmatched fragment with v in the middle leaves behind the
prefix of the unmatched fragment in order to append and match the suffix following u. (b) Growing from u to v requires a realignment of the joined fragment.

The joined fragment displaces the suffix starting at w of another fragment.

Table 1. Datasets (top 3 experimental; bottom 9 synthetic)

PDB ID BMRB a/B/ loop

Entry No. of elements No. of residues No. of edges Noise(x) missing (%) RMSD (A)
1JHB N/A 5/4/10 43/18/44 160/49/81 5.4/2.5/3.0 32.5/38.7/33.3 1.3/0.8/1.6
2JHB 4092 5/6/11 36/42/64 138/99/141 3.5/5.2/3.7 33.3/18.2/41.1 1.5/0.9/2.6
5GCN 4321 4/7/12 56/52/58 245/115/110 4.9/4.6/2.2 32.7/28.7/51.8 1.5/1.6/3.5
1KAS 2030 3/4/8 40/23/25 162/56/58 3.2/2.8/1.9 21,41 0.8/0.7/0.8
1EGO 2152 3/4/8 39/19/27 165/42/49 2.2/2.7/2.6 21,41 2.1/1.4/3.6
2FB7 7084 — /516 — /32/63 — /74196 —/3.012.4 21,41 —/1.5/7.7
1G6J 5387 2/5/18 18/22/36 75/47/71 1.4/3.1/3.0 21,41 1.0/1.1/2.3
1P4W 5615 5/-16 66/ — /33 253/ — 129 3.8/ =127 21, 41 1.2/ —=1/3.5
1SGO 6052 4/6/9 47/26/64 199/68/131 2.9/3.4/6.3 21, 41 2.8/1.3/9.6
1RYJ 5106 1/517 9/27/37 31/55/51 1.0/4.3/3.4 21,41 1.3/1.4/2.6
2NBT 1675 — /3/4 — /16/50 — /36/108 —/1.0/2.9 21,41 —/1.5/4.5
1YYC 6515 2/9/11 36/72/66 149/165/153 1.2/4.7/2.6 21,41 2.0/1.7/6.2

Columns give number of secondary structure elements, number of residues, number of contact graph edges, average number of noisy NMR edges per contact edge, percentage of
missing contact edges and average RMSD to the reference model among structures in the deposited ensemble. Each column is broken into statistics for a-helices, p-sheets and loop

regions, separated by slashes. ‘- indicates no instance of that secondary structure.

For each dataset, we ran our algorithm 100 times, each for 10 000
iterations. For each run, we kept the top-scoring assignment over
the 10 000 iterations. We then took as our solution ensemble the
top 10 assignments over the 100 runs. For validation purposes,
we use deposited solutions, which were determined by expert
spectroscopists, as ‘reference’ assignments.

For all test cases, the randomized algorithm took from 20 min to
a few hours for the assignment of a whole protein. The time required
depends on the quality of the input NMR data and of the structure—
noisier datasets and less-representative structures take longer, as the
search space is not as well constrained.

Figure 4 illustrates some examples of the convergence of the
algorithm; other runs and other datasets had similar behavior.
In general, the score increases rapidly over the initial iterations
(a few hundred steps). During this phase, pseudoresidues are being
organized into various ‘short’ paths aligned to the primary sequence,
naturally increasing the score. With successive iterations, the short
paths will start to grow into each other and conflicts occur, requiring
fix-up moves to remove the conflicts. While moves are made so as
to prefer increased score, locally bad moves are occasionally made
in order to escape local optima. In many cases, the score converges
to a value near to that of the reference solution. As we will see
below, the variation tends to produce only minor ambiguity in the
resulting correspondence, and over the ensemble of solutions the
correct assignments tend to be found.

Figure 5 illustrates the assignment results for the experimental
datasets. Notice that we can assign the whole protein, and that for
most of the positions, the reference assignments are included in the
top-ranked solutions. Exceptions tend to be from areas with many

missing edges (e.g. 1JHB 51-57) or residues close to a Proline (e.g.
5GCN 34-35), which necessarily induces a break. The results also
show that the high-scoring solutions tend largely to agree. For 1JHB,
there are on average 1.7 matches for each residue in a-helices, and
1.2 in B-sheets and loops. For 2JHB the ambiguity level is 1.3 for
a—helices, 2.5 for B-sheets and 2.4 for loops, and for SGCN we have
1.3, 2.6 and 3. (These numbers can be compared to the expected
number of matches a priori, which is simply the number of residues
in the protein within the same ambiguous amino acid class, anywhere
from 2 to 14.) In general, B-sheets and loops are more ambiguous
than a-helices since their tertiary structures generate fewer edge
constraints. For the nine synthetic datasets, the average ambiguity
is as low as 1 for a-helices (1G6J), B-sheets (1KAS) and loops
(1EGO); with a maximum of 2.8 (1SGO), 3.6 (1YYC), 9.1 (1SGO)
and median of 1.7 (1KAS5), 1.5 (1G6J), 2.1 (1G6J) for the three types,
respectively. The most ambiguous case is 1SGO loops since it has
both the highest noise ratio (6.3) and the largest RMSD (9.6 A).

We compared these results to the Corresponding ones of (Bailey-
Kellogg et al., 2005) (limited to o-helices), and found that
our algorithm performs much better. Considering each position
separately, we can evaluate how frequently the majority of the
solution ensemble identifies the correct match. In our results, that
is true for 90% of the positions, where it holds for <70% of the
positions under the earlier method.

For both the experimental datasets and the synthetic ones, we
studied the sensitivity of our algorithm to structural variation. For
each dataset, an ensemble of NMR-determined structures had been
deposited. We generated a contact graph for each different member
of the ensemble, and studied how well the original data could be
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assigned under the varying structures. The average RMSDs of the
ensemble members (all to the reference model) are given as the
far right column in Table 1, and are representative of the extent of
structural uncertainty one might expect when assigning NMR data
using an X-ray structure or high-quality homology model.

Figure 6 illustrates the effect of structural variation on the
performance of our algorithm for each secondary structure type. For
experimental data, we observe that for a-helices, there is no obvious
change in the assignment accuracy when reference structures have a
moderate difference (RMSD < 2 A). However, for B-sheets and
loops, the assignment accuracy degrades when RMSD increases
beyond about 1.25 A for B-sheets and 3 A for loops. Similar results
can be observed in the synthetic dataset—a-helices are very tolerant
to structural uncertainty, while B-sheets are best for RMSDs under
around 1.5 A, and loops are best up to around 3.5 A.

Figure 7 summarizes the performance of our algorithm for each
dataset under different structure models. These results suggest that,
overall, we achieve good accuracy in assignment, above 80% for
a-helices, 70% for B-sheets and 60% for loops. Since contacts are
discrete, one might expect more effects from structural variation.
However, recall that our method focuses on matching paths and
uses non-sequential edges for scoring. While the score degrades
with the loss of non-sequential edges, path connectivity is fairly
well maintained regardless of the 3D coordinates.

6 CONCLUSION

NMR spectroscopy provides scientists with the ability to collect
detailed information regarding protein dynamics and interactions

in solution. However, in order to interpret the dynamics and
interaction experiments, it is necessary to first obtain a resonance
assignment so that the observed spectral peaks may be matched
to atoms in the protein (e.g. to localize which atoms are affected
by binding). In order to increase the throughput and decrease
the expense of performing resonance assignment, this article
develops a new approach, contact replacement. Contact replacement
exploits information from an available 3D structure (from X-ray
crystallography or homology modeling) to drive the assignment
process, replacing the typical more extensive and expensive set
of experiments with a minimalist set. Once contact replacement
has been performed, the available assignments can be used to
interpret dynamics or perturbation experiments. We note that those
are separate experiments not included in the assignment process, and
it is an interesting question (regardless of the assignment approach)
to propagate uncertainty from assignment to uncertainty in dynamics
or interactions.

Contact replacement poses interesting algorithmic problems in
matching corrupted graphs, along with basic questions regarding
the information content in connectivity and in vertex labels. In this
article we presented the first efficient algorithm to solve this problem
for entire proteins. We used a random-graph theoretic framework to
derive a theoretical justification for why our approach works well
in practice. Even with a large number of noisy edges (a constant
number per vertex) and a high degree of vertex label ambiguity, the
random structure of the noise and ambiguity allows a polynomial-
time algorithm to uncover the correct solutions.

We showed that our approach works quite well in practice,
tolerating significant noise (up to 500% noisy edges), missings
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(up to 40%) and structural variability (up to 2 A in a-helices and
B-sheets and more in loops), while achieving very good assignment
accuracy (60-80% overall). This combination is quite promising,
and a significant advance in the state of the art. In particular, our
robustness to structural uncertainty suggests that we may even
be able to handle a ‘looser’ structural profile, such as the overall
relationship among the core elements. This is a compelling challenge
for further work.

It is interesting to consider the relationship between contact
replacement and nuclear vector replacement (NVR) (Langmead
and Donald, 2004; Langmead et al., 2004), both of which use

an available structure to perform NMR resonance assignment, but
based primarily on different data. (NVR does use some NOESY
data, too, but only unambiguously assignable peaks.) At a high level,
the residual dipolar coupling data used in NVR is global, giving
orientations of bond vectors with respect to a coordinate frame,
whereas the NOESY data used here is local, giving distances only
between close protons. A natural avenue of work is to study the
relative information content of these types of information in order
to develop a unified framework incorporating both.

Compared to other graph-based structure matching problems (e.g.
threading, structural alignment, structure motif finding, chemical
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compound querying, etc.), contact replacement has no sequential
order information for one of the graphs (the NMR one). However,
the basic insights behind our algorithm (namely reusing partial
solutions by making local fix-ups) may still be quite relevant in
developing new algorithms for those applications. Alternatively,
giving up sequential order in those applications may result in finding
more distant relationships.

ACKNOWLEDGEMENTS

Funding: This work is supported in part by US NSF grant IIS-
0444544 to CBK.

Conflict of Interest: none declared.

REFERENCES

Bailey-Kellogg,C. et al. (2000) The NOESY jigsaw: automated protein secondary
structure and main-chain assignment from sparse, unassigned NMR data. J. Comp.
Biol., 7, 537-558.

Bailey-Kellogg,C. et al. (2005) A random graph approach to NMR sequential
assignment. J. Comp. Biol., 12, 569-583.

Bartels,C. ef al. (1997) Garant— a general algorithm for resonance assignment
of multidimensional nuclear magnetic resonance spectra. J. Comp. Chem., 18,
139-149.

Bjorklund,A. et al. (2003) Approximating longest directed path. Electron. Collog.
Comput. Complex., 32, 1-13

Bollobas,B. (2001) Random Graphs. Cambridge University Press, Cambridge, UK.

Chen,Y. et al. (1993) Mapping of the binding interfaces of the proteins of the bacterial
phosphotransferase system, HPr and IIAglc. Biochemistry, 32, 32-37.

Doreleijers,J. et al. (1999) Completeness of NOEs in protein structures: a statistical
analysis of NMR data. J. Biomol. NMR, 14, 123-132.

Erdmann,M. and Rule,G. (2002) Rapid protein structure detection and assignment using
residual dipolar couplings. Technical Report CMU-CS-02-195, School of Computer
Science, Carnegie Mellon University.

Feder,T. and Motwani,R. (2005) Finding large cycles in hamiltonian graphs. In
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA).
Vancouver, BC, Canada. pp. 166-175.

Feder,T. et al. (2002) Approximating the longest cycle problem in sparse graphs. SIAM
J. Comput., 31, 1596-1607.

Gabow,H.N. (2004) Finding paths and cycles of superpolylogarithmic length. In
Proceedings of the 36th ACM Symposium on the Theory of Computing (STOC),
Chicago, IL, USA. pp. 407-416.

Garey,M. et al. (1976) The planar hamiltonian circuit problem is NP-complete. SIAM
J. Comput., 5, 704-714.

Giintert,P. et al. (2000) Sequence-specific NMR assignment of proteins by global
fragment mapping with program Mapper. J. Biomol. NMR, 17, 129-137.

Hajduk,P. et al. (1997) Drug design: discovering high-affinity ligands for proteins.
Science, 278, 497-499.

Jung,J. and Zweckstetter,M. (2004) MARS - robust automatic backbone assignment of
proteins. J. Biomol. NMR, 30, 11-32.

Kamisetty,H. e al. (2006) An efficient randomized algorithm for contact-based NMR
backbone resonance assignment. Bioinformatics, 22, 172-180.

Kay,L. (1998) Protein dynamics from NMR. Nat. Struct. Biol., 5 (Suppl), 513-517.

Langmead,C. and Donald,B. (2004) An expectation/maximization nuclear vector
replacement algorithm for automated NMR resonance assignments. J. Biomol.
NMR, 29, 111-138.

Langmead,C. et al. (2004) A polynomial-time nuclear vector replacement algorithm for
automated NMR resonance assignments. J. Comp. Biol., 11, 277-298.

Lin,G. et al. (2002) An efficient branch-and-bound algorithm for assignment of protein
backbone NMR peaks. In Proceedings of the Computer Society Conference on
Bioinformatics, Palo Alto, CA, USA. pp. 165-174.

Montelione,G. et al. (2000) Protein NMR spectroscopy in structural genomics. Nat.
Struct. Biol., 7 (Suppl), 982-985.

Moseley,H. and Montelione,G. (1999) Automated analysis of NMR assignments and
structures for proteins. Curr. Opin. Struct. Biol., 9, 635-642.

Palmer ITILA. et al. (1996) Nuclear magnetic resonance studies of biopolymer dynamics.
J. Phys. Chem., 100, 13293-13310.

Pandurangan,G. (2005) On a simple randomized algorithm for finding a 2-factor in
sparse graphs. Inform. Process. Lett., 95, 321-327.

Plesnik,J. (1979) The NP-completeness of the Hamiltonian cycle problem in planar
digraphs with degree bound two. Inform. Process. Lett., 8, 199-201.

Pons,J. and Delsuc,M. (1999) RESCUE: an artificial neural network tool for the NMR
spectral assignment of proteins. J. Biomol. NMR, 15, 15-26.

Pristovek,P. et al. (2002) Semiautomatic sequence-specific assignment of proteins
based on the tertiary structure-the program ST2NMR. J. Comp. Chem., 23,
335-340.

Rossman,M. and Blow,D. (1962) The detection of sub-units within the crystallographic
asymmetric unit. Acta. Cryst., 15, 24-31.

Shuker,S. et al. (1996) Discovering high-affinity ligands for proteins: SAR by NMR.
Science, 274, 1531-1534.

Vitek,O. et al. (2004) Model-based assignment and inference of protein backbone
nuclear magnetic resonances. Stat. Appli. Gene. Mol. Biol., 3, Article 6, 1-33. http:
/Iwww.bepress.com/sagmb/vol3/iss1/art6/.

Vitek,O. et al. (2005) Reconsidering complete search algorithms for protein backbone
NMR assignment. Bioinformatics, 21, ii230-236.

Vitek,O. et al. (2006) Inferential backbone assignment for sparse data. J. Biomol. NMR,
35, 187-208.

Xiong,F. and Bailey-Kellogg,C. (2007) A hierarchical ~ grow-and-match
algorithm for backbone resonance assignments given 3D structure. In
Proceedings of IEEE Bioinformatics and Bioengineering, Boston, MA, USA.
pp. 403-410.

Xu,Y. et al. (2000) Protein structure determination using protein threading and sparse
NMR data. In Proceedings of the Fourth Annual International Conference on
Computational Molecular Biology, Tokyo, Japan. pp. 299-307.

Zimmerman,D. et al. (1997) Automated analysis of protein NMR assignments using
methods from artificial intelligence. J. Mol. Biol., 269, 592-610.

i213



	Contact replacement for NMR resonance assignment
	Fei Xiong, Gopal Pandurangan and Chris Bailey-Kellogg
	1 INTRODUCTION
	2 APPROACH
	3 THEORETICAL ANALYSIS AND IMPLICATIONS
	4 METHODS
	5 RESULTS
	6 CONCLUSION



