
Chu et al. Genet Sel Evol           (2019) 51:64  
https://doi.org/10.1186/s12711-019-0509-z

RESEARCH ARTICLE

Optimized grouping to increase accuracy 
of prediction of breeding values based 
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programs
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Abstract 

Background: Phenotypic records of group means or group sums are a good alternative to individual records for 
some difficult to measure, but economically important traits such as feed efficiency or egg production. Accuracy of 
predicted breeding values based on group records increases with increasing relationships between group members. 
The classical way to form groups with more closely-related animals is based on pedigree information. When genotyp-
ing information is available before phenotyping, its use to form groups may further increase the accuracy of predic-
tion from group records. This study analyzed two grouping methods based on genomic information: (1) unsupervised 
clustering implemented in the STRU CTU RE software and (2) supervised clustering that models genomic relationships.

Results: Using genomic best linear unbiased prediction (GBLUP) models, estimates of the genetic variance based on 
group records were consistent with those based on individual records. When genomic information was available to 
constitute the groups, genomic relationship coefficients between group members were higher than when random 
grouping of paternal half-sibs and of full-sibs was applied. Grouping methods that are based on genomic information 
resulted in higher accuracy of genomic estimated breeding values (GEBV) prediction compared to random group-
ing. The increase was ~ 1.5% for full-sibs and ~ 11.5% for paternal half-sibs. In addition, grouping methods that are 
based on genomic information led to lower coancestry coefficients between the top animals ranked by GEBV. Of 
the two proposed methods, supervised clustering was superior in terms of accuracy, computation requirements and 
applicability. By adding surplus genotyped offspring (more genotyped offspring than required to fill the groups), the 
advantage of supervised clustering increased by up to 4.5% compared to random grouping of full-sibs, and by 14.7% 
compared to random grouping of paternal half-sibs. This advantage also increased with increasing family sizes or 
decreasing genome sizes.

Conclusions: The use of genotyping information for grouping animals increases the accuracy of selection when 
phenotypic group records are used in genomic selection breeding programs.
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(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Continuous individual records are difficult and expensive 
to obtain for some economically important traits such 
as feed efficiency and egg production. For breeding pro-
grams that aim at improving genetic gain in the presence 

of genotype-by-environment (G × E) interactions, con-
tinuous individual recording of such traits can even be 
impossible for animals that are tested in commercial pro-
duction environments or in village conditions. In such 
situations, the use of pooled data from group records 
can be an alternative, which was shown to be feasible for 
predicting variance components and breeding values of 
animals with pedigree-based best linear unbiased predic-
tion (BLUP) [1–4]. These studies showed that accuracy of 
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prediction depends on the relationships between group 
members and increases when group members are more 
closely related. In the additive numerator relationship 
matrix, the relationship coefficients between members of 
a full-sib group are all the same, i.e. 0.5 for unrelated par-
ents or higher for inbred parents. Compared to pedigree 
information, genomic information gives a better meas-
ure of the relationships between animals. VanRaden [5] 
showed that the realized genomic relationships between 
specific pairs of full-sibs vary with the standard deviation 
of the relationship coefficients according to genome size 
and number of chromosomes. Empirical values of the 
relationship coefficients between pairs of full-sibs range 
from 0.27 to 0.70 for chicken [6] and from 0.35 to 0.65 
for cattle [7]. We hypothesized that genomic informa-
tion could be exploited to improve the accuracy of pre-
diction of breeding values based on group records when 
it is available before animals are grouped for phenotype 
testing.

The accuracy of prediction of breeding values based 
on group records increases as the relationships between 
animals within groups increase [1–3], thus an increase in 
genomic similarity between group members may improve 
accuracy of prediction. Unsupervised clustering of genet-
ically similar individuals into groups based on genomic 
data is implemented in a program named STRU CTU RE 
[8]. This Bayesian, model-based program, is widely used 
in analyses of population structure [8]. This program 
integrates over the parameter space, infers population 
structure, and makes cluster assignments for every indi-
vidual [8]. The number of subpopulations, or clusters, 
can be given or estimated. An output of the program is 
the membership coefficient or probability that an indi-
vidual belongs to a given cluster. Clustering individuals 
into subpopulations is a similar concept to clustering ani-
mals that have close relationships into the same groups. 
However, this approach may not be optimal for design-
ing breeding programs because the number of individu-
als assigned to each cluster can vary under unsupervised 
clustering. For example, the breeding facilities, which are 
usually fixed systems, may be able to accommodate four 
groups with four animals per group, but unsupervised 
clustering ends up with animals that are clustered into 
only three groups of different sizes. Besides, the member-
ship coefficient of an animal based on STRU CTU RE can-
not always clearly distinguish to which group the animal 
belongs.

Thus, in addition to the grouping method based on the 
STRU CTU RE program, we propose a grouping method 
that maximizes the relationships between animals within 
a group, based on the realized genomic relationship 
matrix. This grouping method is a supervised cluster-
ing approach, in which the number of groups and group 

sizes are defined as fixed input variables. Instead of using 
genotyping data directly, the method uses it indirectly 
through the realized genomic relationship matrix.

The objectives of our study were to: (1) compare these 
two grouping methods based on genotyping infor-
mation to improve accuracy of selection with group 
records, when using genomic BLUP (GBLUP) models 
to estimate variance components and genomic breed-
ing values (GEBV) with group records, and (2) investi-
gate the effects of adding surplus genotyped offspring, 
of the number of groups, family sizes and genome sizes 
on breeding schemes that used the proposed grouping 
method. These grouping methods were tested with a sto-
chastic simulation study.

Methods
We simulated a population of animals in three steps: (1) 
simulation of individual genotypes and phenotypes using 
the stochastic simulation program ADAM [9], (2) alloca-
tion of simulated animals into groups based on pedigree 
or genomic information using different grouping meth-
ods, and (3) calculating group phenotypes from indi-
vidual phenotypes. Variance components and breeding 
values were estimated from individual records or from 
group records using a GBLUP model.

Breeding schemes, genotype and trait simulations
The historical base population and its genomic struc-
ture were from Chu et al. [10] with a simulated genome 
of 26 chromosomes and a total length of 916 cM. Segre-
gating loci of 2  k quantitative trait loci (QTL) and 40  k 
neutral markers that were randomly distributed along the 
genome were used to simulate information on traits and 
genotypes, respectively. The segregating QTL and mark-
ers had a minor allele frequency of at least 0.05 in the base 
population. Inheritance of QTL and markers from par-
ents to descendants followed the standard principles of 
Mendelian inheritance, and allowed for recombination as 
described in Chu et al. [10]. From the base population, 20 
sires and 200 dams were used for a nested mating scheme 
in which one sire is mated with 10 dams. Each dam pro-
duced 16 offspring, thus the total number of offspring was 
3200. Sex was randomly assigned to the offspring with a 
1:1 ratio. Only one generation of offspring was simulated. 
All sires, dams and offspring had genotype information.

The true breeding value of each individual was the sum 
of the effects of the QTL. Allele substitution effects of 
QTL were randomly sampled from a normal distribution 
N(0, 1) , and then rescaled to achieve the initial additive 
genetic variance of 0.3 in the base population. The sim-
ulated phenotype of individual records was the sum of 
the true breeding value and an environmental deviation 
term:
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 where yi is the individual phenotypic record of animal 
i ; µ is the mean of the trait equal to 0; tbvi and ei are the 
true breeding value and residual environmental deviation 
term of animal i , respectively. The residual environmen-
tal deviations were drawn from the normal distribution 
N(0, 0.7) . Thus, the phenotypic variance was 1.

Four animals were pooled per group, which resulted in 
800 groups. A group record was composed of the sum of 
all records of the group members.

Estimation of variance components and prediction 
of breeding values
Individual records and group records were used to esti-
mate variance components and GEBV using the DMUAI 
module from the DMU software package [11]. The model 
for individual records in matrix notation was  (GBLUPi: 
Eq. 1):

where y is a vector of phenotypic individual records; µ is 
the mean; g and e are vectors of additive genetic and 
residual effects, respectively. These vectors are assumed 
to be normally distributed: g ∼ N

(

0,Gσ 2
g

)

 and 
e ∼ N

(

0, Iσ 2
e

)

 , where G is a genomic relationship matrix 
constructed from marker data and I is an identity matrix 
associating residuals to individual phenotypic records; σ 2

g  
and σ 2

e  are the additive genetic variance and residual vari-
ance, respectively. The incidence matrix Z links g to indi-
vidual phenotypic records.

When group records were analyzed, the model for esti-
mating variance components and GEBV was similar to 
the exact model of Olson et  al. [3] and to the model of 
Su et al. [2], except that a realized genomic relationship 
matrix was used instead of the additive numerator rela-
tionship matrix. The models applied to equal group sizes 
was  (GBLUPgr: Eq. 2):

where y∗ is a vector of group records, i.e. the sum of the 
individual’s phenotypes, with number of elements equal 
to number of groups; g is a vector of additive genetic val-
ues of individuals as described above in the model for 
individual records: g ∼ N

(

0,Gσ 2
g

)

 ; e∗ is a vector of resid-
uals: e∗ ∼ N

(

0,Rσ 2
e

)

 , where R is a diagonal matrix and 
diagonal elements are equal to group size. Matrix Z∗ is an 
incidence matrix associating g to phenotypic group 
records. Matrices Z and Z∗ have an equal number of col-
umns but a number of rows equal to the number of indi-
vidual records and group records, respectively.

yi = µ+ tbvi + ei

(1)y = 1µ+ Zg + e,

(2)y∗ = 1µ+ Z∗g + e∗,

For example, eight animals numbered 3 to 10 that were 
offspring of animals 1 and 2 were grouped in two groups 
of four animals. Phenotypic records of groups were 2.6 
and 3.5. The model for group records is:

The realized genomic relationship matrix G was con-
structed from marker data of all sires, dams and offspring 
individuals using VanRaden’s [12] method 1:

where M is a matrix that has number of rows equal to 
number of animals and number of columns equal to num-
ber of markers; matrix M is centered so that elements in 
column j are 0-2pj , 1-2pj and 2-2pj for genotypes A1A1 , 
A1A2 and A2A2 , respectively; pj is the allele frequency of 
A2 at locus j computed from the marker data of all dams, 
sires and offspring. Division by 2

∑

pj
(

1− pj
)

 scales 
matrix G to be analogous to the pedigree-based numera-
tor relationship matrix. The realized genomic relation-
ship matrix G was used in the genetic evaluation models 
and grouping methods and to investigate the distribu-
tions of relationships.

Grouping methods
For group records, animals were pooled into groups 
based on either pedigree or genomic information. 
Grouping methods based on pedigree information were 
random grouping of full-sibs and random grouping of 
paternal half-sibs. The two grouping methods based on 
genomic information were unsupervised clustering based 
on genotypes and supervised clustering based on the 
genomic relationships.

Random grouping of paternal half‑sibs
For random grouping of paternal half-sibs, allocation of 
animals into groups was based on having a common sire. 
From each parental half-sib group of 160 animals, indi-
viduals were randomly allocated to 40 groups.

Random grouping of full‑sibs
For random grouping of full-sibs, allocation of animals 
into groups was based on having a common sire and 
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dam. From each full-sib group of 16 animals, individuals 
were randomly allocated to 4 groups.

Unsupervised clustering based on genotypes
When unsupervised clustering analysis using the STRU 
CTU RE program was applied to all 3200 animals, pater-
nal half-sibs from a sire were always clustered into one 
group even if the assumed number of clusters was set 
at 800. When unsupervised clustering was applied to 
a group of paternal half-sibs from a single sire, full-sibs 
from a family were always clustered into one group. 
Therefore, clustering analysis was carried out separately 
for every full-sib family of 16 animals. The admixture 
model in STRU CTU RE was used [8]. The number of clus-
ters was set to 4, and allele frequencies were assumed to 
be correlated between clusters [13]. Cluster membership 
coefficients of the 16 animals from the output were used 
for allocation to groups. Animals from the same full-sib 
group were pre-allocated into four groups based on their 
highest membership coefficients. In many cases, the pre-
allocated four groups did not all have the expected num-
ber of four animals. Four animals with the top ranking 
membership coefficients from the biggest group were 
allocated to the first group. Then, the remaining 12 ani-
mals were pre-allocated into three groups based on their 
highest membership coefficients. Four animals with the 
top ranking membership coefficients from the biggest 
group were allocated to the second group. Similarly, 
four animals were allocated into the third group, and the 
fourth group consisted of the remaining four animals. 
These grouping allocation procedures were applied to all 
200 full-sib families to constitute 800 groups. With the 
unsupervised clustering method based on genotypes, 
animals within a group were always full-sibs.

Supervised clustering based on genomic relationships
A supervised clustering method scripted in R [14] was 
developed to pool four animals into groups based on 
realized genomic relationships between animals. Apply-
ing this approach to all 3200 offspring was time-consum-
ing because of the many possibilities for allocating the 
offspring into 800 groups. The probability that half-sibs 
or non-related animals were placed in the same group 
was extremely low. Therefore, grouping was carried out 
separately for every full-sib family of 16 animals. In each 
round of iteration, animals were assigned into groups by 
an evolutionary algorithm as follows:

• Animals from a full-sib family were randomly 
assigned to four groups with four animals in each 
group;

• An exchange of two randomly chosen animals 
between two randomly chosen groups was proposed;

• Group membership was updated if the proposal 
resulted in an increased mean genomic relationship 
between members within groups;

• The round ended when the exchange of two animals 
between two groups did not increase the mean of 
genomic relationships for n2a ×

∑ng−1

i=1
i times, where 

na is the number of animals per group (group size) 
and ng is the number of groups per full-sib family. The 
exchange of two animals between two groups was a 
random process, but if the exchange did not increase 
genomic relationships between group members, 
these two animals were not chosen for the exchange 
until a new set of animal groups was formed (the 
solution on the set of groups was retained if there 
was no improvement). The n2a ×

∑ng−1

i=1
i times were 

the number of possibilities of forming a new set of 
animal groups when two animals are randomly cho-
sen from two random groups.

The exchange of two animals in each round of the above 
iteration is a conditional event given that a certain set of 
groups of animals is formed. Therefore, the above evolu-
tionary algorithm was iterated for 300 rounds that formed 
up to 300 different sets of groups. The set of animal groups 
that resulted in the highest genomic relationship coeffi-
cient between group members was chosen. The number 
300 is an empirical number that was chosen after differ-
ent trials to get a set of animal groups with the highest 
genomic relationship coefficient between group members.

Through this supervised clustering method based on 
genomic relationships, the offspring were allocated into 
800 different groups and, within each of these groups, 
animals were always full-sibs.

Sensitivity analysis
To investigate the effects of adding surplus genotyped 
offspring (more genotyped offspring than required in 
the groups), number of groups for the same total num-
ber of individuals, family sizes and genome sizes for all 
grouping strategies (except the unsupervised cluster-
ing method), four additional simulations (SS1 to SS4) 
were carried out with 100 replicates for each scenario. 
In sensitivity analysis simulation 1 (SS1) group sizes and 
number of groups per full-sib family were the same as in 
the base scenario. The number of surplus genotyped off-
spring were varied, i.e. set at 16 or 32 offspring per full-
sib family (Table 1). For comparisons, individual records 
in SS1 were obtained from only 16 offspring per dam 
that were randomly chosen from each full-sib family. SS2 
had the same family structure as in the base scenario, 
but group sizes and number of groups per full-sib family 
were varied. In SS3, the number of groups was constant, 
but family size (number of offspring per dam) was varied. 
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SS4 was the same as in the base scenario, except that the 
simulated genome consisted of 30 chromosomes each 
100 cM long, i.e. it had a total length of 3000 cM. Table 1 
summarizes the features of the base scenario and of SS1 
to SS4 for the factors investigated.

The supervised clustering method based on genomic 
relationships in SS1 to SS4 was similar to that in the base 
scenario with the aim to maximize relationships between 
animals within groups. In SS1, one extra group was 
added that included all surplus animals, which were not 
phenotyped or included in the calculation of the average 
relationship within groups. The probability of sampling 
groups for the exchange between two random animals 
corresponded to the number of animals of these groups.

Data analysis
Scenarios were replicated 100 times. Accuracy of GEBV 
predictions was computed as the correlation between 
GEBV and true breeding values of all phenotyped off-
spring individuals. Bias of GEBV predictions was com-
puted as the regression coefficient of true breeding values 
on GEBV. Coancestry coefficients were computed as the 
means of realized genomic relationships between the top 
GEBV rankings of 20 males and 200 females.

Pairwise genomic relationships between animals that 
were half-sibs, full-sibs, paternal half-sibs or genomic-
close full-sibs were used to investigate the distribution 
of relationships. Half-sibs were offspring from the same 
sires, but from different dams based on pedigree. Pater-
nal half-sibs were offspring from the same sire that could 
be, but not necessarily, from the same dam. Genomic-
close full-sibs were full-sibs that became members of the 
same group after applying unsupervised clustering based 
on genotyping or supervised clustering based on genomic 
relationships. All pairwise genomic relationships of 
group members from all 100 replicates were combined 
and used to calculate means and standard deviations.

Results
Realized genomic relationships of the breeding schemes 
were calculated for half-sibs, paternal half-sibs, full-sibs 
and groups of genomic-close full-sibs that were grouped 

by either unsupervised clustering based on genotypes 
or supervised clustering based on genomic relationships 
(Table  2). As expected, the means of realized genomic 
relationships were roughly 0.50 for full-sibs and 0.25 for 
half-sibs (Fig.  1). Paternal half-sib relationships were a 
mixture of full-sib and half-sib relationships. The high-
est means of relationships within groups were obtained 
when these were grouped by supervised clustering (0.55) 
and by unsupervised clustering (0.54).

Variance components estimated from group records 
were consistent with those estimated from individual 
records (Table  3), and these estimates were not signifi-
cantly different from simulated values. However, variance 
components estimated from group records had a higher 
standard deviation than those estimated from individual 
records.

Accuracy and bias of GEBV based on individual and 
group records from the different prediction models are in 
Table 4. As expected, the accuracy of GEBV was higher 
when estimated from individual records than from 
group records. When group records were used to pre-
dict GEBV, accuracies of GEBV depended on the group-
ing method applied. Accuracies of GEBV decreased as 

Table 1 Surplus offspring, group sizes, number of groups and family sizes for sensitivity simulations (SS) 1 to 4

Investigated factors Base scenario SS1 SS2 SS3 SS4

Surplus genotyped offspring without pheno-
types per full-sib family

0 16 or 32 0 0 0

Group sizes (animals per group) 4 4 2 or 8 2, 8 or 12 4

Number of groups per full-sib family 4 4 8 or 2 4 4

Family sizes (offspring per dam) 16 32 or 48 16 8, 32 or 48 16

Genome size 916 cM 916 cM 916 cM 916 cM 3000 cM

Table 2 Means and  standard deviations of  realized 
genomic relationships between  half-sibs, paternal half-
sibs, full-sibs and  genomic-close full-sibs, which were 
grouped by  unsupervised clustering based on  genotypes 
or  by  supervised clustering based on  genomic 
relationships

Relationships Mean Standard 
deviation

Half-sibs 0.246 0.055

Paternal half-sibs 0.270 0.093

Full-sibs 0.496 0.070

Genomic-close full-sibs grouped by 
supervised clustering based on 
genomic relationships

0.553 0.060

Genomic-close full-sibs grouped by 
unsupervised clustering based on 
genotypes

0.538 0.067



Page 6 of 12Chu et al. Genet Sel Evol           (2019) 51:64 

the realized genomic relationships between group mem-
bers decreased. Grouping methods based on genomic 
information led to higher accuracies of GEBV than the 
random grouping methods based on pedigree informa-
tion. Group records from supervised clustering based 
on genomic relationships led to the highest accuracy 
and lowest standard deviation of the accuracy compared 
to group records from other grouping methods. Group 
records from random grouping of paternal half-sibs 

resulted in the lowest accuracy of GEBV prediction and 
the highest standard deviation of the accuracy.

Coancestry coefficients were computed for the top 20 
males and 200 females ranked by GEBV that were esti-
mated from individual records and from group records 
(Table  4). Coancestry coefficients between the top ani-
mals ranked by GEBV were lower when based on indi-
vidual records than based on group records and were 
also lower with grouping methods based on genomic 

Fig. 1 Distribution of realized genomic relationships between half-sibs (blue line and light-blue bars), full-sibs (green line and light-green bars) 
and genomic-close full-sibs (full-sibs grouped by the supervised clustering method based on genomic relationship (red line and pink bars). Broken 
vertical lines are means of the genomic relationships

Table 3 Estimates of  additive genetic variance ( σ 2
a  ) and  residual variance ( σ 2

e  ) (mean over  100 replicates ± standard 
deviation) estimated from individual records and from group records

Models  GBLUPi and  GBLUPgr are GBLUP model for individual records and group records, respectively. SD is standard deviations over 100 replicates

Records Model σ
2
a  (SD) σ

2
e  (SD)

Simulated parameters 0.30 0.70

Individual records GBLUPi 0.300 (0.030) 0.698 (0.022)

Group records from supervised clustering method based on genomic relationships GBLUPgr 0.302 (0.042) 0.691 (0.048)

Group records from unsupervised clustering method based on genotypes GBLUPgr 0.301 (0.043) 0.693 (0.050)

Group records from random grouping of full-sibs GBLUPgr 0.298 (0.045) 0.695 (0.052)

Group records from random grouping of paternal half-sibs GBLUPgr 0.301 (0.062) 0.695 (0.050)
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information than random grouping methods based on 
pedigree information.

Sensitivity analysis
In SS1 to SS4, variance components estimated from 
group records were consistent with those estimated from 
individual records. Biases of GEBV estimated from indi-
vidual records and group records showed no clear differ-
ence, and regressions of true breeding values on GEBV 
were close to 1. However, standard deviations of variance 
estimates and biases of GEBV over 100 replicates were 
greater for group records than for individual records. 
The results on variance estimates for SS1 to SS4 are not 
shown. Genomic relationships between group members, 
accuracies of GEBV and coancestry coefficients of the top 
ranking animals were similar for scenarios in SS1 to SS4. 
As in the main study, the supervised clustering method 
based on genomic relationships generally led to higher 
genomic relationships between group members, higher 
accuracies of GEBV and lower coancestry coefficients of 
top ranking animals than random grouping of full-sibs 
and random grouping of paternal half-sibs.

In SS1, group size and number of groups per full-sib 
family were the same as in the base scenario, but there 
were surplus offspring that did not belong to any group 
or did not have phenotypes. With 0 (base scenario), 16 
(SS1) and 32 (SS1) surplus offspring, coefficients of rela-
tionships between genomic-close full-sibs that were 
grouped by supervised clustering were equal to 0.55, 
0.60 and 0.62, respectively (Tables  2, 5). An increased 
number of surplus offspring tended to increase the accu-
racy of GEBV that were estimated from group records 
of the genomic-close full-sibs (Tables  4, 5). However, a 
change in the number of surplus offspring had no effect 
on the coefficient of relationships between group mem-
bers or accuracy of GEBV for scenarios with groups that 
were formed by random grouping of full-sibs or random 
grouping of paternal half-sibs. The relative increases 
in accuracy of GEBV from using supervised clustering 
based on genomic information compared to using ran-
dom grouping of full-sibs were 3.9 and 4.5% when the 
numbers of surplus offspring were 16 and 32 per full-sib 
family, respectively.

In SS2, family size was the same as in the base scenario 
and kept constant, but the number of groups per full-sib 

Table 4 Accuracy of  GEBV, bias of  prediction and  coancestry coefficients of  top ranking animals (mean over  100 
replicates ± standard deviation) on GEBV estimated from individual records and from group records

Records Model Accuracy (SD) Bias (SD) Coancestry 
coefficients 
(SD)

Individual records GBLUPi 0.825 (0.020) 1.011 (0.041) 0.036 (0.009)

Group records from supervised clustering method based on genomic relationships GBLUPgr 0.762 (0.028) 1.007 (0.054) 0.041 (0.010)

Group records from unsupervised clustering method based on genotypes GBLUPgr 0.758 (0.030) 1.009 (0.054) 0.041 (0.009)

Group records from random grouping of full-sibs GBLUPgr 0.749 (0.032) 1.015 (0.060) 0.043 (0.010)

Group records from random grouping of paternal half-sibs GBLUPgr 0.682 (0.040) 1.017 (0.092) 0.049 (0.010)

Table 5 Genomic relationships, accuracy of GEBV, bias of prediction and coancestry coefficients for sensitivity simulation 
1 when the number of surplus genotyped offspring without phenotypes per full-sib family was equal to 16 and 32

Variables Individual records Group records

Supervised clustering 
method

Random grouping 
of full-sibs

Random grouping 
of paternal half-sibs

Surplus offspring: 16 per full-sib family

 Genomic relationships (SD) 0.602 (0.053) 0.496 (0.070) 0.270 (0.093)

 Accuracy (SD) 0.824 (0.020) 0.773 (0.028) 0.744 (0.032) 0.678 (0.040)

 Bias (SD) 1.000 (0.038) 1.004 (0.055) 1.001 (0.056) 1.004 (0.098)

 Coancestry coefficients (SD) 0.036 (0.008) 0.042 (0.010) 0.043 (0.009) 0.049 (0.011)

Surplus offspring: 32 per full-sib family

 Genomic relationships (SD) 0.622 (0.052) 0.497 (0.070) 0.271 (0.094)

 Accuracy (SD) 0.822 (0.021) 0.776 (0.028) 0.743 (0.032) 0.677 (0.040)

 Bias (SD) 1.003 (0.044) 1.006 (0.058) 1.004 (0.056) 1.008 (0.094)

 Coancestry coefficients (SD) 0.035 (0.007) 0.042 (0.008) 0.043 (0.009) 0.047 (0.010)
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family, and thus the group sizes, were varied. With group 
records formed by supervised clustering, random group-
ing of full-sibs and random grouping of paternal half-sibs, 
an increase in the number of groups per full-sib family 
led to an increase in accuracy of GEBV and a decrease in 
coancestry coefficients of top ranking animals (Table 6). 
With group records formed by supervised clustering, a 
change in the number of groups per full-sib family from 
2 to 8 changed the coefficients of genomic relationships 
between group members from 0.522 to 0.589, respec-
tively but had no effect in terms of accuracy of GEBV. 
The relative increases in accuracy of GEBV from using 
random grouping of full-sibs to using supervised cluster-
ing based on genomic information were 1.3, 1.7 and 1.4% 
for scenarios with 2, 4 and 8 groups per full-sib family, 
respectively.

In SS3, the number of groups was constant with four 
groups per family, but family sizes, and therefore group 
sizes, were varied. With records of groups formed by dif-
ferent grouping methods in SS3, an increase in the family 
size led to an increase in accuracy of GEBV and coances-
try coefficients of the top ranking animals (Table  7). 
With records of groups formed by supervised cluster-
ing, an increase in the family size led to a decrease in 
genomic relationships between group members. The rel-
ative increases in accuracy of GEBV from using random 
grouping of full-sibs to using supervised clustering based 
on genomic information were 1.2, 1.7, 2.4 and 3.2% for 
scenarios with family sizes of 8, 16, 32 and 48 offspring 
per full-sib family, respectively.

Breeding structures, group sizes and family sizes of 
SS4 were the same as those of the base scenario, but the 
genome structure differed with a longer genome size, i.e. 
3000 cM vs 916 cM. Accuracies of GEBV based on indi-
vidual records and group records were higher in the base 

scenario than in SS4 (Table  8). The means of genomic 
relationships between full-sibs or between paternal 
half-sibs were similar for the base scenario and SS4, but 
their standard deviations were lower for SS4. Genomic 
relationships between genomic-close full-sibs that were 
grouped by supervised clustering were higher in the 
base scenario than in SS4. The relative increases in accu-
racy of GEBV from using random grouping of full-sibs 
to using supervised clustering based on genomic infor-
mation were 1.7 and 1.3% in the base scenario and SS4, 
respectively.

Discussion
In this work, we found that with GBLUP models, the 
estimated variance components were similar whether 
they were based on group or individual records, but their 
standard errors were larger for those based on group 
records than on individual records. These findings con-
firm those of previous studies that used pedigree-based 
BLUP models to estimate variance components based on 
group records [2–4]. Compared to these studies [2–4], 
the main modification of our model for group records 
was the use of a realized genomic relationship matrix 
instead of a numerator genetic relationship matrix. With 
a numerator genetic relationship matrix, full-sibs in the 
same group have equal EBV whereas with a genomic 
relationship matrix, full-sibs in the same group can have 
different EBV. The benefit of using genomic information 
over pedigree information, in terms of accuracy of pre-
diction, has been well documented in simulation studies 
[15–17] and empirical studies of chicken [18–20], cattle 
[21, 22] and pig [17, 23, 24] breeding schemes for indi-
vidual records. The increase in accuracy of GBLUP pre-
diction obtained by using individual records is due to 
an improved measurement of the relationships between 

Table 6 Genomic relationships, accuracy of GEBV, bias of prediction and coancestry coefficients for sensitivity simulation 
2 with 2 and 8 groups per full-sib family

Variables Individual records Group records

Supervised clustering 
method

Random grouping 
of full-sibs

Random grouping 
of paternal half-sibs

Number of groups: 2 groups per full-sib family

 Genomic relationships (SD) 0.589 (0.053) 0.496 (0.070) 0.270 (0.093)

 Accuracy (SD) 0.825 (0.020) 0.794 (0.025) 0.783 (0.026) 0.755 (0.030)

 Bias (SD) 1.011 (0.041) 1.014 (0.046) 1.011 (0.053) 1.021 (0.065)

 Coancestry coefficients (SD) 0.036 (0.009) 0.038 (0.009) 0.039 (0.009) 0.041 (0.009)

Number of groups: 8 groups per full-sib family

 Genomic relationships (SD) 0.522 (0.066) 0.496 (0.070) 0.270 (0.093)

 Accuracy (SD) 0.825 (0.020) 0.736 (0.033) 0.726 (0.035) 0.620 (0.051)

 Bias (SD) 1.011 (0.041) 1.017 (0.068) 1.015 (0.064) 1.038 (0.101)

 Coancestry coefficients (SD) 0.036 (0.009) 0.044 (0.010) 0.045 (0.010) 0.059 (0.012)
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animals and a better prediction of the Mendelian sam-
pling terms [16]. These advantages of using genomic 
information should also apply to GBLUP models for 
group records, and thus increase the accuracy of predic-
tion compared to pedigree-based models.

For the same number of individuals, accuracies of 
GEBV based on group records were lower than those 
based on individual records. Coancestry coefficients of 
animals that were selected based on group records were 
also higher than those based on individual records. While 
the results from group records cannot compete with 
those from individual records, the number of phenotypes 
that need to be recorded differs between group and indi-
vidual record data. At the commercial production envi-
ronment level, group records are sometimes the only 
available phenotypes.

When group records were analyzed, the accuracy of 
GEBV depended on the relationships between group 

members, i.e. it increased when group members were 
more closely related, as previously reported by Olson 
et al. [3], Peeters et al. [1] and Su et al. [2]. Allocation of 
animals based on sires resulted in a higher accuracy of 
EBV than that based on maternal grand sires [3]. The pre-
diction of EBV and variance components was more accu-
rate with group records of animals from the same family 
than from two different families [1, 2]. A possible rea-
son could be that a larger proportion of the phenotypic 
variance at the group level is explained by the additive 
genetic (co)variance when increasing the level of rela-
tionships between individuals within a group [2].

In addition to the increase in accuracy of GEBV by 
using a genomic relationship matrix in a GBLUP model, 
the use of genomic information resulted in additional 
accuracy of GEBV through optimized grouping. With the 
grouping methods based on genomic information pro-
posed here, we obtained higher relationship coefficients 

Table 7 Genomic relationships, accuracy of GEBV, bias of prediction and coancestry coefficients for sensitivity simulation 
3 with 8, 32 and 48 offspring per full-sib family

Variables Individual records Group records

Supervised clustering 
method

Random grouping 
of full-sibs

Random grouping 
of paternal half-sibs

Family size of 8

 Genomic relationships (SD) 0.565 (0.057) 0.497 (0.070) 0.268 (0.091)

 Accuracy (SD) 0.770 (0.028) 0.734 (0.034) 0.726 (0.035) 0.692 (0.041)

 Bias (SD) 1.007 (0.062) 1.016 (0.076) 1.012 (0.087) 1.019 (0.106)

 Coancestry coefficients (SD) 0.024 (0.004) 0.026 (0.004) 0.027 (0.004) 0.028 (0.005)

Family size of 32

 Genomic relationships (SD) 0.543 (0.063) 0.497 (0.070) 0.271 (0.093)

 Accuracy (SD) 0.870 (0.014) 0.785 (0.026) 0.766 (0.028) 0.674 (0.040)

 Bias (SD) 1.001 (0.025) 1.003 (0.036) 1.003 (0.043) 1.000 (0.074)

 Coancestry coefficients (SD) 0.049 (0.016) 0.060 (0.019) 0.063 (0.020) 0.078 (0.026)

Family size of 48

 Genomic relationships (SD) 0.539 (0.064) 0.497 (0.070) 0.271 (0.094)

 Accuracy (SD) 0.893 (0.011) 0.799 (0.023) 0.774 (0.025) 0.671 (0.041)

 Bias (SD) 1.000 (0.018) 1.002 (0.030) 0.993 (0.030) 0.998 (0.079)

 Coancestry coefficients (SD) 0.053 (0.017) 0.068 (0.021) 0.072 (0.021) 0.091 (0.032)

Table 8 Genomic relationships, accuracy of GEBV, bias of prediction and coancestry coefficients for sensitivity simulation 
4 when a genome of 30 chromosomes and 3000 cM was simulated

Variables Individual records Group records

Supervised clustering 
method

Random grouping 
of full-sibs

Random grouping 
of paternal half-sibs

Genomic relationships (SD) 0.532 (0.036) 0.496 (0.042) 0.269 (0.080)

Accuracy (SD) 0.729 (0.030) 0.671 (0.039) 0.662 (0.040) 0.583 (0.055)

Bias (SD) 1.016 (0.057) 0.999 (0.070) 1.001 (0.065) 1.022 (0.119)

Coancestry coefficients (SD) 0.036 (0.009) 0.042 (0.010) 0.044 (0.010) 0.054 (0.011)
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between individuals within groups than random group-
ing based on pedigree, which led to a higher accuracy 
of GEBV when group records were used. Compared to 
random grouping of full-sibs, accuracy improved by 
1.2 to 1.7% when genomic information was used. How-
ever, while higher accuracies are preferred, the grouping 
methods based on genomic information require individ-
ual genotyping before transfer of the animals to pheno-
type testing facilities. The small improvement in accuracy 
of GEBV may not offset the genotyping cost in a situation 
where full-sib groups can be constituted without having 
genomic information. For situations where only paternal 
half-sib groups can be produced and full-sibs cannot be 
identified, accuracy would improve by 11.1 to 11.7%. This 
relatively large increase in accuracy is mainly due to the 
possibility to pool full-sibs into a group with genomic 
information. Our approach could be useful when the 
objective is to obtain records on feed efficiency in a 
commercial testing environment or on egg production 
in village household chickens (e.g. a program targeting 
genetic gains in African Chicken [25]). Another applica-
tion is for genomic selection in fish breeding programs 
for which mating and reproduction are natural and sib 
information is absent [26]. When genotyping informa-
tion is available prior to group testing, grouping based on 
genomic information could give additional “rewards” in 
the form of accuracy to genomic selection in such breed-
ing programs.

Coancestry coefficients were also lower with group-
ing methods based on genomic information compared 
to random grouping based on pedigree. In our study, the 
coancestry coefficients were defined as realized genomic 
relationships between the top 20 males and 200 females 
ranked by GEBV. Therefore, the coancestry coefficients 
are indications of future inbreeding when GEBV esti-
mated from group records are used for selection. The 
use of more closely related animals to form groups can 
have two opposite consequences for the coancestry coef-
ficients. One consequence is an increase in coancestry 
coefficients: since more closely related animals in the 
same group have the same phenotypic group records, 
GEBV between those animals are more similar, thus 
increasing co-selection. The other consequence is a 
reduction in coancestry coefficients because the use of 
more closely related animals to form groups increases 
the accuracy of GEBV prediction from group records, 
thus reducing co-selection. The latter benefit is obtained 
only with the GBLUP model because a reduction in co-
selection due to increasing accuracy of prediction does 
not occur with pedigree-based BLUP. The EBV predicted 
from group records with pedigree-based BLUP are iden-
tical for full-sibs in the same group. With the prediction 
of GBLUP model from group records, full-sibs in the 

same group can have different GEBV, thus selected ani-
mals by top GEBV rank can come from different groups 
and different families. The effect of increasing accuracy of 
prediction was more pronounced when the more closely 
related animals were used to form groups. Thus, com-
pared to random grouping of full or half-sibs based on 
pedigree, a decrease in coancestry coefficients of selected 
candidates was observed with grouping methods based 
on genomic information.

Of the two grouping methods based on genotyping 
information proposed here, supervised clustering based 
on genomic relationships had a higher accuracy, was less 
computationally demanding, and is more easily applied 
in practice than unsupervised clustering based on geno-
typing. Unsupervised clustering analysis with the STRU 
CTU RE program uses genotyping data to infer popula-
tion structure and assign individuals to clusters, each of 
these being characterized by a set of allele frequencies at 
each locus [8]. Criteria for inferring population structure 
and assigning individuals are similarity or homogene-
ity of alleles between individuals in clusters and Hardy–
Weinberg equilibrium of alleles in clusters. With such an 
inferred population structure, half-sibs from each sire 
were assigned to one group when unsupervised cluster-
ing analysis of STRU CTU RE program was applied to all 
offspring. Full-sibs from each family would be assigned 
to one group if the unsupervised clustering analysis was 
applied to paternal half-sibs from each sire. Therefore, 
unsupervised clustering analysis of STRU CTU RE was 
applied to each full-sib family. Then, membership coef-
ficients of individuals that belong to clusters had to be 
used to obtain equally sized groups. Because of this re-
arrangement of animals between groups, the advantage 
of unsupervised clustering to pool animals with genomic 
similarity into groups was reduced. Unsupervised clus-
tering based on genotypes is not ideal for assigning ani-
mals to groups because testing facilities often have a 
fixed capacity for group sizes and number of groups. In 
addition, the unsupervised clustering analysis of STRU 
CTU RE for each full-sib family is several hundred times 
more computation-expensive than the grouping method 
of supervised clustering based on genomic relationships. 
In contrast, our proposed grouping method of super-
vised clustering assigns individuals to groups based on 
a genomic relationship matrix that was calculated from 
genotyping data. This grouping method uses a relatively 
simple evolutionary algorithm to cluster animals into 
predefined numbers of groups and desired group sizes.

Supervised clustering based on genomic relationships 
was carried out for each full-sib family because the prob-
ability of allocating half-sibs into the same group was 
very unlikely. The overlap of the distribution of full-sib 
and half-sib relationships is very small (Fig.  1). When 
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supervised clustering was applied to form groups from 
the whole population at one time, the members within a 
group were always from the same full-sib family. Group-
ing from the whole population was time-consuming, thus 
only a few replicates were tested (results not shown). 
However, it is useful to know that when family relation-
ships are not available to apply grouping within full-sib 
families, the same benefits of grouping based on genomic 
relationships can be obtained with additional compu-
tational effort. The same principles for animal group-
ing based on genomic relationships can be also applied 
to paternal half-sibs, half-sibs and all testing candidates 
when the number of full-sibs per family is smaller than 
the intended group sizes. Compared to grouping based 
on pedigree information, there is only one situation for 
which grouping based on genomic relationships does 
not lead to an increase in genomic relationships between 
animals within groups, i.e. when the numbers of full-
sibs per family are equal to group sizes. In such a situa-
tion, grouping based on pedigree and grouping based on 
genomic relationships will give the same result.

The benefits of supervised clustering based on genomic 
information were further examined by increasing the 
number of surplus offspring. This approach can be use-
ful in the situation that animals are used in different 
experiments, where some are done with groups, and oth-
ers with individuals. This is a cost effective phenotyping 
strategy, and in some situations, animals raised in groups 
are preferred to better account for G × E interactions due 
to animal housing. Compared to random grouping based 
on pedigree information, a surplus number of offspring 
available for supervised clustering based on genomic 
information increased the genomic relationships 
between group members furthermore, and improved 
accuracy of GEBV estimated from group records. The use 
of supervised clustering based on genomic relationships 
improved the accuracy of GEBV by up to 4.5% compared 
to the use of random grouping of full-sibs or by 14.7% 
compared to the use of random grouping of paternal 
half-sibs.

Another factor that affected accuracy of GEBV and the 
genomic relationships between group members was 
genome structure. Genomic relationships between group 
members that are formed by supervised clustering 
depended on the genome structure, which may be related 
to the size of the simulated genome. Increasing the 
genome size decreases the genomic relationships 
between group members because the standard deviation 
of the coefficient of genomic relationships between full-
sibs and between half-sibs decreases. For example, the 
standard deviation of genomic relationships between 
full-sibs is approximately equal to 0.5

(2nl)
0.5 , where nl is the 

number of independent loci in the genome [5]. The 

standard deviation will approach zero as the number of 
loci increases. However, the standard deviation does not 
fall below about 0.035 because loci are usually linked 
rather than independent [5]. In addition, increasing the 
genome size decreases the accuracy of GEBV from 
GBLUP models as shown by Daetwyler et al. [27].

Conclusions
We propose two grouping methods based on genomic 
information to improve the accuracy of prediction from 
group records. Variance components and GEBV from 
group records were estimated using GBLUP models. 
We found that estimates of variance components from 
group records were consistent with those from indi-
vidual records and with their true values. Both group-
ing methods resulted in higher genomic relationships 
between group members, and prediction from records 
on these groups had a higher accuracy of GEBV predic-
tion compared to records from random groups based 
on pedigree information. In addition, grouping based 
on genomic information led to lower coancestry coef-
ficients of selected candidates than random grouping of 
paternal half-sibs and random grouping of full-sibs. Of 
the two proposed methods, supervised clustering based 
on genomic relationships was superior in terms of com-
putation requirements and applicability. The benefits of 
supervised clustering based on genomic information 
were further examined by estimating the accuracy of 
GEBV from group records when the number of surplus 
offspring increased or when family sizes increased. Accu-
racy of GEBV and genomic relationship between group 
members that were formed by supervised clustering 
depended on the genome structure. In summary, geno-
typing information can be used to increase the accuracy 
of prediction from group records in two ways: genomic-
based prediction and optimized grouping.
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