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Heart failure (HF) leads to a progressive increase in morbidity and mortality rates. This

study aimed to explore the transcriptional landscape during HF and identify differentially

expressed transcripts (DETs) and alternative splicing events associated with HF. We

generated a dog model of HF (n = 3) using right ventricular pacemaker implantation.

We performed full-length transcriptome sequencing (based on nanopore platform) on

the myocardial tissues and analyzed the transcripts using differential expression analysis

and functional annotation methods [Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) analyses]. Additionally, we estimated the expression of the

selected genes by quantitative real-time PCR (qRT-PCR) and detected the proportion of

immune cells using flow cytometry. We found that increased B-type natriuretic peptide

reduced ejection fraction, and apparent clinical signs were observed in the dog model of

HF. We identified 67,458 transcripts using full-length transcriptome sequencing. A total

of 785 DETs were obtained from the HF and control groups. These DETs were mainly

enriched in the immune responses, especially Th1, Th2, and Th17 cell differentiation

processes. Furthermore, flow cytometry results revealed that the proportion of Th1 and

Th17 cells increased in patients with HF compared to controls, while the proportion of Th2

cells decreased. Differentially expressed genes in the HF and control groups associated

with Th1, Th2, and Th17 cell differentiation were quantified using qRT-PCR. We also

identified variable splicing events of sarcomere genes (e.g., MYBPC3, TNNT2, TTN,

FLNC, and TTNI3). In addition, we detected 4,892 transcription factors and 406 lncRNAs

associated with HF. Our analysis based on full-length transcript sequencing provided an

analysis perspective in a dog model of HF, which is valuable for molecular research in an

increasingly relevant large animal model of HF.

Keywords: heart failure, target genes, helper T cell differentiation, full-length transcriptome sequencing, transcript

expression analysis
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INTRODUCTION

Heart failure (HF) is a rapidly developing cardiovascular disease
associated with considerable morbidity, hospitalization, and
mortality (1). The HF incidence, and the related economic
burden, is predicted to escalate in the coming years due to age-
related structural changes (2, 3). Recently, early diagnosis and
intervention of HF have gained attention. B-type natural peptide
(BNP) is a suitable biomarker for HF and is usually released
in response to increased left ventricle load (4). Essentially,
the complex pathophysiology of HF necessitates a multi-
index analysis to establish effective diagnostic and prognostic
biomarkers. Re-hospitalization of discharged patients with HF
followed by mortality is common (5). Therefore, determining
the pathological mechanisms that lead to HF is necessary for
developing more effective HF therapies.

Transcriptome analysis in large animal model of HF is widely
used in HF research (6, 7). In recent years, transcript data in
HF model have been analyzed by the next-generation sequencing
(NGS) or Affymetrix exon arrays (Santa Clara, CA, USA), such as
prediction of alternative splicing (AS) events and lncRNAs (8, 9).
However, these techniques had limitations in recognizing AS
isoforms, homologous gene families, and complete and accurate
assembly of transcripts because of short read data. With advances
in sequencing technology, long-read sequences can be efficiently
generated using techniques such as third-generation sequencing
(TGS) (10). Advantages of TGS are summarized as follows:
(1) it provides longer read data than NGS and have distinct
error characteristics (11); (2) it increases the gene inheritance
and functional diversity of the sequence by analyzing different
transcript isoforms regulated by AS (12); and (3) it offers an
alternative method for obtaining non-coding transcripts, ensures
reliable qualitative analysis of AS transcripts, and improves
transcriptomic annotation (13). At present, the TGS of high-
frequency pacing for generating HF in dogs has not been
established. Therefore, our study aimed to utilize TGS (based
on nanopore platform) for the transcriptional profile analysis of
myocardial tissue from a dog model of HF.

MATERIALS AND METHODS

Production of a Rapid Pacing HF Dog
Model
Six beagles were randomly divided into two groups: HF (n = 3)
and control (n = 3). The control group dogs were subjected to a
sham surgery involving cardiac pacemaker implantation, whereas
right ventricular pacemaker implantation was used to produce

Abbreviations: HF, heart failure; BNP, B-type natriuretic peptide; TGS, third-

generation sequencing; AS, alternative splicing; NGS, next-generation sequencing;

ONT, Oxford Nanopore Technologies; CPC, coding potential calculator; CNCI,

coding–non-coding index; CPAT, coding potential assessment tool; CPM, counts

per million; DETs, differentially expressed transcripts; GO, Gene Ontology; KEGG,

Kyoto Encyclopedia of Genes and Genomes; ES, exon skipping; A5SS, alternative

5′ splice site; A3SS, alternative 3′ splice site; MEEs, mutually exclusive exons;

EF, ejection fraction; TFs, transcription factors; lncRNAs, long non-coding RNAs;

RVP, rapid ventricular pacing; IQR, interquartile range; BMI, body mass index;

TGF, transforming growth factor.

the dog model of HF. Venous access was established according
to a previously described procedure (10), and the ventilators
were connected after intramuscular anesthesia injection using 3%
pentobarbital. Subsequently, the right external jugular vein was
exposed after separation from the subcutaneous tissue, and the
introducer wire and vascular sheath were sequentially delivered
intravenously. A pace-control spiral electrode was delivered
with the aid of the ultrasound imagery, with the electrode tail
connected to a modified human-pulse generator. Additionally,
penicillin 3.2 million IU + 100ml 0.9% NaCl intravenous
infusion was administered intraoperatively and postoperatively.
The dogs were observed under general conditions (temperature,
22–26◦C; humidity, 50–70%, light-dark cycle, 12 h light, 12 h
dark; unlimited food and water) and were subjected to cardiac
ultrasound in their conscious state. After 3 weeks, the pacemaker
was adjusted to 180 beats/min for 3 days; 220 beats/min
for 3 days; and 250 beats/min for 3 weeks (Figure 1A). The
extent of fibrosis in the myocardial tissues was detected by
Masson’s trichrome Staining, and Masson’s positive regions
were quantified using the ImageJ software (v1.8.0; National
Institutes of Health, Bethesda, MD, USA). Meanwhile, the
plasma concentrations of BNP and IL-17 were detected using
an ELISA Kit (Jianglai, Shanghai, China). The right ventricular
tissue morphology was observed using a transmission electron
microscope (JEM-1220, JEOL Ltd., Tokyo, Japan), and images
were captured using an OLYMPUS system (Olympus Soft
Imaging Solutions, Morada G3, Japan).

Ethics
Human and animal studies were reviewed and approved by the
Ethics Committee of The First Affiliated Hospital of Xinjiang
Medical University (K202105-18, CNU IACUC201902-K03) in
accordance with the Declaration of Helsinki. Written informed
consent was obtained from all participants.

RNA Preparation and Full-Length
Transcriptome Sequencing
Total RNA was extracted from the right ventricle myocardial
tissues using an RNeasy Mini Kit (QIAGEN, Hilden, Germany)
according to the instructions of the manufacturer. RNA purity
was assessed using a NanoPhotometer R© spectrophotometer
(IMPLEN, Westlake Village, CA, USA), and the concentration
was quantified using a Qubit Fluorometer (Thermo Fisher
Scientific, Waltham, MA, USA). Full-length, first-strand cDNAs
were enriched using 50 ng of the total RNA for each sample
according to the cDNA-PCR Sequencing Kit (SQK-PCS109)
according to the instructions of the manufacturer. Finally, the
Oxford Nanopore Technologies (ONT, Oxford, UK) adaptor was
used to ligate the PCR products using T4 DNA ligase [New
England Biolabs (NEB), Ipswich, MA, USA]. The generated
cDNA libraries were sequenced using PromethION platform.

Nanopore Data Processing
Raw reads were normalized to a minimum average read-
quality score of 7 and a minimum read-length of 500 bp.
Full-length non-chimeric transcripts were determined by
primer-searching at both ends of the reads. The barcode
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FIGURE 1 | Dog model of HF construction and full-length transcriptome sequencing. (A) The workflow of HF model construction. The procedure for HF model

manipulation at different times. (B) Experimental procedures. (C) Data output and processing. W, weeks; RVP, rapid ventricular pacing; HF, heart failure.

was as follows: 5′-TTTCTGTTGGTGCTGATATTGC and
3′- GAAGATAGAGCGACAGGCAAGT. Meanwhile, the
transcripts were obtained by mapping the sequences to the
reference genome using minimap21, and redundant transcripts
were excluded. The results of the transcript expression level
quantification and full-length read differential analysis were
mapped to the reference transcriptome sequence. The expression
levels of the mapped reads were then estimated by reads per
transcript for 10,000 mapped reads. Moreover, the counts
per million (CPM) quantification technique was adopted for
transcript expression measurements (14). Differential expression
analysis of the HF and control samples was performed using
the DESeq2 R package (1.6.3): http://www.bioconductor.
org/packages/release/bioc/html/DESeq2 (15), with p < 0.05
representing differentially expressed transcripts (DETs).

1https://github.com/lh3/minimap2

Furthermore, structural analysis of AS was performed. AS
events were determined using the AStalavista tool:2 (16). In
addition, animal transcription factors (TFs) were retrieved from
the animal TF database. Four computational approaches were
combined to sort the long non-coding RNAs (lncRNAs) from
the transcripts: Coding Potential Calculator (CPC), Coding–
Non-Coding Index (CNCI), Coding Potential Assessment Tool
(CPAT), and Pfam. Statistical significance was set at p < 0.05.
Eventually, the full-length transcriptome sequencing files were
deposited in the SRA database (PRJNA731299).

Functional Annotation Analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG, https://www.kegg.jp/) pathways for the DETs

2http://genome.imim.es/astalavista
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TABLE 1 | Baseline characteristics of patients with HF and controls.

Variables Controls

(n = 10)

HF

(n = 10)

P-value

Age (years) 63.3 ± 15.3 58.3 ± 17.8 0.596

Male 6 (60%) 6 (60%) 1.000

BMI (kg/m2 ) 25 ± 3.5 25 ± 2.2 >0.999

Hamodynamics

Systolic blood pressure

(mmHg)

113.8 ± 6.9 128.9 ± 21.7 0.05

Diastolic blood pressure

(mmHg)

70.7 ± 6.4 72.1 ± 15.9 0.799

Left ventricle ejection fraction

(%)

62.5 ± 1.9 36.6 ± 8.0 <0.0001

Laboratory values

Total cholesterol (mmol/L) 3.9 ± 0.9 4.2 ± 1.0 0.560

Low-density lipoprotein

(mmol/L)

2.3 ± 0.4 2.8 ± 0.7 0.08

High density lipoprotein

(mmol/L)

l.l ± 0.5 0.8 ± 0.2 0.08

Triglycerides (mmol/L) 1.4 ± 0.7 1.5 ± 0.6 0.85

N-preBNP (ng/L) 128.2

(68.08–261.8)

3120.0

(1043.8–6172.5)

<0.001

Creatinine (µmmol/L) 70.0 ± 13.7 85.8 ± 28.8 0.13

Values are mean ± SD, n (%) or median (interquartile range); HF, heart failure; BMI, body

mass index.

were generated using the GOseq R package (17) and KOBAS3

software (18), respectively. The statistical enrichment of the
differentially expressed genes (DEGs) in the KEGG pathway was
then conducted using a false discovery rate (FDR) < 0.05. GO
and KEGG pathways for AS, TFs, and lncRNA were generated
using the Enrichr4 software. Statistical significance was set at
p < 0.05.

Flow Cytometry
Adults (≥18 years of age) with chronic HF (functional class II,
III, or IV), a left ventricular ejection fraction (EF) of 45% or less,
and BNP > 300 ng/L were eligible to participate in the study.
Exclusion criteria were as follows: (1) acute renal insufficiency
or chronic kidney disease stages III–IV; (2) hepatic insufficiency;
(3) pregnant or lactating women; (4) patients with rheumatic
immune system disease, severe pneumonia; and (5) malignant
tumors (receiving active treatment) or other life-threatening
diseases. Blood samples from patients with HF (n = 10) and
controls (n = 10) were collected immediately after diagnosis. No
significant difference was found in baseline demographics and
clinical characteristics between patients with HF and controls
(Table 1), indicating no selection bias (p≥ 0.05). The cell surface
antigens were stained according to the standard flow cytometry
staining procedures using antibodies specific to CD4, CD196,
and CD183 cells (BD Sciences, San Jose, CA, USA). The cells
were then treated with red blood cell lysate (BD Sciences, San
Jose, CA, USA) and washed twice with phosphate-buffered saline.

3http://kobas.cbi.pku.edu.cn
4https://maayanlab.cloud/Enrichr/

TABLE 2 | The primers used.

Genes Primers

GAPDH F: 5′-GCAAATTCCACGGCACAGTCAAG-3′

R: 5′-ACAACATACTCAGCACCAGCATCAC-3′

JUN F: 5′-AGAACTCGGACCTGCTCACCTC-3′

R: 5′-GATGTGCCCGTTGCTGGACTG-3′

JAG2 F: 5’-GGTCGTCATGGCAGCTTCTTCC-3’

R: 5’-GGCTCCTCTCCCGCTCTTTCC-3’

FOS F: 5′-CCCGTAGTCACCTGTACTCCTAGC-3′

R: 5′-GCTGCTGCCCTTGCGATGAG-3′

DLA-DMA F: 5′-CGTTGAAGCCCCTGGAGTTTGG-3′

R: 5′-ATGCCACCAGTTCACCGTCAATG-3′

DLA-DQB1 F: 5′-CAAGCCCTGTCACCGTGGAATG-3′

R: 5′-CGAAGCCACCAATGCCACTCAG-3′

HLA-DRB1 F: 5′-CAAGCCCTGTCACCGTGGAATG-3′

R: 5′-GAAGAGCAGACCCAGGACAAAGC-3′

DLA-DRA F: 5′-ACCCATCAGGCGAGTTCATGTTTG-3′

R: 5′-GCCACACCGTCTCCTTCTTTTCC-3′

Flow cytometry was performed using a BD LSR II flow cytometer
and analyzed using the FlowJo v7 software (TreeStar, San Carlos,
CA, USA).

Quantitative Real-Time PCR
Total RNA was extracted from the myocardial tissues of the HF
and control groups using a TRIzol extraction kit (Invitrogen,
Carlsbad, CA, USA). Reverse transcription of RNA into cDNA
was then conducted using the First-Strand cDNA Synthesis
SuperMix (Takara, Dalian, China). Quantitative real-time PCR
(qRT-PCR) was performed using specific primers (Table 2)
according to the SYBR Green PCR Kit (Invitrogen, Carlsbad,
CA, USA) according to the protocol of the manufacturer. About
35 PCR cycles were used for the amplification. GAPDH mRNA
expression level was used as an internal standard, and the results
were analyzed using the 2−11Ct method.

Statistical Analysis
Statistical significance between the two groups was analyzed by
Student’s t-test in SPSS 19.0 (IBM, USA). Data were recorded
as the mean ± SD. Differences were considered significant at p
< 0.05.

RESULTS

Generation of the Experimental Rapid
Pacing Dog Model
weeks after the modeling surgery, the heart ultrasounds
of the dogs showed normal cardiac function and proper
electrode fixation (Figure 1). Heart ultrasounds detected a
gradual decrease in the left ventricular EFof the HF group
with a prolonged postoperative time (Figures 2A,B) compared
to the control group (p < 0.05). The HF group had an
EF of <45% after 4 weeks of rapid ventricular pacing
(RVP). Masson’s staining showed myocardial perivascular and
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FIGURE 2 | Successful establishment of HF dogs. (A) Echocardiography in HF and control groups. (B) The EF on the 1st and 4th week of HF. *p < 0.05, **p < 0.01.

(C) Masson staining of the right ventricular myocardium of HF and control groups. **p < 0.01. Bar = 100µm. (D) Levels of BNP and IL-17 in the plasma of HF and

control groups. **p < 0.01. (E) The morphology of the right ventricular tissue under transmission electron microscopy. Bar = 500 nm. BNP, B-type natural peptide; EF,

ejection fraction; HF, heart failure; RVP, right ventricle pacing. ***p <0.01.

interstitial fibrosis in the HF group (p < 0.01) (Figure 2C).
Moreover, plasma BNP was significantly increased in the
HF group (p < 0.01) (Figure 2D), indicating that the dog
model of HF was successfully established. Meanwhile, IL-
17, secreted by Th17 cells, increased in the HF group (p
< 0.01) (Figure 2D). Additionally, sarcomere injuries were
observed by transmission electron microscopy in the HF group
(Figure 2E).

Detection of DETs Associated With HF
The quality assessment of full-length transcriptome sequencing
(based on nanopore platform) data in this study is

shown in Supplementary Table 1. The number of full-
length sequences obtained from each sample varied from
1,105,125 to 1,800,561 (Supplementary Table 2), and the
average mapped rates were 91.31%. The results illustrated
that the nanopore sequencing data were sufficient for
subsequent analysis. A consensus isoform sequence was
obtained by polishing the full-length sequence analysis
for all consensus transcript sequences after alignment
with the reference genome. Finally, 67,458 non-redundant
transcripts and 23,734 annotated genes were identified.
Among the 67,458 transcript sequences, the transcript
expression ranged from log10 (CPM) = 0–2. We compared
DETs for the HF and control groups, and a total of 785
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FIGURE 3 | Differentially expressed transcripts (DETs) between HF dogs and controls. (A) Volcano plot of DETs. Green represents the downregulated DETs, red

represents the upregulated DETs, and black represents the non-differential expression. (B) Heatmap of the DETs expression levels in HF dogs and controls. Red and

blue represent up- and downregulated DETs, respectively. HF, heart failure; C, controls; FC, fold change.

DETs were obtained, including 338 upregulated and 447
downregulated DETs (Figure 3A and Supplementary File 1).
In our study, up- and downregulated DETs were clustered
(Figure 3B).

Functional Annotation of DETs
We performed DET annotation analysis to determine the
pathological mechanisms of HF. Upregulated DETs were
annotated and assigned to a total of 16 biological processes of
the GO enrichment analysis (Figure 4A), which included the

transforming growth factor (TGF)-β receptor signaling pathway
and cardiac muscle contraction. Conversely, the downregulated
DETs were annotated and assigned to 17 biological processes
(Figure 4B), including cellular responses to lipopolysaccharide
and negative regulation of membrane protein ectodomain
proteolysis. As shown in Figures 4C,D, up- and downregulated
DETs were both enriched to Th-cell (Th1, Th2, and Th17)
differentiation by the KEGG analysis. The TGF-β receptor
signaling pathway, CGMP-PKG, apoptosis, and MAPK signaling
pathways were highly enriched (p < 0.05) (Figures 4C,D).
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FIGURE 4 | GO and KEGG analyses in DETs. (A) Classification of biological processes in GO annotation for upregulated DETs. (B) Category of biological processes in

GO annotation for downregulated DETs. (C) KEGG annotation of upregulated DETs. (D) KEGG annotation of downregulated DETs. Only the significant pathways

sections (p < 0.05) were presented in the figure. DETs, differentially expressed transcripts; GO, Gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

The cellular components and molecular functions of DETs
are presented in Supplementary Figure 1. In addition, DEGs
and corresponding GO/KEGG analysis were performed to
provide an overview of transcriptome changes in the HF model
(Supplementary Figure 2).

Candidate Genes Associated With Th1,
Th2, and Th17
Flow cytometry was used to examine the levels of Th1, Th2,
and Th17 cells to better understand the molecular mechanisms
underlying myocardial failure (Figure 5A). Th1 and Th17 cells
were more abundant in patients with HF (p < 0.001), and the
proportion of Th2 cells decreased (p < 0.001). In addition, seven
DETs (DLA-DMA, DLA-DQB1, DLA-DRA, HLA-DRB1, FOS,
JAG2, and JUN) were involved in Th1-, Th2-, and Th17-cell
differentiation in dogs with HF. The expression of DLA-DMA,
DLA-DQB1, DLA-DRA, and HLA-DRB1 were upregulated in

HF dogs (Figure 5B), whereas FOS, JAG2, and JUN were
downregulated (Figure 5B).

AS Detection
The full-length transcriptome sequencing can characterize the
complexity of AS on a whole transcriptome scale. A total
of 3,746 AS events were identified in both the HF and
control groups. These events were classified into five categories
(Figure 6A): (1) 1,540 (41%) exon skipping (ES), (2) 787 (21%)
alternative 5′ splice site (A5SS), (3) 691 (18%) alternative 3′

splice site (A3SS), (4) 434 (12%) mutually exclusive exons
(MEEs), and (5) 294 (8%) retained introns (RIs) (Figure 6B).
Comparison of the AS events between the HF and control
groups showed that the ES category occurred most frequently
(control, 62.22%; HF, 63.82%), followed by A3SS (control,
14.06%; HF, 13.42%), A5SS (control, 14.06%; HF, 13.42%), IR
(control, 7.09%; HF, 6.26%), and MEE (control, 3.74%; HF,
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FIGURE 5 | Flow cytometry and quantitative real-time PCR (qRT-PCR) detection. (A) The proportion change of Th1, Th2, and Th17 cells in patients with HF (n = 10)

and controls (n = 10) detected using flow cytometry. ***p < 0.001. (B) Expression changes of the key genes in HF dogs and controls through qRT-PCR detection.

*p < 0.05, **p < 0.01, ***p < 0.001. qRT-PCR, quantitative real-time PCR; HF, heart failure.

4.56%) (Figure 6C). Additionally, the AS analysis of the HF-
related sarcomere genes revealed that five genes (TTN, TNNI2,
TNNI3, MYBPC3, and FLNC) had variable splicing events
(Table 3 and Supplementary File 2). The KEGG enrichment
analysis revealed that differentially spliced genes were abundant
in aldosterone synthesis and secretion, mitophagy, adrenergic
signaling in cardiomyocytes, hypertrophic cardiomyopathy, and
dilated cardiomyopathy (Figure 6D).

Transcription Factors and lncRNAs
Analysis
In our study, 4,892 TFs from 62 different families were
predicted using the AnimalTFDB 3.0 software5. Among them,
ZF-C2H2, ZBTB, and Homeobox were abundant (Figure 7A).
In the ZF-C2H2 group (the most abundant TF family), 1,905
transcripts corresponding to 1,426 TF genes were identified,
including 17 alternative spliced genes (Figure 7A). For a
better understanding of AS-associated biological processes,
the functional characteristics are listed in Figure 7A. ZNF24,
250, 300, 331, 568, and 641 are known downstream effectors
of JAK/STAT signaling by the KEGG analysis. Additionally,

5http://bioinfo.life.hust.edu.cn/AnimalTFDB/

differentiated spliced TFs also function in cardiac fibrosis (e.g.,
KLF6) (19), angiogenesis (e.g., VEZF1) (20), cardiac structure
and contractile function (e.g., VEZF1) (21), cardiac hypertrophy,
inflammation, and regulatory T-cell homeostasis (e.g., ZFP91)
(22–24) (Figure 7A). As critical effectors or regulators, TFs
can sense multiple signal transduction pathways and metabolic
perturbations in cells. In this study, up- and downregulated
TF transcripts were analyzed, suggesting that differentially
expressed TFs in the HF model were enriched in multiple
signaling pathways. Upregulated TFs were mainly active in
TGF-β signaling, ubiquitin-mediated proteolysis, and signaling
pathways regulating stem cell pluripotency. Downregulated TFs,
on the other hand, function in inflammatory bowel disease,
acute myeloid leukemia, adipocytokine signaling pathway, etc.
(Supplementary Figure 3).

In addition to protein-encoding transcripts, we identified
lncRNAs. We predicted lncRNAs using the CNCI, CPC, CPAT,
and Pfam database. A Venn diagram was used to represent
the results of the four screening methods. As a result, 406
lncRNAs were identified (Figure 7B), and these lncRNAs were
classified according to their location in the reference genome
(Figure 7C). Except for binding activities with molecules (e.g.,
nucleic acids and proteins) (25), lncRNA functions diverged
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FIGURE 6 | The alternative splicing analysis between HF dogs and controls. (A) Alternative splicing events. (B) Alternative splicing distribution. (C) The proportion of

alternative splicing events. (D) Functional GO and KEGG analyses of the differentially alternative splicing genes between HF dogs and controls. Only the significant

pathways sections (p < 0.05) were presented in the figure. AS, alternative splicing; A3SS, alternative 3′ splice site; ES, exon skipping; A5SS, alternative 5′ splice site;

MEE, mutually exclusive exon; IR, intron retention; HF, heart failure; GO, Gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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in the HF model. Upregulated lncRNAs were enriched mainly
in cell metabolism (e.g., sugar and fatty acids), whereas
downregulated genes were primarily enriched in RNA-mediated

TABLE 3 | Types of alternative splicing in the sarcomere genes in HF dogs.

Gene symbol Gene name Alternative splicing type

MYBPC3 Myosin-binding protein C, cardiac A3SS, MES, SES

TTNI3 Troponin I type 3 (cardiac) A5SS

TNNT2 Troponin T type 2 (cardiac) A5SS, SES, A3SS, SES

TTN Titin MES, SES,A5SS

FLNC Filamin C, gamma SES

A3SS, alternative 3′ splice site; A5SS, alternative 5′ splice site; MEE, mutually exclusive

exon; MES, multiple exon skipping; SES, single exon skipping.

events (e.g., RNA processing, transport, and RNA-modulated
diseases; Supplementary Figure 4).

DISCUSSION

Large animal models are an essential step in the development of
therapeutics for HF (26, 27). Full-length transcriptome analysis
based on large animals (dogs) was performed to elucidate
more valuable clues regarding HF therapies. In a previous
study, transcriptome analysis of a dog model of HF (especially
rapid pacing HF) was performed using microarray (Table 4).
Despite RNA sample testing using microarray technology
being relatively precise for transcript quantitative analysis and
customized, it often overlooks annotated and unidentified
transcripts (including AS transcripts) outside the scope of

FIGURE 7 | Transcription factors and lncRNAs analysis by full-length transcriptome sequencing. (A) TF distribution presenting information for only the top 20 TF

families. (B) Venn map for the number of lncRNAs identified by CNCI, CPC, CPAT, and Pfam database. (C) LncRNAs positional classification. CPC, coding potential

calculator; CNCI, coding–non-coding index; CPAT, coding potential assessment tool; CPM, counts per million; lncRNAs, long non-coding RNAs; TF, transcription

factor.
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TABLE 4 | Studies on transcriptome analysis in large animal model of HF.

References Species Sample Model Platfdnn Accession

Ojaimi et al. (28) Mongrel dog Left ventricular tmyocardium Pacing induced HF Microarray GSE5247

Gao et al. (29) Dog Left ventricular myocardium Pacing induced HF Microarray GSE5247 GSE9794

Barth et al. (30) Mongrel dog Left ventricular myocardium Tachypacing-induced HF (left bundle

branch ablation + rapid atrial pacing)

Microarray GSE5274 GSE9794

GSE14372 GSE14338

GSE14661

Lichter et al. (31) Mongrel dog Left ventricular myocardium Tacltypacing-Induced HF (left bundle

branch ablation + rapid atrial pacing)

Microarray GSE14327 GSE14338

Wong et al. (32) Sheep Left ventricular myocardium Pacing induced HF RNA-seq, Illumina

MicroRNA array

GSE87449

Tan et al. (6) Minipig Cardiac tissue HEpEF (descending aortic constriction) RNA-seq, Illumina GSE143288

Vikholm et al. (33) Pig Right ventricular

myocardium

Right ventricular HF (pulmonary banding) Microarray GSE31619

Argenziano et al. (34) Dog Right atrial ventricular

myocardium

Pacing induced HF Microarray GSE12823

Torrado et al. (35, 36) Pig Cardiac tissue HF (doxorubicin) Microarray GSE30110

Müller et al. (7) German landrasse

Pig

Left ventricular tissue HF (post-infarction) Nanopore

RNA-seq, Illumina

NA

This study Beagle Right ventricular

myocardium

Pacing induced HF Nanopore PRJNA731299

testing (37). In our work, full-length transcript sequencing
(nanopore platform) was used for data harvesting, with the aim
of identifying more known and unknown transcripts and AS
events. Compared to NGS, full-length transcriptome sequencing
and its corresponding platform can deliver long reads that enable
the precise construction of full-length splice variants. The read
length (average reads length 1,153 bp) (Supplementary Table 1)
contained in our study was longer than that obtained by NGS in
a large animal model of HF (e.g., dog model of HF, average reads
length 93 bp) (38). Recently, full-length transcript sequencing
was also used in a pig model of HF (7). Our work focused
on the identification of lncRNAs and AS events, and GO and
KEGG analyses of DETs, providing more detailed information
on HF research.

Immune Responses Involved in the
Development of HF
Functional antibodies and T-cell-mediated immunity,
particularly Th1/Th17 responses, are active in HF-associated
processes (39). The Th1/Th2 cytokine imbalance has also been
attributed to the HF pathogenesis (40). Groschel et al. (39)
demonstrated that T-helper cells specific for cardiomyocyte
antigens could directly contribute to HF development
independent of the autoantibodies. Compared to the control
group, Th1, Th2, and Th17 populations increased in the HF
model (41). Likewise, we found that Th1 and Th17 cells increased
in patients with HF (Figure 5), indicating that immune responses
indeed occurred in HF.

Dynamic changes occur in Th1/Th17 responses during HF
(42). In this study, we found that Th1/Th17 differentiation-
related DETs (Figure 4) and corresponding genes (e.g., DLA-
DMA, DLA-DQB1, DLA-DRA, HLA-DRB1, FOS, JAG2, and
JUN) were differentially expressed (Figure 5). It has been
reported that endothelin 1, fibronectin, TGF-β, and collagen

deposition are induced by the JUN–FOS module (43, 44). JAG2,
a critical ligand in Notch signaling, modulates cell differentiation,
cell elongation, and cell death and functions in Treg/Th17
differentiation (45, 46). In addition, DLA-DMA, DLA-DQB1,
DLA-DRA, and HLA-DRB1 are indispensable for CD4+ T-
cell activation and Th1/Th17 induction (47, 48). Even though
the enhancement of Th1/Th17 differentiation by HF has been
confirmed, the inner mechanism by which cardiomyocytes
initiate and activate immune cell differentiation remains unclear.
Overall, our findings raise the possibility that the underlying
mechanisms of Th1/Th17 modulation might be a clue on how
the immune system functions in HF.

Implications of AS in HF
Alternative splicing is an important post-transcriptional
regulatory mechanism that exists widely in living organisms (49).
Various AS types are responsive to HF (50, 51). For example,
AS modulates the expression of sarcomeric genes in heart
diseases (49, 52, 53), and dysfunctional myocardial cells may
accumulate by aberrant splicing. Sarcomeric genes such as TTN,
TNNI3, TNNT2, and MYH7 are closely associated with HF (51).
Moreover, the AS frequency in the TTN gene increases in HF,
meaning it could potentially serve as an indicator of HF (51).
Except for TTN, we found multiple AS events of TNNI3, TNNT2,
and FLNC genes in HF (Supplementary File 2), implying that AS
event occurrence might be more complicated than imagined. HF
may share similar AS events with other cardiovascular diseases.
Because of the harvesting of more information by full-length
transcriptome sequencing, novel AS events were identified
in this study. For example, for the first time in HF research,
MYBPC3 was differentially spliced. Furthermore, AS-related
genes analyzed by GO and KEGG analyses were involved in heart
diseases (Figure 6). This supports the suggestion that AS events
may be helpful in HF diagnosis and prognostic marker digging.
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Analysis of the Transcription Factors and
lncRNAs in HF
Transcription factors are proteins that bind DNA regulatory
sequences for enhancing or silencing gene transcription (54). In
complex cell networking, TFs act downstream of multiple signal
transduction pathways (e.g., immune-associated pathways) and
selectively modulate effector gene expression (55). Digging deep
into changes in TF could provide a better understanding of
HF responses. In our study, the ZF-C2H2 group was highly
enriched in HF (Figure 7), some of which underwent variable
splicing events and participated in cardiac remodeling, immune
inflammation, myocardial contraction, and the JAK/STAT
signaling pathway (21, 22, 56). This indicates that the
differentially expressed TFs are closely related to HF. On
the one hand, we found that upregulated TFs were mainly
enriched in TGF-β signaling that modulated myocardial fibrosis
(Supplementary Figure 3). On the other hand, downregulated
genes were involved in immune- and inflammation-related
diseases (Supplementary Figure 3), whether such diseases and
HF share signaling pathways remains unknown.

The lncRNAs are novel regulators of cardiovascular diseases
(57). In the past 10 years, lncRNAs have been extensively
identified and annotated in detail (58). Moreover, many
studies have found that lncRNAs participate in cardiomyocyte
metabolism by regulating gene transcription and maintaining
the homeostasis of cardiomyocytes (58, 59). In our study,
differentiated lncRNAs were involved in cell metabolism, protein,
and RNA processing pathways, such as the pentose phosphate
pathway and lysosome modulation (Supplementary Figure 4),
suggesting that HF might be widely influenced by lncRNA.
Overall, full-length transcriptome sequencing offers additional
clues for understanding HF.

Limitations
This study had several limitations. First, the sequencing capacity
of the nanopore technique may not have been adequate to cover
the entire length of the involved genes. Therefore, genes with low
expression levels may have been missed in our analysis. Second,
although we validated the significance of the sequencing results
using molecular experiments, no in-depth characterization of the
transcript variant landscape was achieved. Thus, the impact of
TFs and lncRNAs on HF should be studied in more detail.

Conclusion
Our full-length transcriptome sequencing of myocardial tissues
from HF dogs improved our understanding of transcriptome
diversity. Consequently, understanding the characteristics
associated with the biological phenotype of HF and the potential
intervention target genes may pave the way for improved
treatment of HF.
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functions in GO annotation for upregulated differentially expressed transcripts
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significant pathways sections (p < 0.05) are shown.

Supplementary Figure 2 | (A) Volcano plots of differentially expressed genes.

Green represents downregulated differentially expressed genes, and red

represents upregulated differentially expressed genes. (B) Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DEGs

between HF and control groups. Only the significant pathways sections (p < 0.05)

are shown. DEGs, Differentially expressed genes; FC, fold change.

Supplementary Figure 3 | KEGG/GO analysis of differentially expressed

transcription factors. Only the significant pathways sections (p < 0.05) are shown.

TFs, Transcription factors.

Supplementary Figure 4 | KEGG/GO analysis of differentially expressed

lncRNAs. Only the significant pathways sections (p < 0.05) are shown. lncRNAs,

long non-coding RNAs.

Supplementary Table 1 | Data quality control information of full-length

transcriptome sequencing.

Supplementary Table 2 | Full-length sequence statistics of each sample.

Supplementary File 1 | Differentially expressed transcripts in myocardial tissue

from HF dogs and controls.

Supplementary File 2 | Alternative splicing events of the sarcomeric genes in

HF dogs.
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