
Antibody Therapeutics, 2022, Vol. 5, No. 3 202–210
https://doi.org/10.1093/abt/tbac017

Advance Access Publication on 22 July 2022

Original Research Article

Improving antibody thermostability based on
statistical analysis of sequence and structural
consensus data
Lei Jia*,† , Mani Jain and Yaxiong Sun
Discovery Research, Amgen, Thousand Oaks, CA 91320, USA

Received: May 7, 2022; Revised: June 21, 2022; Accepted: July 12, 2022

ABSTRACT

Background: The use of Monoclonal Antibodies (MAbs) as therapeutics has been increasing over the past
30 years due to their high specificity and strong affinity toward the target. One of the major challenges toward
their use as drugs is their low thermostability, which impacts both efficacy as well as manufacturing and
delivery.

Methods: To aid the design of thermally more stable mutants, consensus sequence-based method has been
widely used. These methods typically have a success rate of about 50% with maximum melting temperature
increment ranging from 10 to 32◦C. To improve the prediction performance, we have developed a new and fast
MAbs specific method by adding a 3D structural layer to the consensus sequence method. This is done by
analyzing the close-by residue pairs which are conserved in >800 MAbs’ 3D structures.

Results: Combining consensus sequence and structural residue pair covariance methods, we developed an
in-house application for predicting human MAb thermostability to guide protein engineers to design stable
molecules. Major advantage of this structural level assessment is in significantly reducing the false positives
by almost half from the consensus sequence method alone. This application has shown success in designing
MAb engineering panels in multiple biologics programs.

Conclusions: Our data science-based method shows impacts in Mab engineering.

Statement of Significance: A data science-based method which can accurately predict antibody ther-
mostability in high throughput. The method can also guide protein engineering by indication key residues
that affect thermostability.
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INTRODUCTION

Monoclonal Antibodies (MAbs) have become one of the
most important classes of therapeutics in various disease
areas. Half of the top 10 bestselling drugs in year 2019 are
MAbs [1]. Thermostability is a basic biophysical property
of MAbs. And it can be a major concern in the development
of protein therapeutics due to its impact on both efficacy as
well as manufacturing and delivery [2]. Low thermostability
can cause MAbs to denature and aggregate [3], which can
further lead to loss in binding potency [4], lower purity in
manufacturing [5], and shortened shelf life [6]. Optimizing
MAbs’ thermostability attribute is among the fundamental
protein engineering processes for a therapeutic MAb dis-
covery project [7–11]. A high-throughput and accurate in
silico prediction method can be helpful to eliminate liable
molecules as early as possible and design mutations to
improve thermostability of lead molecules.

There are multiple approaches to predict protein ther-
mostability and engineer protein to improve its stability
[12, 13]. Protein consensus sequence-based methodology
has been applied to improve protein thermostability for
over 20 years [14–18]. In general, the success rate for this
statistics-based method is about 50% with maximum melt-
ing temperature increase ranging between 10 and 32◦C [19].
Since MAbs all fold into conserved structures [20], we can
push the consensus method to structural level and study
the covariance relationship between residue pairs on 3D
protein structures. Structural level assessment helps to sig-
nificantly decrease false positives (FPs) from the consensus
sequence method alone.

Combining consensus sequence and structural residue
pair covariance methods, we developed an in-house
application for predicting human MAb thermostability to
guide protein engineers to design more stable molecules.
The consensus method was trained by ∼ 25 K and ∼ 12 K
human heavy and light chain variable region sequences,

respectively, from The International ImMunoGeneTics
Information System (IMGT) http://www.imgt.org/ [21].
The structural covariance method was trained by over
800 curated high-resolution Mab crystal structures. A
scoring system was developed to evaluate pairwise residue
interaction with confidence in consideration. Guided by
data science and artificial intelligence, the application,
which consists of about 1 500 lines of python codes, was
incorporated in our antibody engineering workflow. It has
shown success in designing MAb engineering panels in
multiple biologics programs. Further development areas
include enriching the training data for human MAb pre-
diction (improve accuracy based on statistical significance),
developing predictive models for other species’ antibodies
e.g. camelid heavy chain only antibody, and seeking
applications for multi-specific antibody engineering.

METHODS

Sequence-based consensus scoring

MAb sequences from IMGT were used as the starting
point. We specifically focused on the variable domains of
human MAbs. From IMGT (as of year 2016), we obtained
35 614 human VH, 7 674 human VK, and 5 430 human VL
sequences. The human germline sequence definition was
taken from the V BASE, https://www2.mrc-lmb.cam.ac.uk/
vbase/. All antibody sequences from IMGT were assigned
to a germline type and germline family based on sequence
alignment to the germline sequences. To have a cleaner
germline annotation, for each sequence being used for
consensus calculation, we set up 80% sequence similarity
threshold as a filter to construct the consensus sequence
data base. The filtering process yielded 25 220 VH, 7 190
VK, and 4 789 VL sequences. Table 1 shows the number of
sequences in each germline family.

http://www.imgt.org/
https://www2.mrc-lmb.cam.ac.uk/vbase/
https://www2.mrc-lmb.cam.ac.uk/vbase/
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Table 1. Number of sequences in each germline family

Germline family No. of sequences Germline family No. of sequences Germline family No. of sequences

VH1 3 111 VK1 3 412 VL1 1 307
VH2 619 VK2 1 049 VL2 1 039
VH3 15 610 VK3 2 143 VL3 1 465
VH4 3 490 VK4 516 VL4 154
VH5 1 005 VK5 29 VL5 110
VH6 1 231 VK6 41 VL6 300
VH7 154 VL7 132

VL8 206
VL9 38
VL10 38

The consensus sequences were calculated based on three
different levels: 1, all sequences in VH, VK, or VL sequence
database; 2, all sequences at the germline family level; 3, all
sequences at the germline level. To calculate the consensus
sequence, the sequences were annotated and aligned follow-
ing an Amgen in-house numbering scheme, which is similar
to the AHo numbering scheme. At each residue position,
the amino acid with the highest frequency was defined as
consensus amino acid.

The idea behind the consensus sequence-based protein
stability engineering method is that “a conserved residue
is more likely to be stabilizing than a random mutation
at that same position”. For a given amino acid in the
query sequence (the sequence that needs to be evaluated for
thermostability), we defined the consensus score as a free
energy change (��GAA) by using Boltzmann distribution
theory:

��GAA = −RTLn
(
fqueryAA/fconsensusAA

)
(1)

Where R is the Boltzmann constant, T is the temperature
(298 K), fqueryAA is the frequency of the query amino acid at
a given position, fconsensusAA is the frequency of the consen-
sus amino acid at that same position. ��GAA measures the
effect of a single residue change to consensus amino acid
on the stability of the antibody molecule and, a positive
��GAA reflects increased stability. The consensus score for
the whole antibody sequence (��GSeq) is the sum of the
consensus score of each individual amino acid’s consensus
score as shown in equation (2). ��GSeq measures the over-
all effect of all the single amino acid changes to consensus
residues on the stability of the MAb and the higher the
��GSeq is, the more stable the MAb will be.

��GSeq =
∑

��GAA (2)

Applying the consensus analysis can be based on the
whole IMGT database level, germline family level or
germline level, ranging from high level to low level sequence
coverage. The higher the level (e.g. at IMGT database

level), the more sequences are available in the gene pool,
and thus the more statistically meaningful results can be
obtained. On the other hand, the higher the level, the
sequences used to calculate consensus are less specific to
the query sequence (lower sequence homology). Thus, the
results may not be accurate. The scope of the analysis
can be based on Complementarity-Determining Region
(CDR), Framework Region (FR), whole Fv, or the whole
Fab region. Note that engineering CDR region residues
has a high risk of affecting Mabs’ binding affinity. The
consensus method works best for the FR region as FR
region residues provide structural stability to the MAb. For
the purpose of this study, we focused on the germline family
level (the sequence homology and statistical confidence are
appropriate at this level), FR region (providing structural
stability), and single point mutations (providing cleaner
validation). Hence, in our Results section, the ��GSeq
(ddG) values reflect the effect of mutating one position in
the query sequence to a consensus or germline residue.

Metric to select the best ddG cutoff

ddG cutoff serves as our confidence threshold for predicted
thermostabilizing mutations. If for a query sequence, the
ddG score is higher than the ddG cutoff value, we sug-
gest the protein engineers with a high confidence that the
mutation to consensus residue can be thermostabilizing and
can help to improve the melting temperature. The predic-
tions from the consensus sequence method can fall under
four categories as shown in Fig. 1. True Positives (TP):
mutations being predicted to have ddG values greater than
or equal to the ddG cutoff. And experimentally observed
melting temperature (Tm) difference between the mutant
and the query sequence is greater than or equal to the
dTm cutoff. FPs: mutations being predicted to have ddG
values greater than or equal to the ddG cutoff. But experi-
mentally observed melting temperature difference between
the mutant and the query sequence is less than the dTm
cutoff. True Negatives (TNs): mutations being predicted
to have ddG values less than the ddG cutoff. And experi-
mentally observed melting temperature difference between
the mutant and the query sequence is lower than the dTm
cutoff. False Negatives (FN): mutations being predicted to
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Table 2. Different metrics being explored for selecting the best ddG cutoff.

Metric Formulae Criteria for choosing ddG cutoff note

Precision TP/(TP + FP) Not defined
Metric 1 TP∗(TN-FP)/(FP∗TN) >0
Metric 2 TP∗(TN-FP) ≥ 0
Primary metric (P Metric) TP + TP∗(TN-FP) >0
Fine-tuning metric (F Metric) (TP-TN)/(TN-FP) ≥ 0

Note: Criteria are based on navigation from lowest to highest ddG cutoff values

Figure 1. The x–y plot is showing the four categories into which the
predictions from the consensus sequence method can fall. The x-axis
represents the ddG values predicted by consensus sequence method and
y-axis shows the experimentally observed melting temperature difference
between the mutant and reference molecule. The red dotted lines represent
the cutoff values for ddG and dTm.

have ddG values less than the ddG cutoff. But experimen-
tally observed melting temperature difference between the
mutant and the query sequence is greater than or equal to
the dTm cutoff.

The dTm cutoff is dependent on the experimental error in
Tm measurements. The idea behind the metric to select the
best ddG cutoff is based on maximizing TP, minimizing FP
and at the same time maximizing value for true predictions
(TP + TN). We care about TP the most, and then reducing
FP and then maximizing our total true predictions. We
devised and explored four different metrics along with
precision as shown in Table 2.

Finally, we decided on using the two metrics, the primary
metric (P metric) and the fine-tuned metric (F metric)
in conjunction with one another. The first step was to
titrate the ddG cutoff values and sort them, we used a
step size of 0.1. The criteria for choosing the best ddG
cutoff were defined as we navigate from the lowest to the
highest ddG cutoff. The selection of the best ddG cutoff
was defined with respect to the ddG value at which P metric
> 0 (ddGcutoff(i)) and if the value of F metric was < 0 at
ddGcutoff(i), then we would pick a ddG cutoff one before
the one which had P metric > 0 i.e. ddGcutoff(i-1). Otherwise,
if F metric was positive at ddGcutoff(i), we would pick that
as the best ddG cutoff. This procedure is described in the
following pseudocode. The key point is to traverse possible
ddG cutoff values from the lowest to the highest, and finer

titrations of ddG cutoff gave us a better cutoff value.

ddGcutoff ∈ {0, 0.1, . . . .., max(ddG)}

if P metric > 0 at ddGcutoff (i)

if F metric < 0 at ddGcutoff (i) then select ddGcutoff (i−1)

elif F metric ≥ 0 at ddGcutoff (i)then select ddGcutoff (i)

Consensus structure-based MAb residue-pair covariance
analysis

We obtained 841 crystal structures of human antibody vari-
able domain from IMGT 3D structure database. Pairwise
residue distance matrix was calculated for each of the Fv
structure using only FR residues. We used the following
two criteria to flag a pair of residues as close-by: 1. only
calculated amino acid residue pairs which are separated by
more than two amino acids (to avoid analyzing adjacent
pairs and loop tip at the beta-hairpin); 2. picked minimum
distance between all side chain heavy atoms of the amino
acid pairs, used 4 Å distance as a cutoff. Residue pairs
which had minimum distance between any side chain heavy
atom <4 Å were flagged as close-by residue pairs. The
residue numbers on the variable domain were uniform for
all 841 MAbs based on the Amgen in-house numbering
system. After all close-by residue pairs were calculated for
all 841 antibody structures, we used 100 occurrences as
a cutoff to mark consensus close-by residue pairs. This
yielded 257 close-by residue pairs and we used these for
assessing the residue synergy in the query antibody.

Close-by residue pairs are preferred if the two residues
had opposite charge leading to columbic interaction, or
both having high hydrophobicity for favored van der Waals
interactions (packing), or both were aromatic for favored
stacking interaction. To quantify the favorable interactions,
we developed a scoring system:

Charge score = charge score (residue 1) ∗
charge score (residue 2) (3)

Hydrophobicity score = −1 ∗ hydrophobicity score

(residue 1) ∗ hydrophobicity score(residue2) (4)
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Aromaticity score = −1 ∗ aromaticity score

(residue 1) ∗ aromaticity score(residue2) (5)

Total score = charge score + hydrophobicity score

+ aromaticity score (6)

dScore = total score (query sequence)

− total score (reference sequence) (7)

The charge and hydrophobicity scores were defined by
amino acid charge and hydrophobicity in literature [22,
23]. The aromaticity score was based on Gasser [23] and
defined with our empirical adjustment as following (tryp-
tophan: 1, phenylalanine and tyrosine: 0.8, histidine: 0.3,
arginine: 0.3, and the rest of amino acids were 0). The
reference sequence could either be the germline sequence
or the consensus sequence. Similar to energy, the lower
the dScore was, the more favorable the residue pair was,
thus the more favorable the antibody which contains such
residue pair was. One residue could be presented in multiple
close-by residue pairs. For protein engineering purpose,
each residue’s impact on protein stability is summed up
by their contribution to every close-by residue pairs which
contained it with adjustment of a confidence level:

Sum dScore (residue A) =
n∑

i=residue pair i

dScore

(residue A)i ∗ confidencei (8)

Confidence was defined as the ratio of number of times
a pair of residues is present as close-by residue pairs to the
total 841 structures:

confidence =
Number of structures which include a closeby residue pair

Number of total structures (841)
(9)

The final output of the MAb residual covariance analysis
was the sum dScore (equation (8)). Compared with the
reference MAb, if this score was a positive number, it
meant that the residue was less stable than the residue in
the reference MAb. A mutation to consensus residue was
suggested to stabilize the query MAb.

This method of combining the consensus sequence
method with consensus structure-based MAb residue-
pair covariance analysis was implemented in Python
programming language. A graphical user interface was
also developed with Pipeline Pilot for deployment. It
required input Fv domain sequence of the query MAbs in

fasta format (annotated and aligned following the Amgen
numbering scheme). The workflow of the in-house Pipeline
Pilot tool included two steps, the first step was to calculate
the consensus sequence and the ddG score (equation (1))
for all residues in the query sequence in the FR region,
and the second step was to perform the structural filtering.
The tool output a csv file with thermostabilizing mutation
suggestions for each query MAb including the ddG score.
The users had an optional flag to turn off structural
filtering i.e. retrieve mutation suggestions based only on
the consensus sequence method. By default, structural
filtering was turned on and the output only included
thermostabilizing mutations which had passed structural
filtering.

RESULTS

Evaluate the consensus sequence method with published data

To evaluate the consensus sequence prediction method,
we used a stability engineering study of the single chain
fragment variable domain (scFv) of an antibody published
by Monsellier et al. [24] In that study the authors used
consensus method to predict point mutations of scFv to
improve thermostability. Experimental free energy change
(ddG) was reported to assess the computational method.
Table 3 shows the experimental ddG, calculated ddG from
that paper and from our method for the mutants. Our
calculated ddG values were similar to those reported in
the paper and both calculated ddG values per variant were
in the same positive direction as in the experimental ddG,
which indicated good prediction outcome. Through this
comparison, we validated the consensus sequence method
that we implemented.

Select the optimal ddG cutoff for thermostability prediction
and MAb engineering

We noted that the consensus sequence stability method did
not have high accuracy to confidently predict the actual
melting temperature (Tm) and experimental ddG directly.
Protein engineers desired to have a high throughput pre-
diction method to predict variants’ stability and propose
what mutations they can make to improve stability. So,
we further developed this method to be a classification
tool to meet the protein engineers’ need. For classification,
we need to determine a ddG cutoff value to confidently
predict the amino acid stability at a given position and
identify the amino acid position which can be engineered to
improve stability. We focused on the FR of the MAb Fv and
analyzed only single point mutations for cleaner validation.

We used a set of 234 internal MAb thermostability data
in Tm representing 201 single point mutation pairs to deter-
mine the optimal ddG cutoff. The dTm cutoff used in our
work was 0.5◦C, it was chosen based on the distribution
of dTm of our experimental data as shown in Fig. 2 and
suggestion from the analytical scientist who performed the
measurements (according to the experimental error bar in
Tm measurements by Differential Scanning Fluorimetry).
We devised four metrics namely Metric 1, Metric 2, P met-
ric, and F metric as shown in Table 2. We compared the TP,
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Table 3. Experimental and calculated ddG (in kcal/mol) to validate our consensus sequence method

Variants Mutations Experimental ddG Calculated ddG from
Monsellier et al.

Calculated ddG from our
work

L1 L-Q40P,L-K42Q 0.6 3.1 4.2
L2 L-Q45K 4.1 1.3 0.9
L3 L-K74T 2.9 0.7 1.1
L4 L-N76S 0.6 1.5 1.7
L5 L-G84A, L-S85T 2.5 2.3 3.5
H1 H-S15G 0.1 1 0.7
H2 H-S61E, H-A62K,

H-L63F
1.6 2.1 2.5

H3 H-H83T, H-T84S,
H-D85E

0.9 5.9 6.7

Figure 2. The frequency distribution of dTm for 201 single point mutation
pairs in our dataset.

FP, TN, and FN statistics for different ddG cutoff values
using these four metrics and the precision as shown in Table
S1. The criteria for selecting the optimal ddG cutoff using
each of these five metrics are shown in Table 2. For the
precision, we were not able to come up with any definite
criteria based on which we could choose the optimal ddG
cutoff.

If we navigated from the lowest to the highest ddG cutoff
values at the fixed dTm cutoff of 0.5◦C, we observed that
TP and FP would reduce, but TN and FN would increase
as shown in Table S1. Since we cared the most about
maximizing TP, we started the navigation from the lowest
ddG cutoff as TP would be the highest. The second goal
was to minimize FP as much as possible without sacrificing
many TP. Based on this rationale, we chose P metric and
F metric together as defined in the Methods section. For
further information, refer to the analysis shown in Table
S1 and Fig. S1. Based on our P metric and F metric, we

selected 1.7 kcal/mol as the optimal ddG cutoff for the con-
sensus sequence method. The selected optimal ddG cutoff
depended on the data set and prediction confidence goal.
So, in another use case, this value can be different from the
value we obtained. In the next section, we demonstrated
that this cutoff value could be further optimized based on
another use case (adding consensus structural filter). In
future, with more data, this cutoff can be further optimized.

Consensus structure-based MAb residue-pair analysis can
significantly decrease the false positive prediction rate

Human MAb has a conserved structural fold. Described by
IMGT’s Colliers de Perles illustration, the variable domain
of heavy and light chains each has nine anti-parallel beta-
sheets, which form the FR of the variable domain. Three
out of four loops in connecting the beta-sheets build up
the CDR region. The consensus based on a set of MAb
crystal structures can provide a general representation of
their overall structural features. This is the rationale behind
the consensus structure-based MAb residue-pair method.
This method is high throughput, but is not highly accurate
to predict the stability directly. So, we only used this method
as a filter on top of the consensus sequence method. We
demonstrated that this structural method can significantly
decrease the FP of the consensus sequence method predic-
tion.

We used the same set of 234 MAb thermostability data
in Tm representing 201 single point mutation pairs for
validating the consensus structure-based MAb residue pair
method. About 154 single point mutation pairs out of
201 passed the structural filter i.e. they had a positive
sum dScore as described in equation (8). For practical
application, we optimized the ddG cutoff again using these
154 data points as the protein engineers would only be
looking at the mutations which passed the structural filter.
By applying P metric and F metric on these 154 single
point mutation pairs at the fixed dTm cutoff of 0.5◦C,
we obtained the optimal ddG cutoff of 1.3 kcal/mol (for
further details, refer to the Table S2 and Fig. S2). For our
further analysis, we used this practical optimal ddG cutoff
of 1.3 kcal/mol.

https://academic.oup.com/abt/article-lookup/doi/10.1093/abt/tbac017#supplementary-data
https://academic.oup.com/abt/article-lookup/doi/10.1093/abt/tbac017#supplementary-data
https://academic.oup.com/abt/article-lookup/doi/10.1093/abt/tbac017#supplementary-data
https://academic.oup.com/abt/article-lookup/doi/10.1093/abt/tbac017#supplementary-data
https://academic.oup.com/abt/article-lookup/doi/10.1093/abt/tbac017#supplementary-data
https://academic.oup.com/abt/article-lookup/doi/10.1093/abt/tbac017#supplementary-data


208 Antibody Therapeutics, 2022

Table 4. Performance comparison between without and with structural filtering.

Statistics Without Structural Filtering With Structural Filtering

TP 60 51
FP 67 38
TN 47 38
FN 27 27
Precision 0.47 0.57

Note: Precision measures the number of correct positive predictions made, it is defined as TP/(TP + FP). Maximum possible value for precision can be 1

Figure 3. Scatter plot (x–y plot) of dTm VS ddG. X -axis represents the
ddG values computed from the consensus sequence method and y-axis
represents the dTm values (difference of experimental Tm between the
parent and the mutant molecules). The single point mutation pairs are
colored based on whether they pass the structural filter or not. The single
point mutation pairs which pass the structural filter are classified into TP,
FP, TN, and FN based on the dTm cutoff of 0.5◦C and the ddG cutoff of
1.3 kcal/mol. The red dotted lines represent the cutoff values for ddG and
dTm.

Figure 3 is a scatter plot of dTm V. S. ddG for all 201
single point mutation pairs. dTm describes the difference
of experimental Tm between the mutant and the parental
molecules. ddG is predicted from the consensus sequence
method. We also computed confusion matrix and preci-
sion comparing the performance between without and with
structural filtering (Table 4). Since we cared most about
maximizing TP and minimizing FP, we would aim to have
as high precision as possible. We could observe that struc-
tural filtering lead to precision improvement. To visualize
the effect of consensus structure-based MAb residue-pair
method in reducing FP, we plotted a bar plot as shown in
Fig. 4. We could see structural filtering helped in signifi-
cantly reducing the FP without sacrificing much of the TP.
In addition, we observed a consistent effect of structural
filtering on reducing number of FP at different ddG cutoffs.

After examining the FP cases, we found out that one
primary reason to cause FP without structural filtering was
due to conflicts in the local structural environment. For
example, we observed A to R or S to R mutations which
were favored by sequence consensus (R was the consensus
amino acid at this position). However, the location of this
residue was buried inside the protein and the large side

Figure 4. Bar plot showing the effect of structural filtering on reducing
FP. TP and FP statistics in this plot are based on the optimal ddG cutoff
of 1.3 kcal/mol and dTm cutoff of 0.5◦C.

chain of R cannot fit in its location. In another exam-
ple, we observed V to G mutation which was favored by
sequence consensus. But the V to G mutation created a
void in the core of the Fv structure and thus destabilized
the protein. In a similar example, an F to S mutation was
favored by sequence consensus, but such mutation removed
a key structurally favored hydrophobic stacking interac-
tion. With those examples, we demonstrated that structure
information could significantly improve the thermostabil-
ity prediction accuracy.

One feature of our method was to implement structure
information without spending extra computing resource to
model the query Mabs’ structure. The structure informa-
tion was encoded in the method via pretraining by using
a statistically significant amount of Mab crystal structures.
As the available MAbs experimental structures grow, the
consensus structure-based MAb close-by residue pairs can
be retrained with higher confidence. The scoring system can
be further improved with consideration of more detailed
molecular interaction. After reach a high level of accuracy,
we can use the scoring system to rank molecules’ stability.
The method can help to flag any residue pairs in the query
molecule that may be liable for stability. This is equivalent
to building homology models and manually examining the
structures. But our method does not require homology
modeling and the manual modeling efforts, so it is more
systematic and higher throughput than the traditional ther-
mostability engineering methods. It is suitable to deal with
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a large number of Mab sequences at industry scale (see
Discussion for more details).

DISCUSSION

Fast stability engineering method in comparison to
homology modeling approach

One key advantage of our consensus sequence method in
combination with consensus structure-based MAb residue
pair covariance analysis is the fast calculation speed and
a capability to process a large amount of MAb sequences
in high throughput. On average, it takes 19.5 s per MAb
molecule. In a typical MAb engineering workflow, a pro-
tein engineer may choose homology modeling approach
to obtain the same information which can be obtained by
residue-pair covariance analysis. However, it usually takes
3–30 min to build a reasonable homology model per MAb
molecule. And manually examining the three-dimensional
models is even more time consuming. So, the homology
modeling approach is not suitable for a large-scale MAb
stability engineering task. Our method was pretrained by
a set of nearly 1 000 high resolution crystal structure of
MAbs. It took advantage of conserved structural fold of
MAbs to yield the consensus close-by residue pairs. This
close-by residue pair information was then used to evaluate
the fitness of stability of query MAb based on its sequence.
So, our method leverages pretrained structural information
to process only sequence data to achieve the goal of fast
calculation speed.

Factors affecting prediction accuracy

The accuracy of consensus sequence prediction and design
depends on the following four factors: 1. The gene pool,
i.e. the sequence database that is used for multiple sequence
alignment (MSA). The larger and more comprehensive
the gene pool is, the better chance that the consensus
residue can be truly representative. 2. Sequence homology;
3. Sequence count in MSA. 2 and 3 are correlated. The
higher the sequence homology is e.g. use germline subset in
our application, the fewer the sequence counts can be used
in MSA. Therefore, the sequences being selected for MSA
are more similar to the query sequence and the consensus
sequence being yielded from MSA can be more accurate.
On the other hand, the fewer number of the sequences in the
MSA are, the statistical significance would be lower. So, fac-
tors 2 and 3 are a tradeoff. The default option for selecting
sequences for MSA is germline family, which is a balance
between all sequences in IMGT and very few sequences in a
given germline. 4. The bias from sequence alignment algo-
rithm being used for MSA. For MAb application, several
well-developed numbering schemes e.g. IMGT, Chothia,
Kabat, and AHo are available. Those numbering systems
generate MSA by using different rules.

Species-specific application

To make the method more accurate, we developed it with
certain species consideration. We deployed the method for
human MAbs at first. This is our most common use case.

All consensus and germline sequences are specific to human
MAbs. The consensus method can be further developed for
other species given the sequence data are available. Mouse
MAb development is the second common use case. We
obtained mouse MAb sequences and germline informa-
tion from IMGT and further developed the method for
predicting mouse antibody thermostability.

Non-antibody applications

The consensus sequence-based stability prediction and
design originated from non-antibody applications. The
foundation of this method is MSA of a set of sequences
with certain level of homology cutoff. In the case of
antibody, since the homology of sequences is already very
high within the same species, it is possible to include all
sequences from repertoire like IMGT. For higher homology
cutoff, germline family and germline subset selections
are available. For non-antibody applications, selecting the
proper homology cutoff is critical to ensure the validity of
MSA and for accurately identifying the consensus residues.

CONCLUSION

The goal of our work was to develop a method to help mit-
igate the liability of thermostability associated with MAbs.
We combined consensus sequence method with consensus
structure-based MAb residue pair covariance analysis to
predict thermostabilizing mutations of the query MAb. The
theoretical ground of our method is based on the idea that
conserved structural fold of MAbs yield consensus close-
by residue pairs. This residue pair information is applied to
significantly reduce the FP by almost half compared with
the consensus sequence-based method alone. Major advan-
tages of our data science-based method are improved accu-
racy compared with the consensus sequence method alone,
faster computation, as well as high-throughput capabil-
ity compared with homology modeling-based approaches.
Future areas of development include enriching the train-
ing data for human MAb prediction which can further
improve accuracy due to the higher statistical significance,
developing predictive models for other species’ antibod-
ies e.g. camelid heavy chain only antibody, and extending
applicability to multi-specific antibody engineering.
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