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Abstract. Chimeric antigen receptor (CAR) T cell therapy with 
axicabtagene ciloleucel, tisagenlecleucel and brexucabtagen 
ciloleucel has been adopted as the standard of care for patients 
with refractory and/or relapsed CD19‑positive lymphoid 

malignancies. Monitoring of kinetics of CAR T cells after 
administration is crucial for patient follow‑up and important 
to guide clinical decisions for patients subjected to CAR T cell 
therapy. Information of transgene copies within a CAR T cell 
product prior to administration, i.e. vector copy numbers, is of 
high importance to warrant patient safety. However, experi‑
mental assays for quantitative CAR T cell monitoring in the 
open domain are currently lacking. Several institutions have 
established in‑house assays to monitor CAR T cell frequencies. 
In the present study, the quantitative (q)PCR assay established 
at the Heidelberg University Hospital (Heidelberg, Germany), 
i.e. single copy gene‑based duplex qPCR, was compared with 
the digital droplet PCR assay established at the University 
Medical Center Hamburg‑Eppendorf (Hamburg, Germany). 
Both methods that were independently developed enable accu‑
rate and comparable CAR T cell frequency assessment and are 
useful in the clinical setting.

Introduction

Cellular immunotherapy with CD19‑directed chimeric antigen 
receptor (CAR) T cells is altering the treatment landscape of 
lymphoid malignancies. CARs are composed of an extracel‑
lular antigen‑specific domain derived from an antibody's 
single chain variable fragment (scFv), a hinge and transmem‑
brane segment and an intracellular domain to activate and 
co‑stimulate the T cell expressing the CAR. Hence, CAR T 
cells combine the antigen‑specific properties of antibodies 
with the effector functions of T cells. In contrast to physi‑
ologic T cell receptors (TCRs), CARs are able to recognize 
unprocessed extracellular antigens and may therefore act 
in a human leukocyte antigen‑independent manner. The 
intracellular CAR domain defines the different CAR genera‑
tions: First‑generation CARs contain only the tyrosine‑based 
ζ‑signal‑transducing subunit from the TCR/CD3 receptor 
complex (1). Second‑generation CARs carry costimula‑
tory domains, e.g. CD28 or 4‑1BB (CD137), adjacent to the 
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TCR/CD3ζ‑domain. Costimulation has been indicated to 
enhance CAR T cell activity and has resulted in improved 
clinical efficacy compared to first‑generation CAR T cells (2). 

In 2018, two second‑generation CAR T cell products, i.e. 
axicabtagene ciloleucel (axi‑cel) and tisagenlecleucel (tisa‑cel) 
were approved by the European Medicines Agency (EMA) for 
the treatment of patients with relapsed and/or refractory (r/r) 
B‑cell lymphoid malignancies (3‑6). While axi‑cel, carrying 
CD28 as a costimulatory domain, has been approved for the 
treatment of patients with r/r diffuse large B cell lymphoma 
(DLBCL) and primary mediastinal B cell lymphoma (7), 
tisa‑cel, carrying 4‑1BB as a costimulatory domain, has been 
approved for the treatment of patients with r/r DLBCL and 
patients with r/r acute lymphoblastic leukemia (ALL) below 
26 years of age (8). In 2020, the EMA approved the third 
CD19‑directed CAR T cell product in Europe, i.e. brexucabta‑
gene autoleucel (brexu‑cel), for the treatment of patients with 
r/r mantle cell lymphoma (9). The CAR construct of brexu‑cel 
is identical to axi‑cel, but the two products differ in their 
manufacturing process, as brexu‑cel includes the selection of 
T cells to exclude circulating malignant B‑cells prior to T cell 
transduction. All three CAR T cell products are generated 
from autologous cells and are indicated for the respective 
underlying disease after two or more lines of therapy. 

Quantification of CAR T cells and monitoring of CAR 
T cell kinetics are crucial diagnostic variables in patients 
treated with CAR T cells, as clinical response and toxicity 
have been indicated to depend on CAR T cell engraftment, 
expansion and persistence (10‑16). Hence, the assessment of 
CAR T cell frequencies by widely available and easily appli‑
cable CAR T cell monitoring assays is important.

However, to date, precise and fast assays that enable the 
quantification of commercially available CAR T cells have been 
largely unavailable. Recently, our groups developed PCR‑based 
in‑house assays to detect and quantify CD19‑directed CAR 
T cells (17‑20). However, systematic comparison of different 
approaches for CAR T cell quantification has remained an 
open task, and it requires to be elucidated whether different 
PCR approaches with diverse technical elements and 
methodical parameters, i.e. quantitative PCR (qPCR) (19,20) 
and digital PCR (17,18), are able to provide comparable data 
when assessing CAR T cell frequencies. To address this, 
the qPCR assay established at the Heidelberg University 
Hospital (UKHD), i.e. single copy gene‑based duplex qPCR 
(SCG‑DP‑PCR) (20), from here onwards referred to as qPCR, 
was compared to the digital droplet PCR (dPCR) assays estab‑
lished at the University Medical Center Hamburg‑Eppendorf 
(UKE) (17,18). Both methods target the FMC63‑based scFv 
that is incorporated within the CD19‑directed CAR T cells 
commercially available in Europe, i.e. axi‑cel, tisa‑cel and 
brexu‑cel.

Materials and methods

Patient samples. Samples for CAR T cell quantification were 
obtained from a total of 20 patients, i.e. 10 patients with 
axi‑cel and tisa‑cel, respectively, at different time‑points until 
up to six months after CAR T cell treatment. Each 10 patients 
had been treated at the UKHD or the UKE in accordance with 
the institutional guidelines (see Table I). Informed consent had 

been obtained from all patients prior to CAR T cell treatment 
and the study was approved by the local ethics committees at 
the UKHD (Heidelberg, Germany; no. S‑254/2016) and UKE 
(Hamburg, Germany; no. PV7091). 

Response to treatment was assessed according to revised 
response criteria for malignant lymphoma (21) or according 
to standard criteria for ALL (22). Cytokine release syndrome 
(CRS) and immune effector cell‑associated neurotoxicity 
syndrome (ICANS) were graded according to the consensus 
guidelines defined by the American Society for Transplantation 
and Cellular Therapy (23).

Genomic DNA (gDNA) was extracted from peripheral 
blood mononuclear cells (PBMCs) as described in the 
following and samples of gDNA were exchanged between 
the two institutions in a blinded manner. Quantification was 
performed using qPCR (20) at the UKHD and dPCR (17,18) 
at the UKE. Overall, 113 genomic DNA samples, 56 from 
patients treated with axi‑cel and 57 from patients treated with 
tisa‑cel, were analyzed.

qPCR at the UKHD. SCG‑DP‑PCR relies on the simulta‑
neous amplification of the FMC63 sequence of the CAR (24) 
and the human SCG ribonuclease (RNase) P RNA compo‑
nent H1 (RPPH1; in the following referred to as RNaseP) as 
the internal standard. The following primer and probe sets 
were used: i) Primer/probe reaction mix (cat. no. 4331348; 
Applied Biosystems; Thermo Fisher Scientific, Inc.) targeting 
the FMC63 sequence of the CAR (24): Forward primer, 
TGA AAC TGC AGG AGT CAG GA; reverse primer, CTG 
AGA CAG TGC ATG TGA CG; probe, FAM‑CTG GCC TGG 
TGG CGC CCT CA‑minor groove binder/non‑fluorescent 
quencher; ii) RPPH1 (RNaseP) primer/probe reaction mix 
(cat. no. 4403326; TaqMan; Applied Biosystems; Thermo 
Fisher Scientific, Inc.) was used as described previ‑
ously (19,20).

SCG‑DP‑PCR was performed on gDNA isolated from 
PBMCs. PBMC isolation was performed by Ficoll density 
gradient (Linaris GmbH) following the manufacturer's 
protocol, washed and suspended in PBS.

gDNA was extracted using a commercially available DNA 
extraction kit and following the manufacturer's instructions 
(cat. no. 51104; QIAamp DNA Blood Mini; Qiagen GmbH). 
The concentration of extracted gDNA was measured using 
UV spectroscopy (NanoDrop OneC; Applied Biosystems; 
Thermo Fisher Scientific, Inc.), and samples were diluted 
to a final concentration of 20 ng/µl gDNA in nuclease‑free 
H2O. The PCR mixture had a final volume of 25 µl and 
contained 1.25 µl mix containing primers (900 nM) and 
probes (250 nM) targeting the CAR‑transgene and RNaseP, 
12.5 µl of PCR master mix (cat. no. 4304437; Applied 
Biosystems; Thermo Fisher Scientific, Inc.), 5 µl of gDNA 
sample and 5 µl of nuclease‑free H2O. Non‑template control 
and a biological negative control (non‑transduced cells) 
were included within all experiments. All reactions were 
performed in triplicates.

The following amplification conditions were used (19,20): 
50˚C for 2 min and 95˚C for 10 min, followed by 40 cycles 
of 95˚C for 15 sec and 60˚C for 1 min. Thermal cycling 
was performed using a StepOnePlus real‑time PCR system 
(Applied Biosystems; Thermo Fisher Scientific, Inc.).
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The calculation of copy numbers via qPCR was performed 
applying a 2‑ΔCt calculation method as previously described 
using the following formula (19,20): Copy number/µm PBMC 
DNA=2‑∆(Ct FMC63‑Ct RNaseP) x2x140,370.

dPCR at the UKE. gDNA from patient samples was prepared 
as previously described (17,18). In brief, PBMCs were isolated 
by Ficoll gradient centrifugation using SepMate (Stemcell 
Technologies, Inc.) following the manufacturer's protocol, 
washed and suspended in PBS. If available, ~1x106 PBMCs (in 
200 µl) were loaded on columns of the QIA‑Amp Blood Kit 
(Qiagen GmbH) and genomic DNA was isolated following the 
manufacturer's protocol. DNA was eluted in a final volume of 
200 µl. If <1x106 mononuclear cells were available, all cells 
were used for DNA preparation and the elution volume was 
adjusted accordingly.

Typically, 100 ng gDNA corresponding to ~15.000 diploid 
genomes (cells) were subjected to dPCR analysis. For axi‑cel 
samples, dPCR was performed as previously described (17), 
and for tisa‑cel samples, the approach outlined in (18) 
was used. Primers and probes for both dPCRs are avail‑
able as Expert Design assays from Bio‑Rad Laboratories, 
Inc. (axi‑cel: Cat. no. dEXD45718942; tisa‑cel/universal: 
Cat. no. dEXD88164642). All dPCRs were performed in 

duplex reactions using the diploid hematopoietic cell kinase 
gene as a reference gene (17,18). Final concentrations of primers 
(900 nM) and probes (250 nM) were according to standards 
suggested for dPCR by Bio‑Rad Laboratories, Inc. To reduce 
sample viscosity and improve target accessibility, 5 units EcoRI 
(Thermo Fischer Scientific, Inc.) were added to the reaction 
mix, which was incubated at RT for 5 min prior to starting the 
PCR. Droplets were analyzed with the QX100 droplet reader 
(Bio‑Rad Laboratories, Inc.) and data were processed with 
QuantaSoft_v1.7 software (Bio‑Rad Laboratories, Inc.) that 
included automatic Poisson correction (17,18).

Flow cytometric assessment of CAR expression. Frozen 
PBMCs of selected patients were thawed and flow cytometry 
(FC) was performed as recently described (17). In brief, CD19 
CAR‑expressing T cells were determined using the CD19 
CAR detection reagent Biotin (cat. no. 130115965; Miltenyi 
Biotec GmbH) following the manufacturer's protocol. In 
brief, PBMCs were washed with FC buffer [PBS (Gibco, 
Thermo Fisher Scientific)] containing 2% fetal bovine serum 
(MilliporeSigma) and resuspended in 100 µl FC buffer. Cells 
were stained with CD19 CAR Detection Reagent Biotin for 
10‑15 min at RT, washed twice with FC buffer and stained 
with anti‑CD45 Vioblue, anti‑CD3 FITC and anti‑biotin 

Table I. Characteristics of patients treated with CAR T cells.

  Institution    Status prior 
 Age, administering CAR T Prior Bridging to CAR T CRS ICANS Best
UPN # years/sex CAR Ts product/entity therapy lines therapy  therapy grade grade response

001 41/M UKHD Axi‑cel/DLBCL 3 Yes PD I III PR
002 56/M UKHD Axi‑cel/DLBCL 3 Yes PD I ‑ PR
003 40/F UKHD Axi‑cel/DLBCL 4 Yes PD I III CR
004 58/M UKHD Axi‑cel/DLBCL 3 Yes SD ‑ ‑ SD
005 55/M UKHD Axi‑cel/DLBCL 3 Yes SD I ‑ PR
006 53/M UKE Axi‑cel/DLBCL 4 Yes PD I I CR
007  44/M UKE Axi‑cel/DLBCL 4 Yes PD III II CR
008  58/M UKE Axi‑cel/DLBCL 8 Yes SD ‑ ‑ SD
009 52/F UKE Axi‑cel/DLBCL 3 No PD II I CR
010 69/M UKE Axi‑cel/DLBCL 4 Yes CR III ‑ CR
011 66/M UKHD Tisa‑cel/DLBCL 5 Yes SD I ‑ SD
012 49/M UKHD Tisa‑cel/DLBCL 3 No PR ‑ ‑ SD
013 71/M UKHD Tisa‑cel/DLBCL 4 Yes PD II ‑ PR
014 57/M UKHD Tisa‑cel/DLBCL 4 Yes PD I II PR
015 67/M UKHD Tisa‑cel/DLBCL 4 Yes CR I ‑ CR
016 10/M UKE Tisa‑cel/ALL 3 No PD I ‑ CR
017 59/F UKE Tisa‑cel/DLBCL 4 Yes PD IV ‑ n.e./TRM
018  51/M UKE Tisa‑cel/DLBCL 3 Yes SD ‑ ‑ PR
019 67/F UKE Tisa‑cel/DLBCL 7 Yes PR I ‑ SD
020  59/M UKE Tisa‑cel/DLBCL 2 Yes PR II ‑ CR

ALL, acute lymphoblastic leukemia; axi‑cel, axicabtagene ciloleucel; CAR T, chimeric antigen receptor T cells; CR, complete remission; 
CRS, cytokine release syndrome; DLBCL, diffuse large B cell lymphoma; F, female; M, male; ICANS, immune effector cell‑associated 
neurotoxicity syndrome; n.e., not evaluable; PR, partial remission; PD, progressive disease; SD, stable disease; tisa‑cel, tisagenlecleucel; TRM, 
treatment‑related mortality; UKE, University Medical Center Hamburg‑Eppendorf; UKHD, Heidelberg University Hospital; UPN, unique 
patient number.
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phycoerythrin (cat. no. 130110951; Miltenyi Biotec GmbH) 
for 10 min at RT. After washing with FC buffer, cells were 
resuspended in 500 µl FC buffer supplemented with Cytofix 
reagent (BD Biosciences) and subsequently analyzed on a 
FACS Canto Analyzer (BD Biosciences). At least 125,000 cells 
were analyzed in the lymphocyte gate to ensure high accu‑
racy. Dead cells were excluded using a fixable viability dye 
(eFluor 506; Ebioscience; Thermo Fischer Scientific, Inc.). 
Results were analyzed using FlowJo software, version 10.6.2 
(BD Biosciences).

Statistical analysis. Copy numbers of individual samples 
measured using qPCR and dPCR were compared: qPCR 
results were set as 100% and the relative difference of 
the corresponding dPCR result to qPCR was calculated. 
Two‑tailed Pearson statistics with a confidence interval of 
95% were applied to determine correlation coefficients (R2) 
between data‑points obtained with qPCR and dPCR. A corre‑
lation was considered statistically significant if P<0.05. For 
statistical analyses, GraphPad Prism, version 8.4.3 (GraphPad 
Software, Inc.) was used. 

Results

Response and toxicity in patients treated with CAR T cells. The 
copy numbers in 113 gDNA samples of 20 patients treated with 
axi‑cel [n=10, five patients per institution (Fig. 1)] and tisa‑cel 
[n=10, five patients per institution (Fig. 2)] were assessed by 
qPCR and dPCR. The patient data are summarized in Table I. 
Of the patients treated with tisa‑cel, nine patients were treated 
for DLBCL and one for ALL [unique patient no. (UPN) #016]. 
Most patients (n=16) were male, the median age of the treated 
patients was 56.5 years (range, 10‑71 years), and patients had 
received 2‑7 prior treatment lines. The majority of patients 
(n=17) received bridging therapy between lymphodepletion 
and CAR T cell administration due to a high burden of the 
hematologic disease or progressive disease (PD). Of those 

patients, four patients achieved complete remission (CR, n=2) 
or partial remission (PR, n=2), five patients displayed stable 
disease (SD) and eight patients had PD despite treatment. Of 
the three patients that did not receive any bridging therapy, one 
patient had PR and two patients PD prior CAR T cell treatment. 
Following CAR T cell administration, 16 patients developed 
CRS with 3 cases of high‑grade CRS (>grade III CRS). 
ICANS was observed in 6 patients, with high‑grade ICANS 
(>grade III ICANS) evident in 2 patients. Peak levels of CAR 
T cell copies ranged between 43 and 159,304 copies/µg PBMC 
DNA. High‑grade ICANS was observed in patients with high 
peak CAR T cell expansion (UPN#001 and #003).

One patient (UPN#017) died within 1 week after CAR T cell 
treatment due hemophagocytic lymphohistiocytosis/macro‑
phage activation syndrome. The remaining 19 patients were 
evaluable for assessment of clinical response: 14 patients 
(74%) responded to treatment, with 8 patients (42%) achieving 
CR and 6 patients PR (32%) as their best response. SD was 
observed in 5 patients (26%). Those patients with the lowest 
CAR T cell expansion [UPN#008 (axi‑cel) and UPN#012 
(tisa‑cel)] did not respond to treatment. 

Comparison of qPCR and dPCR for CAR T cell quantification. 
For all analyzed patient samples, qPCR and dPCR provided 
highly similar, overlapping logarithmic curves of CAR vector 
copies/µg PBMC gDNA over time (Figs. 1 and 2). Data sets 
obtained for each patient with qPCR and dPCR displayed a 
high degree of correlation with statistical significance for all 
measurements (Table II). For patient samples with low CAR T 
cell expansion levels (i.e. UPN #008, #012 and #018; maximum 
CAR T cell levels <5,000 copies/µg PBMC gDNA), a statisti‑
cally significant correlation persisted (R2>0.78; P<0.05), 
reaffirming the comparability of qPCR and dPCR even at 
low CAR T cell levels. When copy numbers of individual 
samples were compared by relating dPCR to qPCR results 
(qPCR set as 100%), the mean quantification results of dPCR 
were 70±34%, i.e. a mean relative difference of ‑30% from 

Figure 1. Expansion curves of patients after axi‑cel administration determined using qPCR and dPCR. Assessment and monitoring of the CAR T cell frequen‑
cies in patients treated with axi‑cel (n=56). At each of the two institutions, five patients were treated and samples were interchanged between the institutions in 
a blinded manner. CAR T cell frequencies were measured using qPCR at the UKHD and dPCR at the UKE. Semi‑logarithmic representation of CAR transgene 
copies/µg PBMC gDNA over time provided almost overlapping curves. Each curve displays the result for a single patient. UPN, unique patient number; axi‑cel, 
axicabtagene ciloleucel; CAR, chimeric antigen receptor; qPCR, quantitative PCR; dPCR, digital droplet PCR; PBMC, peripheral blood mononuclear cell; 
UKE, University Medical Center Hamburg‑Eppendorf; UKHD, Heidelberg University Hospital.
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qPCR was observed for dPCR (Fig. 3). Indeed, copy numbers 
determined using dPCR were lower for almost all measured 
samples (Figs. 1 and 2). This observation was independent of 
the dPCR (axi‑cel or tisa‑cel) assay used. Finally, the numbers 
of CAR‑expressing T cells were assessed by FC for patients 
treated with axi‑cel and tisa‑cel. FC was retrospectively 
performed for UPN#009 (axi‑cel) and UPN#020 (tisa‑cel) 
on PBMCs frozen at 5 different time‑points after CAR T cell 
administration (Figs. 4 and S1). CAR T cell numbers were 
determined per µl blood and set in relation to the data obtained 
by digital PCR for the same patients. As evident from Fig. 4, 
a high convergence of CAR T cell numbers determined with 
either method was observed. Of note, a resurgence of CAR T 
cell numbers as seen in UPN#009 at day 35 was detected by 
all three methods‑FC, dPCR and qPCR (Figs. 1 and 4). These 
data are in line with previous observations by our group on the 
high concordance of PCR‑ and FC‑based quantification (18). 

Discussion

CAR T cells as cellular products display variable pharmaco‑
kinetic and pharmacodynamic profiles that depend not only 
on patient‑specific characteristics but also on the administered 
CAR T cell dose, lymphodepletion therapy and targeted 
disease (25). Engraftment, expansion and persistence of 
CAR T cells have important clinical and therapeutic implica‑
tions (10,11,14,26‑28). Hence, assessing CAR T cell kinetics 
after CAR T cell treatment is of crucial importance for patient 
follow‑up. Also, given that CAR genes are stably integrated 
into the T cell genome via viral vectors, CAR T cells are clas‑
sified as gene therapy medicinal products (GTMPs). Hence, 
precise tools to assess vector copy numbers in CAR T cell 
products are important to ensure GTMP product quality and 
patient safety.

The present study compared qPCR (19,20) and 
dPCR (17,18), two broadly applicable quantification assays 

for monitoring CD19‑targeting CAR T cells established and 
validated at independent laboratories and institutions. 

Both methods target the FMC63‑based scFv incorporated 
within CD19‑directed CAR T cells that are commercially 
available in Europe, i.e. axi‑cel, tisa‑cel and brexu‑cel. 
Although the present study did not formally include patients 
treated with brexu‑cel, in our experience, quantification by 
qPCR and dPCR is also suitable for brexu‑cel monitoring (data 
not shown), given that both products are composed of the same 
CAR construct and differ only with regards to manufacturing. 

When compared to traditional qPCR approaches such as 
the absolute copy number method, qPCR, i.e. SCG‑DP‑PCR 
and dPCR, offer methodological advantages and simplify CAR 
T cell quantification, e.g. by operating independently from 
calibrator samples or standards (17‑20). While SCG‑DP‑PCR 
was specifically developed to exclude the requirement for 
calibrator and standard samples, dPCR intrinsically does not 
rely on calibrators or standards. Independence from these 
samples economizes material and time resources, minimizes 
procedure parameters and simplifies mathematical analysis. 
Consequently, technical complexity of CAR T cell quanti‑
fication is reduced. qPCR and dPCR independently fulfill 
the requirements for Good Clinical Laboratory Practice for 
CAR quantification (29) and are highly suitable for being 
established in other clinical and diagnostic laboratories due 
to easy technical transfer and implementation. Transfer of 
qPCR and dPCR to other laboratories is supported by a trans‑
parent procedural description: For SCG‑DP‑PCR, all PCR 
oligo sequences are published [(19,20), see also materials and 
methods section], and for dPCR, all required supplements are 
available as a commercialized, ready‑to‑use assay kit [(17,18), 
see also materials and methods section]. 

qPCR and dPCR provided very similar quantifica‑
tion results when measuring axi‑cel and tisa‑cel levels; the 
resulting high levels of concordance of CAR T cell kinetics 
assessed with both methods underlines their equal precision. 

Figure 2. Expansion curves of patients after tisa‑cel administration determined using qPCR and dPCR. Assessment and monitoring of the CAR T cell frequen‑
cies in patients treated with tisa‑cel (n=57). At each of the two institutions, five patients were treated and samples were interchanged between the institutions in 
a blinded manner. CAR T cell frequencies were measured using qPCR at the UKHD and dPCR at the UKE. Semi‑logarithmic representation of CAR transgene 
copies/µg PBMC gDNA over time provided almost overlapping curves. Each curve displays the result of a single patient. UPN, unique patient number; 
tisa‑cel, tisagenlecleucel; CAR, chimeric antigen receptor; qPCR, quantitative PCR; dPCR, digital droplet PCR; PBMC, peripheral blood mononuclear cell; 
UKE, University Medical Center Hamburg‑Eppendorf; UKHD, Heidelberg University Hospital.
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This is to be expected, since qPCR and dPCR are based on 
the same amplification and signal‑generation principle, i.e. 
the hydrolysis probe technique. However, lower dPCR values 
when compared to qPCR were obtained for almost all tested 
samples, by a mean magnitude of 30%. Compared to the 
qPCR approach that applies real‑time measurement of the 
signal generated from PCR products in a reaction cycle when 
a detection threshold is reached, dPCR fractionates samples in 
smallest portions with an endpoint detection of every sample 
fraction. This diverse detection principle, as well as differing 
assay preparation steps, primer/probe sets and analytical 
procedures, may have resulted in the observed variations. 
However, patterns of CAR T cell in vivo kinetics assessed by 
the two methods were identical, making the differences clini‑
cally irrelevant.

PCR‑based approaches for quantification amplify small 
vector fragments integrated within genomic DNA and do not 
necessarily provide information on the functional expression 
of the detected CAR. CAR T cell numbers obtained by dPCR 
and FC were compared for two representative patients, one 
treated with axi‑cel and one with tisa‑cel, at five different 
time‑points post‑infusion. Convergence of the data obtained 

with the different detection methods was observed. (Minor) 
differences were to be expected, since the FC analyses were 
performed on previously frozen samples. It has been estab‑
lished that cryopreservation may not only lead to reduced 
viability, but also has an impact on the expression of different 
proteins/markers in T cells (30). PCR‑based approaches, in 
turn, are less prone to variations in sample quality, i.e. fresh 
and intact cells, when compared to FC. In addition, FC‑based 
approaches depend on the target population size, as well as 
total event counts, and are considered to be less sensitive when 
compared to PCR‑based methods (31). In any case, CAR T 
cell expansion and persistence strongly depend on the growth 
signal provided by the CAR. Therefore, the survival of trans‑
genic cells not expressing the CAR is unlikely. Accordingly, 
high correlation levels of CAR quantification data obtained 
by PCR‑based approaches determining the transgene at the 
genomic level and FC detecting the CAR protein on the CAR 
T cell surface have been reported by our group (18,32) and 
others (10). 

In the clinical setting, both methods are highly useful: 
Response to treatment was not observed in patients displaying 
the lowest CAR T cell expansion. This confirms previous find‑
ings by our group that low CAR T cell expansion is associated 
with limited clinical efficacy (16,17). With regard to toxicity, 
the present study observed that high‑grade ICANS developed 
more frequently in patients with high CAR T cell expansion, 
again in line with a previous study by our group (20). However, 
and as previously reported (11), no association of CRS with 
CAR T cell expansion was determined.

Table II. Correlation and statistical significance of data points 
obtained with qPCR and dPCR. 

UPN # Time‑points, n R2 P‑value

001 5 0.999 <0.0001
002 6 1 <0.0001
003 5 1 <0.0001
004 6 0.985 <0.0001
005 11 0.999 <0.0001
006 5 0.993 0.0003
007 5 0.996 <0.0001
008 5 0.990 0.0004
009 5 1 <0.0001
010 3 0.999 0.0162
011 9 0.999 <0.0001
012 5 0.802 0.0398
013 6 0.994 <0.0001
014 8 0.999 <0.0001
015 5 1 <0.0001
016 7 0.998 <0.0001
017 2 n. a. n.a.
018 6 0.779 0.0199
019 5 0.994 0.0002
020 4 0.998 0.0008

Chimeric antigen receptor T cell frequencies at distinct time‑points 
obtained with qPCR and dPCR (axicabtagene ciloleucel, n=56; 
tisagenlecleucel, n=57) correlated significantly (R2=0.9846). All 
correlations were statistically significant. In UPN#017, correlation 
analysis was not performed as only 2 time‑points were measured. 
P<0.05 was considered to indicate a statistically significant correla‑
tion. UPN, unique patient number; R2, correlation coefficient; n.a., 
not available; qPCR, quantitative PCR; dPCR, digital droplet PCR.

Figure 3. Relative difference of CAR T cell frequency results of dPCR 
compared to qPCR. Results of CAR transgene numbers of individual samples 
obtained with both quantification methods were compared relating the dPCR 
to the qPCR results. The qPCR results were set as 100% and the relative 
difference from the corresponding dPCR result was calculated. The mean 
quantification result of dPCR was 70±34%, i.e. a mean relative difference of 
‑30% of dPCR to qPCR was observed. Data‑points: axi‑cel, n=56; tisa‑cel, 
n=57; total, n=113. CAR, chimeric antigen receptor; qPCR, quantitative PCR; 
dPCR, digital droplet PCR; tisa‑cel, tisagenlecleucel; axi‑cel, axicabtagene 
ciloleucel.
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Treatment with axi‑cel carrying CD28 as a costimula‑
tory domain within the CAR construct resulted in higher 
peak expansion of CAR T cells and side effects were more 
common in patients treated with axi‑cel. Even though based on 
small patient numbers, this observation is in accordance with 
previous studies indicating that CD28 is associated with the 
promotion of the differentiation of CAR T cells into effector 
CAR T cells with short‑lived glycolysis‑based metabolism, 
resulting in rapid and robust CAR T cell expansion (33‑35). By 
contrast, 4‑1BB contained as a costimulatory domain within 
tisa‑cel mediates a central memory CAR T cell phenotype 
with slower expansion, diminished exhaustion and longer 
CAR T cell persistence (10,33,36‑38).

In conclusion, the present study confirmed the validity 
of qPCR and dPCR for precise CAR T cell quantification 
and demonstrated that both approaches are comparable and 
suitable to monitor CD19‑directed CAR T cell kinetics. 
qPCR, i.e. SCG‑DP‑PCR, and dPCR contribute to the 
elucidation of the association of CAR T cell kinetics with 
treatment response and toxicity and are important diag‑
nostic tools to ensure patient safety, enable comprehensive 
patient follow‑up and guide therapeutic decisions in treated 
patients. In addition, providing dependable real‑world data 
based on the analysis of numerous patients by precise, 
fast and easily applicable CAR T cell monitoring assays 
is indispensable for improving the understanding of CAR 
T cell therapy. 
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