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In recent decades, little progress of objective evaluation of pain and noxious stimulation has been achieved under anesthesia. Some
researches based on medical signals have failed to provide a general understanding of this problem. This paper presents a feature
extraction method for heart rate variability signals, aiming at further improving the evaluation of noxious stimulation. In the
process of data processing, the empirical mode decomposition is used to decompose and recombine heart rate variability signals,
and the sliding time window approach is used to extract the signal features of noxious stimulation, respectively. The influence of
window size on feature extraction is studied by changing the window size. By comparing the results, the feature extraction in the
process of data processing is valuable, and the selection of window size has a significant impact. With the increase of selected
window sizes, we can get better detection results. But for the best choice of window size, to ensure the accuracy of the results

and to make it easy to use, then, we need to get just a suitable window size.

1. Introduction

The clinical anesthesiologists must know whether the patient
is sufficiently anesthetized to tolerate direct laryngoscopy and
tracheal intubation. In the absence of an accurate and objec-
tive method to determine the level of general anesthesia, this
can lead to conditions such as under- or overdose of anesthe-
sia [1]. Patients may be adequately anesthetized for a given
stimulus level, but when faced with other more intense stim-
uli, such as tracheal intubation, there is a risk of undera-
nesthesia. Current anesthesia depth monitors are accurate
in assessing the hypnotic component of general anesthesia
but are less reliable in assessing the analgesic and reflex inhi-
bition components of anesthesia [2]. We hope to use a more
effective tool to solve this problem.

A significant relationship between the autonomic ner-
vous system and many physiological factors modulating has
been investigated during the last several decades. Heart rate
variability (HRV) has been proposed as a method to be able
to measure the stress response and the balance of analgesia

and nociception in real-time when patients are under general
anesthesia by assessing the autonomic nervous system [3, 4],
making it possible to objectively evaluate noxious stimulation
through HRV analysis. By comparison, HRV represents one
of the most promising indicators. The easy derivation of this
method has popularized its use. It is also seen as a simple
tool for both theoretical research and clinical research.
However, the significance of many different measures of
HRV is more complex than generally appreciated and there
is a potential for incorrect conclusions and excessive or
unfounded extrapolations.

HRYV analysis is a tool that can be used to observe the
interaction of the sympathetic and parasympathetic nervous
systems [5]. The quantification methods of HRV are catego-
rized as follows: time domain, frequency domain, and non-
linear methods [6]. In time-domain analysis, the intervals
between adjacent normal R waves are measured over the
period of recording. Various statistical variables can be calcu-
lated directly from the differences between intervals and
intervals. Traditionally, spectral analyses are always adopted
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in short-term studies, and often standard 5-minute electro-
cardiograph (ECG) segments are analyzed. A large number
of nonlinear measures of HRV have been studied, but only
a few have shown clear utility. Many practical applications
of HRV analysis use different time domains, frequency
domain, and nonlinear analysis techniques [7-10]. The fea-
tures of HRV signals are of great and practical benefits for
early diagnosis, monitoring, and prognostic assessments of
the diseases [11, 12]. Combined efforts of clinicians and engi-
neers have made it possible to use the data extracted from the
heart rate variability to aid the diagnosis and prediction of
various heart diseases as well as ailments originating from
different human organs but indirectly influencing the auton-
omous nervous system. A lot of methods of nonlinear
dynamics (e.g., estimating Lyapunov exponents) and com-
plexity measures (e.g., correlation dimension or entropies)
have been applied to HRV analysis [13-16]. In recent years,
empirical modal decomposition (EMD) of nonlinear and
nonstationary time series has been proposed. This signal
analysis technique is used for the analysis of HRV signals
and other signals [7, 8, 17-20]. To accurately extract the fea-
tures of the signals, the time window method can be used to
accurately set the size of the time window for more effective
feature recognition [21]. In recent years, neural networks
have received increasing attention for medical applications
and are gradually being used in clinical practice, but direct
application of neural networks has not led to more general
conclusions in medical signal analysis, so aiding appropriate
signal feature extraction may be more effective than specific
classification methods [15, 22, 23]. Applying these research
methods properly will give a great advancement to the
research of revealing the underlying law and physical nature
of HRV.

Based on the abovementioned physiological basis and
research methods, the sliding time window method is intro-
duced to extract the features of noxious stimulation in HRV
analysis, thus aiding the classification method, and we need
to study the effect of window size on feature extraction.

2. Materials and Methods

2.1. Data Collection. This study has been approved by the
Ethics Committee of the hospital, and all patients have signed
the informed consent. Sixty individuals (ASA grade I or II, all
genders, age 18~60, BMI<30kg/m?®) have undergone oral
and maxillofacial surgery under general anesthesia. Exclu-
sion criteria: the diseases are known to affect autonomic
nerve function.

ECG signals are continuously recorded by BMDI101
(NeuroSky Inc.) at a sampling rate of 512 Hz and stored in
the computer during perioperation. Signal processing is con-
ducted to form the RR intervals to be analyzed. Three kinds
of signals are obtained from the RR intervals: preoperative
(T0), intubation (T1), and intraoperative (T2). In this study,
all we need are the T1 and T2 signals. The T1 signals repre-
sent the occurrence of a noxious stimulation during anesthe-
sia. T2 signals mean that only during anesthesia. The original
RR intervals from the ECG signal are a function of the num-
ber of heartbeats instead of the time. To make the RR inter-
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vals be the function of the time, the signals are resampled
using cubic spline at a sampling rate of 8 Hz as recommended
for HRV studies [24].

2.2. Empirical Mode Decomposition. The EMD method is that
any complicated signal can be decomposed into a finite and
often small number of intrinsic mode functions (IMF). Since
the decomposition is based on the intrinsic timescale of the
signal, it is suitable for nonstationary signals [25]. The IMFs
are computed by the sifting process, which is an iteratively
detrending operation. To extract IMFs from a given signal s
(t), the procedure is described as follows:

Step 1: confirm all the local extrema

Step 2: generated the upper envelope s,,(t) and lower
envelope s, (t) by the local maxima and minima by using
the cubic spline

Step 3: calculate the means of the upper envelope and the
lower envelope as m(t)

S (F)+s t
m(t): up( ) low( ) (1)
2
Step 4: compute the IMF candidate by the difference
between s(¢) and m(t); it can only be considered as an IMF
if it meets the sifting stopping criteria

s(t) = m(t) =hy(t), (2)

hy(t) = hl(n—l)(t) - ml(n—l)(t)’ (3)
I (£) = IMF, 1) (@)

Step 5: compute the residue r(t) by the difference between
s(t) and the IMF

(1) =s(t) = IMF (1) (5)

Step 6: repeat the above steps until s(¢) is decomposed
into a finite number of IMFs and one residue, and the residue
is either a steady trend or a constant.

k
s(t) = ZIMFi(t) + 1 (1) (6)

EMD decomposes the nonstationary signal into a finite
set of IMFs without information loss or distortion [19]. In
this study, IMFs need to be recombined according to require-
ments to become the feature signals.

2.3. Sliding Time Window Method. The sliding time window
(STW) method is a very effective feature extraction method.
However, determining the optimal value for the window size
is an important and difficult problem. The size of the sliding
time window will affect the effect of feature extraction. If the
size is too large, features may be confused together, affecting
the accuracy of the results and increasing the computational
load. On the contrary, if the size is too small, the features can-
not be extracted completely, so that better results cannot be
obtained [21].
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The appropriate size of STW can be selected according to
the characteristics of the research object. The size range of
STW is generally determined according to the target object
or application requirements under the guidance of prior
knowledge. For this study, we can further compare the effects
of different sizes of STW on feature extraction, to establish
the selection criteria. This is also possible to explore the rela-
tionship between window size selection and the autonomic
nervous system.

2.4. Model Building. In this work, we are interested in how to
accurately detect noxious stimulation during anesthesia.
Firstly, RR interval signals are decomposed and recombined
into high-frequency (HF) component signals and low-
frequency (LF) component signals, corresponding to sympa-
thetic and parasympathetic activity in the autonomic nervous
system, respectively. Secondly, the signal features of noxious
stimulation are reflected in LF component signals, and LF
signals are processed by the sliding time window method
for feature extraction. Finally, the feature is extracted as the
input to the deep neural network to determine whether the
noxious stimulation (tracheal intubation stimulation) occurs
under general anesthesia.

The long short-term memory (LSTM) network is used in
the deep neural network model. The deep neural network
model has the capability of feature extraction, so the RR
intervals are directly used as the input to the deep neural net-
work, and the results can be obtained directly by training the
deep learning model. The results obtained by using raw data
directly are compared with those obtained by extracting fea-
tures with different time window sizes. This comparison can
reflect whether the features obtained in the data processing
are representative and whether they have a significant impact
on the results.

3. Results

During the study period, the RR interval signals are from 60
patients, and a total of 104 signals are selected for the inves-
tigation after the screening, which includes 42 T1 signals
and 62 T2 signals. These signals are randomly divided into
71 for the training set, 15 for the validation set, and 18 for
the test set.

In the process of preprocessing RR interval signals, uni-
form time-domain sampling is obtained through cubic spline
piecewise interpolation, which makes the RR series more
suitable for feature extraction. In the frequency domain, the
spectrum of the short-term HRYV signal can be distinguished
into several frequency bands [26]. These bands are referred to
as the high frequency (HF) band (0.15Hz to 0.4 Hz), the low
frequency (LF) band (0.04 Hz to 0.15 Hz), and the very low-
frequency band (VLF), i.e., bands less than 0.04 Hz [18].
Here, we combine the LF and VLF bands and consider them
both as LF bands uniformly. Hence, using the EMD to
decompose the resampled RR interval sequence into limited
IMF components and performing spectrum analysis on each
IMEF, the results shown in Figure 1 indicate that the HF com-
ponents (0.15~0.4Hz) and LF components (0.04~0.15Hz)
are distinguished. By recombining the HF IMF component

and the LF IMF component separately, two feature signals
corresponding to autonomic nervous system regulation are
formed, as shown in Figure 2. The HF band reflects only
parasympathetic changes, while the LF band reflects changes
in sympathetic and some other stress responses. Under gen-
eral anesthesia, the HF component with tracheal intubation
is similar to the HF component without tracheal intubation,
and the LF components are significantly different.

The LF component signals with the tracheal intubation
stimulation have the obvious feature, and the feature extrac-
tion of noxious stimulation is completed within the STW, as
shown in Figures 3 and 4. The extracted feature is the differ-
ence between the left endpoint and the right endpoint of the
LF component signal within the STW. We can get different
feature results for different window sizes, and by comparing
these results, we can choose the best one. The minimum win-
dow size is 100 resampling points, and each increase of 50
sampling points is used to extract the feature results of the
LF signal once. As shown in Figure 3, the window size is
between 100 and 300 sampling points. We can find that the
features of noxious stimulation have been extracted and the
features become better and better as the window size
increases. The extracted features have a corresponding
change in amplitude when the noxious stimulation occurs.
In Figure 4, we can see that as the number of sampling points
increases gradually, the features that can be extracted become
more obvious. This indicates that the window size directly
affects the effect of feature extraction, and the larger the
window size is, the more significant the effect is. For such
a result, we finally select the features extracted from
150,250,350,450,550,650 sampling points to verify the effect.

Because the total number of signals we have is very lim-
ited, we have to verify the results multiple times for each win-
dow size. As shown in Figure 5, we can obtain that the
accuracy of detecting the noxious stimulation corresponding
to different window sizes is 77.8%, 88.9%, 83.3%, 88.9%,
88.9%, and 94.4%. By comparing the results, we conclude
that the feature extraction in the process of data processing
is valuable, and the selection of window size has a significant
impact. If the window size is relatively small, the extracted
features are concentrated in a small area of the signal, which
makes the features of a small area of the signal less easy to
capture. However, as the window size gradually increases,
the STW method can easily capture the feature differences
between different states.

As shown in Figure 6, the data are directly fed into the
LSTM network [27] for training on the same dataset, so that
the corresponding results can be obtained. Due to the limited
number of signals, the data set is randomly divided into
training and test sets several times to obtain multiple results.
Comparing with the results obtained by the method pro-
posed in this paper, the results obtained by the method in this
paper are more satisfactory.

4. Discussion

In this study, ECG signals are collected under general anes-
thesia, and then, RR interval signals are obtained. HRV anal-
ysis includes time-domain, frequency-domain, and nonlinear



4 Neural Plasticity

0.1 0.01 A
SEE & 0.005 -
-0.1 T T T T T 0 T T T T
0.1 0.01
a) ]
S o- M\/\/\ € 0.005 1
-0.1 T T T T T 0 T T T T
0.02
- 0.1
32}
-0.1 T T T T T 0 f T T T
- 0.1
J0.02 A
2 o5
= 0 \/\/ =
-0.1 T T T T T 0 T T T T
0.1 0.1 -
0 Y
& = 005
E -0.1 1
T T T T T 0 T T T T
1.4
1
g 1.2 a
& & 05
14
T T T T T 0 T T T T
0 10 20 30 40 50 60 0 0.2 0.4 0.6 0.8 1
Time (s) Frequency (Hz)
(@ (b)

F1GURE 1: (a) The IMF components of the RR intervals. (b) Spectrum analysis on each IMF.
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FiGure 2: The original RR intervals, the HF component, and the LF component separately form two feature signals corresponding to
autonomic nervous system regulation.
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FIGURE 3: The extracted features corresponding to window sizes between 100 and 300 sampling points.
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FIGURE 4: The extracted features corresponding to window sizes between 300 and 500 sampling points.
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F1GURE 5: The accuracy of detecting the noxious stimulation during anesthesia with different window sizes.
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F1GURE 6: The accuracy of the LSTM network and the method proposed in this paper for training on the same dataset.

analysis. Although these methods have been widely used,
they still have limitations. HRV analysis has a good physio-
logical basis for the evaluation of the autonomic nervous sys-
tem; however, because HRV signals contain many complex
components, no significant progress has been made in ana-
Iytical methods and applications for many years. To solve
this problem, the RR intervals are decomposed into the HF
component and the LF component, corresponding to the
autonomic nervous system. Under anesthesia, the HF com-
ponent with the tracheal intubation stimulation is similar
to the hf component without the tracheal intubation stimu-
lation, and the LF components are significantly different, as
shown in Figure 7.

In the research, the size of samples is relatively limited.
To better address this limitation, it is very important to
extract the common features of the signals. The quality of

the signal features is also critical. If good enough signal fea-
tures can be extracted, excellent results can also be obtained
in the case of a limited number of signals. The conclusion
of small sample data depends on the extraction effect of
features.

Different sizes of STW have a definite effect on feature
extraction. With the increase of selected window sizes, we
can get better detection results. Although better results can
be obtained when the window size is larger, it affects the
real-time performance and practicability of detection. We
should make the optimal choice under these conditions, it
not only ensures the accuracy of the result but also makes it
easy to use and operate, so we need to select the size of the
window not to be too big. We also have to make sure that
the effect is good and that the window size is chosen follow-
ing autonomic nervous system regulation.
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FiGURrk 7: The feature of the signal: under general anesthesia, tracheal intubation stimulation will have an impact on the LF component.

Although the method we proposed has achieved good
results on this data set, the method of feature extraction is
relatively single, which makes this method only applies to
the situation of significant signal fluctuations, and more
diverse feature extraction methods will be added in the
future. Secondly, although the selection law of window size
has been clear, different STW sizes may be adopted for sig-
nals in different states. Therefore, we need to further explore
the adaptive STW to deal with signal feature extraction in
various states. Finally, we will collect more signals for fur-
ther research.

5. Conclusions

By comparing the results, we can find that feature extraction
is valuable in data processing, and the selection of window
size has a great impact. To balance the practical effect, it is

necessary to choose an appropriate window size and follow
the regulation rules of the autonomic nervous system.
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