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Abstract: We previously reported that female mice exhibit protection against chemically induced
pulmonary fibrosis and suggested a potential role of estrogen. Phytoestrogens act, at least in part,
via stimulation of estrogen receptors; furthermore, compared to residents of Western countries,
residents of East Asian countries consume higher amounts of phytoestrogens and exhibit lower rates
of pulmonary fibrosis. Therefore, we tested the hypothesis that dietary phytoestrogens ameliorate the
severity of experimentally induced pulmonary fibrosis. Male mice placed on either regular soybean
diet or phytoestrogen-free diet were instilled with 0.1 N HCl to provoke pulmonary fibrosis. Thirty
days later, lung mechanics were measured as indices of lung function and bronchoalveolar lavage
fluid (BALF) and lung tissue were analyzed for biomarkers of fibrosis. Mice on phytoestrogen-free
diet demonstrated increased mortality and stronger signs of chronic lung injury and pulmonary
fibrosis, as reflected in the expression of collagen, extracellular matrix deposition, histology, and
lung mechanics, compared to mice on regular diet. We conclude that dietary phytoestrogens play
an important role in the pathogenesis of pulmonary fibrosis and suggest that phytoestrogens (e.g.,
genistein) may be useful as part of a therapeutic regimen against hydrochloric acid-induced lung
fibrosis and chronic lung dysfunction.

Keywords: idiopathic pulmonary fibrosis (IPF); hydrochloric acid; gender differences;
phytoestrogens; isoflavones; genistein; mice

1. Introduction

Phytoestrogens derived from soy foods have received widespread usage due to their
popularized health advantages, including reduced risks of cardiovascular disease and
breast and prostate cancers and alleviation of menopause-related symptoms [1]. Most of
these benefits are attributed to the presence of isoflavones [2], such as genistein, daidzein,
and glycetein, the most studied group of diphenolic compounds that are classified more
accurately as selective estrogen receptor (ER) modulators (SERM); they bind with low
affinity to both types of ER, but tend to have a higher affinity for ERβ [3–5]. The presence
of ERα is also obligatory for transcriptional activity, which is triggered by the SEERM-ERβ
link, probably via the formation of ERα/ERβ heterodimers [6]. Soy is one of the most
common sources of protein in the majority of commercial formulas for laboratory rodent
diets, thus, soy-based animal diets may influence estrogen-regulated systems [2]. The
content of phytoestrogens in rodent diets depends on several factors, but primarily on
the soy content of the diet [7]. Isoflavone content of soybeans may vary, in some cases
several fold, depending on soy variety and growth conditions, such as type and quality
of the soil, temperature, duration of the humidity season, and daylight hours [8]. These
variables help explain both the differences between commercial diet brands, and the large
batch-to-batch variations in nutrition [7]. Thus, the content of soy in laboratory animal diets
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may significantly affect the outcome of sex-related diseases, such as idiopathic pulmonary
fibrosis (IPF), a devastating disease, characterized by the progressive substitution of the
lung parenchyma with fibrotic tissue, and associated to poor prognosis with an expected
mean survival of up to five years from the time of diagnosis [9].

Mortality from pulmonary fibrosis has been increasing. Only in the USA, more than
100 deaths per 100,000 population occur every year [10]. IPF is more prevalent among
males than females [11,12], but very little is known about sex-related differences in the
presentation of the disease and associated comorbidities. In a multidimensional indexing
and scoring system for Idiopathic PF patients, the Gender-Age-Physiology score, men
show a higher risk of dying compared to women [13], but the mechanisms leading to this
are still poorly characterized. A possible cause of gender inequality in mortality data may
be the protective role of estrogens. In countries of East Asia and South America, where
traditionally the consumption of soy products is higher (~50 mg isoflavones per day),
the incidence of Idiopathic Pulmonary Fibrosis (IPF) is lower than in Western countries
(0.15–3 mg isoflavones per day) [14–17].

We recently reported on sex-related pathways involved in the fibrotic process of the
lung [18]. In this study we investigate whether a diet poor in ER-stimulating phytoestrogens
affects the development of PF in a well-characterized mouse model of HCl-induced lung
injury and pulmonary fibrosis [19].

2. Materials and Methods
2.1. Materials

Teklad Global Rodent Diets 2018 and 2020X were purchased from Envigo (Indianapo-
lis, IN, USA). Hydrochloric acid (ACS grade), methacholine (USP grade), red protein
G affinity gel beads, RIPA lysing buffer, and protease inhibitor cocktail were obtained
from Sigma-Aldrich Corporation (St. Louis, MO, USA). Socumb (pentobarbital) USP
grade, AnaSed (xylazine) USP grade, and Ketaset (ketamine) USP grade were supplied by
Henry Schein Animal Health (Pittsburg, PA, USA). Ten percent formaldehyde, PureLinkTM

DNase Set, RNase Inhibitor, and RNAlater were purchased from Thermo Fisher Scien-
tific (Waltham, MA, USA); BCA Protein assay kit from Pierce Co. (Rockford, IL, USA);
EDTA and nitrocellulose membranes from GE Healthcare (Chicago, IL, USA); TRIzol® and
SuperScriptTM IV VILO Reverse transcription Kit were from Invitrogen (Carlsbad, CA,
USA); Neasy mini kit from Qiagen (Hilden, Germany); and SYBR Green Master Mix from
Applied Biosystems (Carlsbad, CA, USA). Fibronectin, elastin, and beta-actin primers used
for real time quantitative PCR were purchased from Integrated DNA technologies, Inc.
(Coralville, IA, USA). All antibodies used in immunoblotting have published immunospeci-
ficity data available online. The following antibodies used in Western blots: rabbit total
(#5339S) and phosphorylated SMAD2 (#18338S) and HSP90 (#3488S) were obtained from
Cell Signaling Technology, Inc. (Danvers, MA, USA); mouse monoclonal anti-β-Actin
(#A5441) from Sigma-Aldrich Corporation, Collagen IA2 rabbit antibody (#PA5-50938) from
Thermo Fisher Scientific (Waltham, MA, USA); IRDye 800CW goat anti-rabbit (#D10121-05)
and IRDye 680RD goat anti-mouse (#C90910-21), NewBlot PVDF Stripping Buffer from
LI-COR Biosciences (Lincoln, NE, USA). For preparation of SDS-PAGE: ProtoGel (30%
acrylamide mix) and TEMED were from National Diagnostics (Atlanta, GA, USA), Tris-
HCl buffer from Teknova (Hollister, CA, USA); 10% SDS and ammonium persulfate from
Thermo Fisher Scientific; protein dual color standards and Tricine Sample Buffer were
purchased from Bio-Rad Laboratories.

2.2. Animals and Treatment Groups

All animal studies were approved by the Old Dominion University IACUC and
adhere to the principles of animal experimentation as published by the American Physio-
logical Society. Healthy male C57Bl/6J mice (Jackson Laboratories, Bar Harbor, ME, USA),
8–10 weeks old, 25–28 g body weight, were randomly separated into three experimental
groups: (1) Vehicle group: mice on “regular” Teklad Global Rodent Diets 2018 diet (content
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of isoflavones 150–340 mg/kg), received 2 µL/g body weight saline intratracheally (i.t.); (2)
HCl regular diet group: mice on the same soybean based diet, received 2 µL/g body weight
of 0.1 N HCl, i.t.; (3) Phytoestrogen-free diet HCl group: mice on Teklad Global Rodent Diet
2020X (content of isoflavones <20 mg/kg) starting 2 weeks before exposure to 2 µL/g body
weight of 0.1 N HCl, i.t.; (n = 12 mice per group). The composition of the other nutrients
of both diets is similar. To intratracheally instill HCl or saline, mice were anesthetized
with intraperitoneal (i.p.) injections of AnaSed (xylazine, 6 mg/kg) and Ketaset (ketamine,
60 mg/kg). An intraperitoneal injection of sterile saline (10 µL/g) was given as pre-emptive
fluid resuscitation. A 1 cm neck skin incision and blunt dissection of the salivary glands
was made to visualize the trachea, and while mice were suspended vertically, a fine 20 G
plastic i.v. catheter was introduced into the trachea through the mouth; cannulation of the
trachea was confirmed by visualization of the catheter from the open neck incision. Then,
freshly prepared HCl solution (groups 2 and 3) or sterile saline (group 1) was instilled
(2 µL/g) and flushed with ~100 µL air. The catheter was then withdrawn, the neck in-
cision was closed by VetBond surgical adhesive, and the animals were placed in ventral
position on top of a heating pad, under supplemental oxygen (slowly weaned from 100 to
21% O2), and observed for the next few hours for signs of respiratory distress. Mice were
later returned to their home cages and monitored daily for abnormal physical appearance.
ll analyses were performed at 30 days post i.t. instillation.

2.3. Lung Mechanics Measurements

Thirty days after intratracheal instillation, all mice were anesthetized with Socumb
(pentobarbital 90 mg/kg, i.p.), tracheostomized with a metal 1.2 mm (internal diameter)
cannula, and connected to a FlexiVent small animal ventilator (SCIREQ Inc., Montreal, QC,
Canada). Ventilation was performed at a tidal volume of 10 mL/kg and respiratory rate
of 150/min. A 15-min stabilization period was allowed before any measurements began.
Following a deep inflation, resting static compliance (Cst, mean of 3 values) and pressure-
volume relationships (PV curves) were estimated by stepwise increasing airway pressure
to 30 cm H2O and then reversing the process. Both parameters reflect the intrinsic elasticity
of the lungs and are either reduced (Cst) or shifted to the right (PV curves) in fibrosis.
Secondly, Snapshot-150 and Quick Prime-3 maneuvers were performed. Respiratory
system resistance (Rrs) and elastance (Ers), reflecting the behavior of the entire respiratory
system (peripheral and conducting airways, chest wall, and parenchyma), and Newtonian
resistance (Rn) and tissue damping (G) values, the former reflecting resistance of the large,
conducting airways, and the latter reflecting mostly parenchymal and peripheral airway
contributions, were calculated, and are presented as the mean of at least 12 recordings for
each animal.

2.4. Histopathology and Lung Injury Scoring

Immediately after euthanasia, chest was open, the lungs were fixed with 10% formalde-
hyde, embedded in paraffin and were stained with hematoxylin and eosin (H&E) and,
for collagen staining, with Masson’s trichrome, as we previously described [18]. Twenty
randomly selected fields from each slide were examined under 20, 40, and 100× magnifica-
tions. Fields were scored according to the Lung Injury Score [20] and Ashcroft score [21]
methods by an investigator blinded to the identity of the study groups.

2.5. Bronchoalveolar Lavage Fluid (BALF) White Blood Cells Count

Bronchoalveolar lavage fluid (BALF) was collected as described before [18]. The total
number of white blood cells was determined using a hemocytometer.

2.6. Total Protein and Cytokines Analysis in BALF

BALF supernatant was collected and prepared as described above. The protein
concentration was determined using the micro bicinchoninic acid (BCA) assay according
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to the manufacturer’s protocol. BALF supernatant TGF-β1 was analyzed in triplicate via a
mouse/human TGF-β1 ELISA kit.

2.7. Lung Tissue Collection

The lungs were dissected from the thorax, snap-frozen, and prepared for subsequent
analysis as we previously described [18].

2.8. Western Blot Analysis

Proteins in lung tissue homogenates were extracted from frozen lungs by ultrasonic
homogenization (50% amplitude, 3 times for 10 s) in ice-cold lysing RIPA buffer with
added protease inhibitor cocktail (100:1). The protein lysates were gently mixed under
rotation for 3 h at 4 ◦C, and then centrifuged twice at 14,000× g for 10 min at 4 ◦C.
The supernatants were collected, and total protein concentration was analyzed using the
micro-BCA assay. Equal amounts of proteins from all samples were used for Western
blot analysis. The lysates were first mixed with Tricine Sample Buffer 1:1, boiled for
5 min, and then separated on a 10% polyacrylamide SDS gel by electrophoresis. Sepa-
rated proteins were then transferred to a nitrocellulose membrane, incubated overnight at
4 ◦C with the appropriate primary antibody, diluted in the blocking buffer, followed by
one hour incubation with the secondary antibody at room temperature and scanned by
digital fluorescence imaging (LI-COR Odyssey CLx, Dallas, TX, USA). βactin was used as
housekeeping protein. ImageJ software v.1.8.0 was used to quantify the bands from the
Western blot membranes (http://imagej.nih.gov/ij/, accessed on 15 May 2021);National
Institutes of Health, Bethesda, MD, USA). Some membranes were stripped for 5 min and
incubated with other primary and secondary antibodies.

2.9. RNA Isolation and Quantitative Real-Time PCR (qPCR)

Lung tissue, stored in RNAlater solution for at least 24 h, was dried and homogenized
in TRIzol® followed by a cleaning-up step using the RNeasy Mini Kit. The purified RNA
was transcribed into cDNA using the SuperScriptTM IV VILO Reverse transcription Kit
and analyzed by real-time qPCR with SYBR Green Master Mix on a StepOne Real-Time
PCR System (Applied Biosystems v.2.3). Results were evaluated using the standard curve
method and expressed as fold of control values. βactin mRNA expression was used for the
normalization of each mRNA expression levels for all samples.

2.10. Statistical Analysis

Statistical significance of differences among groups was determined by one-way
or two-way analysis of variance (ANOVA) followed by the Tukey post-hoc test using
GraphPad Prism Software (GraphPad Software, San Diego, CA, USA). Differences among
groups were considered significant at p < 0.05.

3. Results
3.1. Phytoestrogen-Deficient Diet Aggravates HCl-Induced Mortality

We observed a mortality rate of 0 and 9% for mice on regular diet exposed to saline or
0.1 N hydrochloric acid, respectively. Mice on phytoestrogen-free diet that received HCl
exhibited significantly higher mortality, 38% (Figure 1).

http://imagej.nih.gov/ij/
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Figure 1. Mice on normal diet are more resistant to HCl-induced mortality. Kaplan–Meyer survival 
curves. Means ± SEM; **: p < 0.01, with ANOVA and Tukey’s, n = 6–8; VEH: Vehicle. 

3.2. Dietary Phytoestrogens Reduce HCl-Induced Chronic Alveolar Inflammation 
Animals instilled with vehicle showed no signs of alveolar inflammation (Figure 2A). 

Mice on regular diet and instilled with HCl demonstrated thickening of alveolar walls, 
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mation of hyaline membranes (blue arrows) in the alveolar space. 

 
Figure 2. HCl causes chronic lung injury. (A) H&E staining of lung sections demonstrates monocyte infiltration and hya-
line membranes in regular diet-fed, HCl-instilled mice, edema, septal thickening, monocyte, and neutrophil infiltration in 
isoflavone-poor diet-fed mice. (B) Lung Injury Score is maximal in HCl-instilled mice, on phytoestrogen-poor diet, still 
high but lower in HCl-instilled mice on regular diet and without significant changes in saline-instilled mice. (Means ± 
SEM; n = 3; ***: p < 0.001; with one-way ANOVA and Tukey’s); VEH: Vehicle. 

Figure 1. Mice on normal diet are more resistant to HCl-induced mortality. Kaplan–Meyer survival
curves. Means ± SEM; **: p < 0.01, with ANOVA and Tukey’s, n = 6–8; VEH: Vehicle.

3.2. Dietary Phytoestrogens Reduce HCl-Induced Chronic Alveolar Inflammation

Animals instilled with vehicle showed no signs of alveolar inflammation (Figure 2A).
Mice on regular diet and instilled with HCl demonstrated thickening of alveolar walls,
infiltration of alveolar and interstitial mononuclear cells (black arrows), and massive
formation of hyaline membranes (blue arrows) in the alveolar space.
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Figure 2. HCl causes chronic lung injury. (A) H&E staining of lung sections demonstrates monocyte
infiltration and hyaline membranes in regular diet-fed, HCl-instilled mice, edema, septal thickening,
monocyte, and neutrophil infiltration in isoflavone-poor diet-fed mice. (B) Lung Injury Score is
maximal in HCl-instilled mice, on phytoestrogen-poor diet, still high but lower in HCl-instilled
mice on regular diet and without significant changes in saline-instilled mice. (Means ± SEM; n = 3;
***: p < 0.001; with one-way ANOVA and Tukey’s); VEH: Vehicle.
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HCl-instilled mice on isoflavone-poor diet showed more severe signs of lung injury
(Figure 2A,B). In addition to monocytes (black arrows), neutrophiles were observed to
infiltrate the alveolar spaces (red arrows), as was granuloma formation inside the alveolus
(green arrows).

Moderate alveolar inflammation was also reflected in increased concentrations of
leucocytes and proteins in BALF of HCl-instilled mice on phytoestrogen-poor diet, and
significantly less in HCl-instilled mice on normal diet, whereas baseline values were
observed in mice on regular diet receiving saline (Figure 3A). A similar trend was observed
in total protein concentration with a significant increase in both groups instilled with 0.1 N
HCl, but substantially more in mice on phytoestrogen-poor diet (Figure 3C). Following
acid instillation, the proportion of monocytes and alveolar macrophages increased in mice
of both groups, while the level of neutrophils was significantly higher in the phytoestrogen-
poor group (Figure 3B).
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Figure 3. White blood cell (WBC) content (A), differential WBC content (B), and total protein concentration (C) in bron-
choalveolar lavage fluid (BALF) 30 days after instillation of HCl or saline (Means ± SEM; n = 8–9; ****: p < 0.0001;
***: p < 0.001, *: p < 0.05 with one-way ANOVA and Tukey’s; VEH: Vehicle.

3.3. Phytoestrogen-Deficient Diet Aggravates HCl-Induced Pulmonary Fibrosis

At 30 days after hydrochloric acid instillation, increased parenchymal collagen deposi-
tion was observed in mice on a regular diet. Progressive collagen deposition with fibrotic
areas was localized along the alveolar walls; however, the parenchymal architecture was
relatively conserved. Tissues from mice on isoflavones-poor diet, showed major histolog-
ical alterations, including large areas with total fibrous obliteration. In the infrequently
open alveolus, collagen appears to envelop alveolar macrophages (Figure 4, red arrows).
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Figure 4. HCl induces pulmonary fibrosis. (A) Masson’s Trichrome staining of lung sections demonstrates moderate
collagen deposition in regular diet-fed HCl-instilled mice and total fibrous obliteration, and loss of parenchymal architecture
in isoflavones-poor diet-fed mice. (B) The Ashcroft score depicts severe fibrosis in HCl-instilled mice on phytoestrogen-free
diet, a milder pathology in HCl-instilled mice on regular diet and no significant changes in saline-instilled mice. (Means ±
SEM; n = 3; ***: p < 0.001; with one-way ANOVA and Tukey’s); VEH: Vehicle.

3.4. Dietary Phytoestrogens Modulate HCl-Induced Activation of TGF-β Signaling and
Expression of Extracellular Matrix Proteins

Mice on phytoestrogen-poor diet and instilled with HCl demonstrated higher expres-
sion levels of TGF-β1 than animals receiving the regular diet or saline controls (Figure 5A).
The canonical SMAD signaling pathway of TGF-β, analyzed in lung homogenates, showed
increased activated levels of SMAD2 in mice receiving isoflavone-poor diet, while HCl-
instilled animals receiving a regular diet did not show significant changes (Figure 5B). A
similar pattern was observed with the activation (phosphorylation) of Heat Shock Protein
90 (HSP90), a crucial pro-fibrotic chaperone (Figure 5C).
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Figure 5. TGF-β levels and activation of intracellular pathways of TGF-β 30 days after HCl instillation. (A) Mice treated
with HCl displayed increased expression levels of TGF-β1 in bronchoalveolar lavage fluid (BALF) compared to saline. The
levels of TGF-β1 in mice on phytoestrogen-poor diet is significantly higher compared to mice on regular diet. (B) Active
(phosphorylated) SMAD2 was significantly increased in mice on isoflavone-poor diet but not in animals on regular diet. (C)
Heat Shock Protein 90 activation (pHSP90) increased only in phytoestrogen-poor fed mice. Means ± SEM; ***: p < 0.001,
**: p < 0.01, *: p < 0.05 with one-way ANOVA and Tukey’s, n = 8–9 (A), n = 4–5 (B,C); VEH: Vehicle.
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Lung alpha-smooth muscle actin (αSMA) was significantly increased in phytoestrogen-
poor-fed, HCl-instilled mice, but not in mice on regular diet (Figure 6A). Collagen Type I
levels increased in both HCl-instilled groups compare to control. A similar pattern was
observed with elastin mRNA levels. Fibronectin, one more key extracellular matrix protein,
showed significant increase (mRNA) only in lungs from mice on regular diet.
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3.5. Dietary Phytoestrogens Protect against HCl-Induced Lung Dysfunction

Changes in lung mechanics were also evident among different diet groups after HCl
instillation (Figure 7). Respiratory system resistance (Rrs), respiratory system elastance
(Ers), tissue damping (G), and tissue elastance (H) increased significantly in HCl-instilled
mice on either regular or isoflavone-poor diet when compared to saline controls. However,
animals on phytoestrogen-free diet demonstrated a more dramatic increase compared
to controls and a significant increase compared to the regular diet group. A similar
pattern was observed in response to increasing concentrations of aerosolized methacholine.
Moreover, pressure–volume (PV) loops of HCl-instilled isoflavones-poor-fed mice showed
a characteristic downward shift reflecting stiffer lungs, whereas PV loops of mice on regular
diet displayed a lesser shift.
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4. Discussion

Most laboratory rodent diets include soy proteins that provide large dosages of
isoflavones to animals throughout their life, starting from the perinatal period. Although
it is well known that isoflavones are consistently high in the serum and urine of people
for whom soy foods are a main part of their diet, it is often neglected that commercial
rodent diets drafted with soy meal cause rodents to also exhibit constant high steady-
state serum isoflavone concentrations [22]. In this study, we investigated how the lack
of isoflavones in rodent diet can affect the development of pulmonary fibrosis associated
with a single exposure to HCl. Sex-dependent variances in PF have been suggested by
several investigators [23,24]. These differences stem from a higher prevalence of disease
and higher mortality in males [25]. There are many studies suggesting that phytoestrogens
increase survival from cardiovascular deceases [26] and cancers [27–29]. A limited number
of studies suggest the impact of nutrition to the development of lung diseases. In an
epidemiological study, a high intake of saturated fat was associated with an increased
risk of IPF. [30]. Both regular and phytoestrogen-free diets used in our study have similar
content of fat (6.2–6.5%). A number of animal studies have reported that many nutrients
(including polyphenols) can exert a beneficial or detrimental actions on the progression of
lung fibrosis [31]. In a previous study, we demonstrated the sex-dependence of fibrogenesis
in two mice models of PF [18]. Here, for the first time, we show that phytoestrogen-poor
diet could significantly enhance the mortality of animals exposed to HCl.

Initially, isoflavones were thought to act as anti-inflammatory agents because of their
down-regulation of cytokine-induced signal transduction facts in immune cells [32]. Sub-
sequently, an increasing number of studies have substantiated that isoflavones exhibit
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anti-inflammatory effects. Isoflavones scavange a wide range of reactive oxygen, nitrogen,
and chlorine species, and are relatively resistant to oxidation mediated by strong oxidants
such as hypochlorous acid and peroxynitrite [33]. Oral administration of isoflavones
or of extracts of soy products decrease serum nitrite, nitrate, and nitrotyrosine levels in
lipopolysaccharide-(LPS)-treated rats [34]. In mouse models, the isoflavone genistein
demonstrates anti-inflammatory effects, which are reflected in reduced granulocyte and
mononuclear leukocyte content [35]. In a guinea pig model of asthma, genistein sig-
nificantly inhibited ovalbumin-induced acute bronchoconstriction, reduced pulmonary
eosinophilia and eosinophil peroxidase activity [36]. We recently demonstrated that HCl
causes endothelial barrier dysfunction in human lung microvascular endothelial cells [37],
which supports the increase in total BALF protein observed here. In this study, we con-
firmed the anti-inflammatory effect of dietary isoflavones. Mice on a regular diet with high
isoflavone content demonstrated lower HCl-induced alveolar inflammation, lower total
cell count in BALF, particularly monocytes and neutrophils, improved endothelial barrier
function, and had less vascular permeability, compared to mice on isoflavone-poor diet.

There is increasing data suggesting the potential benefits of isoflavones as antifibrotic
agents. For example, stellate cells express the beta but not the alpha isoform of the estrogen
receptor, and nutritional intake of the soy isoflavone genistein—a selective agonist of ERβ at
low nanomolar plasma concentrations that are achievable with such intake—can suppress
liver fibrosis, in both genders [38]. Further, genistein significantly ameliorated myocardial
fibrosis in rats [39] and soy isoflavones reduced the vascular damage, inflammation, and
fibrosis caused by radiation damage to lung tissue in mice [40]. Radiation-challenged
rats, treated with genistein, showed significant decreases in hydroxyproline and in levels
of activated macrophages in lung tissue [41]. We and others have previously provided
evidence implicating HSP90 in lung fibrogenesis [37,42–46]. In the present study, we
also report activation of HSP90 in mice receiving phytoestrogen-poor diet. Also, for the
first time, we demonstrate the possible ability of dietary phytoestrogens to moderate
pulmonary fibrosis, as reflected in the fibrotic score and in the activation of the canonic
SMAD-signaling TGF-β pathway (Figure 8). Genistein has the ability to block α-SMA
and inhibit connective tissue growth factor (CTGF) expression in human renal tubular
epithelial cells [47]. The isoflavone puerarin regulates the expression of TGF-β1 and α-SMA
in alcohol-induced liver fibrosis in rats [48]. In the present study, mice on isoflavone-poor
diet demonstrated significant increases in α-SMA, collagen I and elastin deposition. The
decrease in extracellular matrix protein release could be explained by a likely decrease in
estrogen receptor signaling due to lack of phytoestrogen-mediated ER activation. During
menopause, the decrease in circulating estrogen levels causes dysfunctions of the connective
tissues via ECM degradation [49]. Laboratory animals probably become adapted to high-
phytoestrogen intake over many generations, eating soy-based diets, and removing all
phytoestrogens from the diet most likely leads to readjustments that could disrupt multiple
biological functions [50].

Phytoestrogens could improve lung function damage following HCl exposure. Genis-
tein has been shown to attenuate ovalbumin-induced airway hyperresponsiveness to
inhaled methacholine in asthmatic guinea pigs [36]. Here we also observed the significant
deterioration of respiratory resistance, elastance, and tissue damping in mice receiving
phytoestrogen-poor diet compared to mice receiving diet with isoflavone content.
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Figure 8. Estrogen-dependent signaling pathways mediating HCl-induced pulmonary fibrosis.
Dietary phytoestrogen isoflavones modulate alveolar inflammation and block TGF-β SMAD signaling
through activation of estrogen receptor (ER), preventing fibroblast activation and overexpression of
extracellular matrix.

5. Conclusions

This study demonstrated that dietary isoflavones reduce pulmonary fibrosis and
ameliorates lung function in mice exposed to HCl. Our data suggests that isoflavone
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