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Abstract 

Recombinant technologies have made possible the production of a broad catalogue of proteins of interest, including 
those used for animal production. The most widely studied proteins for the animal sector are those with an important 
role in reproduction, feed efficiency, and health. Nowadays, mammalian cells and fungi are the preferred choice for 
recombinant production of hormones for reproductive purposes and fibrolytic enzymes to enhance animal perfor‑
mance, respectively. However, the development of low-cost products is a priority, particularly in livestock. The study 
of cell factories such as yeast and bacteria has notably increased in the last decades to make the new developed 
reproductive hormones and fibrolytic enzymes a real alternative to the marketed ones. Important efforts have also 
been invested to developing new recombinant strategies for prevention and therapy, including passive immunization 
and modulation of the immune system. This offers the possibility to reduce the use of antibiotics by controlling physi‑
ological processes and improve the efficacy of preventing infections. Thus, nowadays different recombinant fibrolytic 
enzymes, hormones, and therapeutic molecules with optimized properties have been successfully produced through 
cost-effective processes using microbial cell factories. However, despite the important achievements for reducing 
protein production expenses, alternative strategies to further reduce these costs are still required. In this context, it 
is necessary to make a giant leap towards the use of novel strategies, such as nanotechnology, that combined with 
recombinant technology would make recombinant molecules affordable for animal industry.
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Background
Unquestionably, the production of recombinant pro-
teins has become a reality thanks to the discovery of 
the recombinant DNA technology in the seventies. The 
implementation of this technology has made the produc-
tion of most protein of interest recombinantly possible. 
Before this, proteins of interest were extracted from their 
natural sources through expensive processes and poor 
yields [1]. However, nowadays, scientists can routinely 
isolate or synthesize genes and clone them in a suitable 
expression system for production purposes at industrial 
scale. Although there is a wide range of cell factories that 
are currently used for recombinant protein production 

purposes, including bacteria, yeast, fungi, algae, insect 
cells, and mammalian cells [2], the bacterium Escherichia 
coli has become the workhorse in this field. This is not 
only due to the low production costs associated to this 
prokaryotic expression system, but also to the number of 
available tools that makes this process easy to implement. 
The first functional recombinant protein (somatostatin) 
was produced in 1977 using E. coli as cell host [3] and, 
just some years later, Genentech Inc. launched a recom-
binant human insulin also produced in E. coli.

However, despite the undeniable advances made in 
the recombinant protein production field, production 
processes, and more importantly downstream prod-
uct processing, have important associated costs. This is 
particularly limiting for the production of recombinant 
proteins for animal science, where the development of 
low-cost products and strategies are a priority.
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Despite the existence of some limitations, the use 
of recombinant proteins in animal science has clearly 
increased in the last decades. Looking at the overall bib-
liography where recombinant proteins are being used, 
it comes out that one of the most studied field is the 
endocrine system [4–8]. Indeed, there are already some 
commercial recombinant hormones available and many 
groups are working on their implementation to improve 
reproduction of livestock. Many research studies also 
focus on less-demanded proteins that need specific cus-
tomization of production procedures according to par-
ticular features. Recombinant engineered proteins are 
being widely explored for the design of both prophylac-
tic treatments and therapeutic strategies. Also, several 
enzymes are being recombinantly produced with the aim 
of improving efficiency of feed conversion into edible 
products.

This article offers an overview of recombinant proteins 
produced in microbial cell factories, focusing in three 
fundamental pillars for animal production: (1) reproduc-
tion, (2) feed efficiency, and (3) health. This review seeks 
not only to draw a map of the current situation, but also 
to highlight the relevance that recombinant technologies 
could have in a near future for the animal sector. How-
ever, all the recombinant products involved in vaccina-
tion procedures have been excluded from this revision 
because they have been thoroughly covered in other arti-
cles and reviews [9–11].

Recombinant hormones in reproduction
Animal reproduction is one of the areas where produc-
tion of recombinant protein is broadly used [4, 12, 13]. 
Reproductive hormones have a critical role in the regu-
lation of the male reproductive function, female repro-
ductive cycle, and the maintenance of pregnancy in the 
dams. In animal production, these hormones are used 
for two opposite purposes: enhancing female fertility by 
regulating ovulation and/or facilitating embryo implan-
tation, and on the other hand improving meat quality by 
sterilized males.

Follicle stimulating hormone (FSH) and luteinizing 
hormone (LH) are gonadotropins secreted by the ante-
rior pituitary gland when induced by the gonadotropin 
releasing hormone (GnRH), secreted by the hypothala-
mus [14–16]. These glycoproteins, together with the 
chorionic gonadotropin (CG) secreted by the placenta of 
primates and equids, are used in animal breeding man-
agement for superovulation purposes in females, and to 
stimulate testosterone production and spermatogenesis 
in males. On the other hand, inhibin, which is secreted 
by both male and female gonads, has a great importance 
because it exerts a negative feedback to the anterior 

pituitary lowering the secretion of gonadotropin and thus 
their effects.

At present, the most commonly used hormones for 
reproductive purposes are purified from animal-derived 
material such as pituitaries. Despite being a widespread 
practice, it has significant associated problems such as: 
(i) batch-to-batch inconsistencies leading to variations 
in the superovulatory responses between animals [17, 
18], (ii) purity problems because of the presence of other 
hormones contaminating the sample [16], and (iii) the 
possible contamination with disease-transmitting agents 
(for a more detailed review see [13]). All these require 
the development and application of cumbersome puri-
fication protocols to concentrate and purify the protein 
to guarantee the quality of the final product. In this con-
text, production of recombinant hormones appears as an 
attractive solution to overcome these drawbacks, having 
reproducible superovulation effects [12] by using con-
siderably smaller doses than those utilized with animal-
derived hormones [19].

Gonadotropins are structured in non-covalent het-
erodimers, composed of a common α subunit and a 
hormone-specific β subunit. To obtain a functional 
hormone, both subunits must be assembled together 
[14, 20] posing an important bottleneck for its recom-
binant production. However, and because the interac-
tion between subunits is not an absolute requirement 
for receptor activation ([21] and references therein), 
functional single-chain gonadotropin analogs have been 
successfully developed recombinantly by merging their 
α and β subunit genes in a single sequence [21–24]. 
Nevertheless, and even if the steroidogenic response is 
achieved, the structural differences in the hormone ana-
logs commonly imply differences in steroid secreted lev-
els [21]. Furthermore, the 2 subunits of gonadotropins 
are glycosylated after translation generating pools of dif-
ferent glycoforms (gonadotropin varieties) with different 
half-lives and activity efficiencies [25, 26]. Thus, since 
reproductive hormones require a N-glycosylation [20], 
recombinant production has been carried out mainly in 
mammalian or insect cells [13, 27]. However, the pro-
duction of proteins in large amounts in these eukary-
otic systems is expensive, difficult, and time-consuming. 
Furthermore, protein hormones are usually produced at 
low yields. Alternatively, yeast (eukaryotic microorgan-
isms), and in some cases E. coli, are being explored as a 
cost-effective and easy-to-work systems. Pichia pastoris 
(reclassified as Komagataella pastoris) is the most com-
monly used yeast in this context, because it efficiently 
secretes the protein produced and adds N-glycosyla-
tions. Even though P. pastoris can glycosylate proteins, it 
should be stressed that only one specific strain described 
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by Jacobs et  al. is able to introduce a mammalian-type 
N-glycosylation [28].

Follicle stimulating hormone (FSH)
FSH acts in ovaries in conjugation with LH. They are 
responsible of stimulating the granulose cells and pro-
moting follicle growth preceding the ovulation stage. 
Also, both gonadotropins stimulate the dominant follicle 
to ovulate. In males, FSH is responsible for stimulating 
the Sertoli cells in testes for spermatogenesis, together 
with testosterone secreted by the action of LH in Leydig 
cells.

Administering exogenous FSH has been a typical prac-
tice for promoting superovulation and spermatogenesis 
in different animal species, and due to the disadvantages 
associated with pituitary-extracted hormones, recom-
binant hormone formulations started to rise. There are 
commercial forms of FSH derived from pituitary glands 
such as Folltropin-V (Bioniche Animal Health-now 
Vetoquinol-) and Pluset (Calier), which also contain LH 
(Table  1). The commercially-available recombinant FSH 
used for animal follicular development and superovula-
tion has been mostly produced by Chinese hamster ovary 
(CHO) cells. Some examples are Follistim (follitropin 
beta; Merck Serono (USA) -now Merck-), Puregon (fol-
litropin beta; Organon B.V. (Europe) -now merged with 
MSD-) and Gonal-F (follitropin alpha; Merck). Also, 
AspenBio Pharma (named Venaxis, Inc. since 2012) tooks 

a relevant role as a supplier of bovine and equine single-
chain and long-acting FSH analogs (BoviPureFSH™ and 
EquiPureFSH™) (Table 1). In some cases, human embry-
onic kidney (HEK) cells have been chosen as a cell factory 
to produce bovine FSH (Nanocore Biotecnologia SA) 
used to supplement culture medium for in  vitro follicle 
development in mares [29], dogs [30], goats, and sheep 
[31] (Table 1). The equine reproduction research indus-
try has clearly been a user and promoter of this drug to 
stimulate follicular growth [6, 19, 32, 33] and ovulation 
[34] in mares. Even so, although the human version of 
this long-acting and single-chain FSH, Elonva (Corifolli-
tropin α; MSD) was already available in 1992 [35–38], the 
bovine and equine analogs did not reach the market until 
2008 [6].

Although all commercial recombinant FSH are pro-
duced in mammalian cell lines and research is still being 
conducted in this area [39, 40], yeasts, which are relatively 
inexpensive and effective expression systems, are gaining 
importance in this field of study. The most used yeast to 
produce FSH is K. pastoris. Bovine, porcine, ovine, and 
primate recombinant FSH have been produced with K. 
pastoris in studies carried out to improve the yields with 
this affordable cell factory [41–44]. Although in these 
studies the activity was only tested in vitro, results indi-
cated that proteins produced were functional and with a 
great potential to be applied in vivo. K. pastoris was also 
explored for the production of in vitro tested single-chain 

Table 1  Marketed follicle stimulating hormone (FSH), Luteinizing hormone (LH) and chorionic gonadotropin (CG) for ani-
mal reproduction

Name Cell factory/origin Company

FSH

 Follistim® CHO cells Merck Serono (USA)-now Merck-

 Puregon® CHO cells Organon B.V. (Europe) -now merged with MSD-

 Gonal-F® CHO cells Merck

 BoviPureFSH™ CHO cells AspenBio Pharma (Venaxis, Inc. since 2012)

 EquiPureFSH™ CHO cells AspenBio Pharma (Venaxis, Inc. since 2012)

 FSH HEK cells Nanocore Biotecnologia SA

 Folltropin-V® Pituitary gland Bioniche Animal Health-now Vetoquinol-

 Pluset® Pituitary gland Calier

LH

 BoviPureLH™ CHO cells AspenBio Pharma (Venaxis, Inc. since 2012)

 EquiPureLH™ CHO cells AspenBio Pharma (Venaxis, Inc. since 2012)

 Luveris® CHO cells Merck Serono (USA) -now Merck-

 Pluset® Pituitary gland Calier

CG

 Pregnyl Urine Organon B.V. (Europe) -now merged with MSD-

 Folligon® Serum MSD

 Novormon® 5000 Chorion Syntex

 PG600® Chorion and serum MSD
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ovine FSH analogs [45], as well as for the production of 
fish FSH that showed the capacity to stimulate steroido-
genesis and ovarian development in vivo [46–48]. More-
over, eel FSH produced in K. pastoris has been proven 
in  vitro, fostering steroidogenesis in immature eel testis 
tissue [49] and spermatogenesis [50] (for more informa-
tion about recombinant fish gonadotropin development, 
see [27]). Also, the yeast Hansenula polymorpha (Pichia 
angusta) has been used to express bovine FSH, which 
has been successfully tested in vivo in mice for follicular 
growth purposes [51].

During the last decades, different strategies to increase 
FSH production in recombinant yeast have been 
evaluated including the co-expression of a disulfide 
isomerase [52], the co-expression of Saccharomyces cer-
evisiae-derived calnexin [51] or codon usage optimiza-
tion [51, 52]. Medium optimization has also been deeply 
studied to optimize cell densities and production yields 
[53]. Thus far, although the yields achieved using both K. 
pastoris and P. angusta have notably been improved, they 
are still insufficient to be used for commercial purposes 
and further research is necessary in this context. Inter-
estingly, a non-glycosylated form of recombinant bovine 
FSH produced in a bacterial expression system (E. coli) 
showed to be able to stimulate ovarian development in 
rats [54], emerging as a promising alternative to be fur-
ther explored.

Luteinizing hormone (LH) and chorionic gonadotropin (CG)
In addition to stimulating ovulation in females, along 
with FSH, LH stimulates the following development of 
the corpus luteum. In males, LH is responsible for testos-
terone secretion in the testes by the Leydig cells, which 
in turn stimulate spermatogenesis in Sertoli cells. On 
the other hand, CG supports embryo implantation and 
pregnancy [20, 55]. In horses, both LH and CGβ subu-
nit derive from the same gene, whereas in primates the 
two gonadotropins are derived from different genes 
although they share 80% of their amino acid sequence 
[55]. CGβ and LHβ subunits differ only in the length of 
their carboxyl terminal regions. The CG has a longer 
region because of a peptide called carboxyl terminal 
peptide (CTP) that provides the CG with more glyco-
sylation places and prolong CG half-life by reducing its 
renal clearance [56]. These extra glycosylation sites have 
been fused to FSH [6, 19, 32–34] and LH [21, 24, 57–59], 
which do not naturally contain this sequence, to achieve 
long-acting hormones. This allowed the reduction in the 
number of injections for superovulation treatments [13, 
36, 40]. Interestingly, given the similarities between the 
LH and CG, both hormones bind to the LH receptor.

Recombinant LH commercially-available used for 
animal reproduction purposes is also being produced 

in CHO cells (Table 1). As an example, the single-chain 
EquiPureLH (Venaxis) was used in mares in combination 
with EquiPureFSH for superovulation treatment [32], 
or in combination with a pituitary FSH (eFSH; Bioniche 
Animal Health) to study their effect in follicle and oocyte 
development [60]. Also, LH has been administered in 
mares as a model to treat the luteinizing unruptured fol-
licle syndrome in humans [61]. Furthermore, the human-
indicated Luveris (hLH; Merck) has been used for early 
embryonic development treatments in rabbits [62] com-
bined with Gonal-F (see the FSH section), and in mice 
[63] combined with Pregnyl (hCG; Organon) (Table 1).

Both dimer- [64, 65] and single-chain forms [21, 24, 
57–59, 66, 67] of LH and CG have been studied in CHO 
expression system. Also, human recombinant CG was 
obtained by CHO cell expression for the construction 
of a chimera hCG-boCTP used to study the potential of 
a CTP-like sequence present but not expressed in the β 
subunit of bovine (among other mammal species) LH 
[68].

Insect cells have been chosen as an alternative to the 
expensive CHO cells, for the recombinant equine LH 
and CG production [23, 69, 70] (for a review see [71]). 
Moreover, K. pastoris has been explored to produce 
recombinant human LH (hLH) and CG (hCG). Gupta 
et al. already described hCG production in 1999 [72] and 
some years later other authors successfully produced 
both hCG [73, 74] and hLH [74] in K. pastoris. Although 
the hLH expressed by K. pastoris showed to be less gly-
cosylated and to have less affinity for the receptor than 
that naturally expressed in pituitary, it was fully active 
[74]. Gonadotropins from fish have also been produced 
in K. pastoris, showing the capacity to stimulate steroi-
dogenesis in tilapia [27, 75]. E. coli-derived hCGβ was 
obtained for the first time in 1994 by Huth and cowork-
ers [76]. Briefly, the β subunit of this hormone was recov-
ered from purified and solubilized inclusion bodies (IBs), 
and refolded in vitro to conduct structural and biological 
studies. After dimerization with a urinary hCGα subu-
nit, the resulting hormone activated ovulation in vivo in 
rats although its β subunit could not be glycosylated by E. 
coli. Thus, this study showed that it is possible to produce 
biologically-active hormones in a prokaryotic organism, 
which lacks the capacity to introduce post-translational 
modifications. In this context, Mukhopadhyay et al. also 
produced hCGβ in E. coli for vaccination purposes [77]. 
This, together with the fact that other hormones, such 
as growth hormones from different origins have been 
broadly studied in this recombinant system (buffalo [78], 
caprine [78], bovine [79], ovine [80] and porcine [81]), 
showing activities equivalent to those found in natural 
hormones, suggests that E. coli has a bold potential in 
this field. Although, thus far, mammalian cells have been 
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the gonadotropin producers per excellence [13, 27], arti-
cles published show that microbes can be used as a real 
alternative for the production of biologically active CG 
and LH through economic and facile processes [36–39, 
49, 67, 70].

Inhibin
During the ovarian cycle, inhibin (which belongs to the 
TGFβ superfamily) is mainly secreted by the large devel-
oping follicles causing the atresia of the smaller ones [82, 
83]. Its secretion in response to increasing levels of FSH 
in the gonads triggers a negative feedback to the anterior 
pituitary lowering FSH circulating levels. Therefore, inhi-
bin regulates follicle development and ovulation rates in 
females, and spermatogenesis in males.

Yan et  al. have extensively reviewed inhibin effects 
(and of its neutralization) on follicle and embryo devel-
opment [84]. Superovulation treatments with exogenous 
gonadotropins result in increased numbers of develop-
ing follicles, which in turn lead to inhibin concentration 
rise in plasma [85] and a quantitatively and qualitatively 
reduced oocyte and embryo development [86]. Conse-
quently, an immunization practice against inhibin, com-
bined with a conventional superovulation protocol, has 
proven to enhance the quality of the resulting embryos 
both in  vitro and in  vivo [87–89]. This immunization 
has been achieved through the administration of exog-
enous inhibin leading to antibody production against this 
glycoprotein.

From a research perspective, recombinant inhibin or 
its α subunit used in a wide number of studies has been 
produced in bacteria, and more specifically in E. coli 
[90]. In this context, genetic engineering has been used 
to improve inhibin production in E. coli [91]. However, 
in many other cases inhibin has been produced in mam-
malian cells [16, 92]. Importantly, recombinant inhibin 
has been used as an antigen for the immunization against 
endogenous inhibin in hens [93, 94], cockerels [95], heif-
ers [87, 89, 96], water buffaloes [88], guinea pigs [97], 
goats [98], and sheep [99–102]. Only in a minority of 
cases, the recombinant inhibin α subunit used is obtained 
synthetically [103–106] or purified from follicular fluid 
[107]. Thus, the production of inhibin, also known as the 
“superovulatory vaccine”, has been extensively studied in 
recombinant bacteria. Although currently inhibin has not 
been marketed, the research done with this hormone is 
promising.

Recombinant fibrolytic enzymes
The efficiency of plant cell wall digestibility by endog-
enous enzymes in animals is low. Basically, most non-
starch polysaccharides components present in the animal 
feed are indigestible by mammalian enzymes, which 

precludes a full recovery of the nutritional value of the 
diet. Furthermore, a fraction of the digestible nutri-
ents (i.e., sugars, starch, fat, protein) becomes undigest-
ible because are wrapped by non-starch polysaccharides 
[108, 109]. Thus supplementation of diets with exoge-
nous enzymes to enhance animal performance has been 
a practice extensively used for decades to increase feed 
conversion rate (proportion of growth relative to the 
amount of feed consumed). Initially, fibrolytic enzymes 
were used essentially in non-ruminant animals (pigs and 
poultry), since it was believed that rumen proteases and 
ruminal microorganisms were able to efficiently degrade 
pectans, glucans, xylan, and cellulose. However, digest-
ibility values in ruminants range between 35 and 65%, 
being widely accepted that the addition of fibrolytic 
enzymes in ruminant diets can notably increase feed 
conversion.

Enzymes used can be obtained from organisms able to 
naturally synthesize them such as fungi or bacteria [110, 
111]. However, the obtained products contain an impor-
tant fraction of impurities, being in many cases a mixture 
containing different interfering enzymatic activities. In 
this context, recombinant technology has been playing an 
important role since different fibrolytic enzymes can be 
produced separately using both homologous and heterol-
ogous protein expression hosts [110–115]. Some of these 
enzymes (β-glucanases, xylanases, mannanases, pecti-
nases, and galactosidases) are used to specifically degrade 
feed components resistant to endogenous enzymes. 
Other enzymes, like phytases, are applied to inactivate 
antinutritional factors. Moreover, in some cases the sup-
plementation with endogenous enzymes that are not pro-
duced at sufficient levels by the animal, such as proteases, 
lipases, and amylases are also used (Table 2). In general 
terms, unlike other applications previously mentioned, 
these enzymes are partially purified and commercial-
ized as cellular extracts or culture supernatants that are 
directly used for feeding purposes, and thus commercial 
enzymes do not confer a single pure enzymatic activity 
(Table 1). However, some purification steps are required 
to eliminate any possible residues of genetically modified 
DNA and/or undesirable fermentation residues in the 
final product, but these purification processes are rela-
tively simple.

Thus, although nowadays an important number of 
enzymes are commercially available for animal nutri-
tion to improve animal productivity and the efficacy of 
utilization of natural resources, the development of opti-
mized strategies for the production of fibrolytic enzymes 
is highly desirable. In this line, an extensive array of 
microorganisms, including bacteria (E. coli, Bacillus sub-
tilis, and Bacillus licheniformis), yeast (K. pastoris), and 
fungus (Trichoderma reesei and Aspergillus niger), are 



Page 6 of 17Gifre et al. Microb Cell Fact  (2017) 16:40 

being explored for the production of enzymes with inter-
est in the feed industry. All the strategies that are being 
explored aim at designing fibrolytic enzymes that meet 
the industry requirements, which include high produc-
tion yields, low production costs, easiness to scale-up, 
high catalytic efficiency, and improved stability under 

different temperature and pH conditions. This includes 
the use of genetic and protein engineering approaches 
to produce highly-active enzymes, and variants with an 
increased resistance to temperature and proteolysis (in 
many cases derived from extremophile microorgan-
isms), ultimately resulting in a greater stability in the 

Table 2  Marketed carbohydrases

Xylanases, β-glucanases and α-amylases have one declared enzymatic activity, while in some cases some secundary activities are also present in the product

NA information not available

Name Activity Cell factory Animal Company

Xylanases

 Econase XT Xylanase Trichoderma reesei (GMO) Poultry and pigs ABVista

 Danisco xylanase Xylanase Trichoderma reesei (GMO) Poultry and pigs Danisco Animal Nutrition

 Hostazym X Xylanase Trichoderma citrinoviride (not GMO) Poultry and pigs Huvepharma

 Porzyme®9300 Xylanase Trichoderma longibrachiatum (not 
GMO)

Poultry and pigs Danisco Animal Nutrition

 Ronozyme WX Xylanase Aspergillus oryzae (GMO) Poultry and pigs DSM-Novozymes

 Belfeed B 1100 MP Xylanase Bacillus subtilis (GMO) Poultry and pigs Beldem

 Xylamax™ Xylanase NA Poultry BRI

Beta-glucanases

 Econase®GT β-Glucanase Trichoderma reesei (GMO) Poultry and pigs ABVista

 Hostazym C β-Glucanase Trichoderma citrinoviride (not GMO) Poultry and pigs Huvepharma

Amylases

 Roxazyme® 
Rumistar™

α-Amylase Bacillus licheniformis (GMO) Dairy cows DSM-Novozymes

Multienzyme

 AvemIx®XG 10 Xylanase, β-glucanase Trichoderma reseei (not GMO) Poultry and pigs Aveve Biochem

 Roxazyme® G2 Xylanase, β-glucanase Trichoderma reseei (not GMO) Poultry and pigs DSM-Novozymes

 Axtra® XB Xylanase, β-glucanase Trichoderma reesei (GMO) Poultry and pigs Danisco Animal Nutrition

 Axtra® XAP Xylanase, amylase, protease Trichoderma reesei (GMO) Poultry and pigs Danisco Animal Nutrition

 AvemIx®02 CS Xylanase, β-glucanase, pectinase Trichoderma reseei (not GMO), Aspergil-
lus aculeatus (not GMO)

Poultry and pigs Aveve Biochem

 Avizyme® Xylanase, amylase, protease Trichoderma reesei (GMO), Bacillus 
amyloliquefaciens (GMO), Bacillus 
subtilis (GMO)

Poultry Danisco Animal Nutrition

 Endofeed Xylanase, β-glucanase Aspergillus niger (not GMO) Poultry GNC Bioferm

 Natugrain® Xylanase, β-glucanase Aspergillus niger (GMO) Poultry BASF

 Natuphos® combi Xylanase, β-glucanase, phytase Aspergillus niger (GMO) Poultry and pigs BASF

 Agal Pro BL Alfa-galactosidase, β-glucanase Aspergillus niger (not GMO), Saccharo-
myces cerevisiae (GMO)

Poultry Biocon

 Amylofeed Xylanase, β-glucanase, amilase Aspergillus niger, Aspergillus oryzae (not 
GMO)

Pigs GNC Bioferm

 Porzyme®9100 Xylanase, β-glucanase Trichoderma longibrachiatum (not 
GMO)

Pigs Danisco Animal Nutrition

 Xybeten® Xylanase, β-glucanase, cellulase Trichoderma longibrachiatum (not 
GMO)

Poultry and pigs Biovet

 Ronozyme®VP Pectinase, β-glucanase Aspergillus aculeatus (not GMO) Poultry and pigs DSM-Novozymes

 Rovabio®Excel 19 enzymes (xylanases, β-glucanase, 
and cellulases with other enzyme 
activities)

Penicillium funiculosum (not GMO) Poultry and pigs Adisseo

 Ronozyme®Multigrain Xylanase, β-glucanase NA Poultry and pigs DSM-Novozymes

 Ronozyme A Amilase, β-glucanase NA Poultry and pigs DSM-Novozymes

 Cibenza® CSM Xylanase, β-glucanase, α-galactosidase NA Poultry and pigs Novus International
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gastrointestinal tract. Research in this field is still under-
way and every year optimized processes and new prod-
ucts are developed and a large number of articles on this 
topic are published. This is particularly important consid-
ering that the global feed market is continuously growing. 
In particular, feed market is dominated by carbohydrases 
(being xylanases and beta-glucanases the most impor-
tant) and phytases.

Carbohydrases: xylanases, beta‑glucanases, and amylases
Xylanases can break down xylan, which is a major poly-
saccharide of hemicelluloses present in plant cells and 
in some algae. Thus, xylanases are widely used in ani-
mal feed to degrade complex hemicelluloses. Most of 
the xylanases used in feed industry for enzymatic treat-
ment of animal feed are derived from those naturally pro-
duced in fungi [116–118]. Some examples are Danisco 
xylanases (Danisco Animal Nutrition) and Econase XT 
(ABEnzymes) that are produced in T. reesei, whereas 
Prozyme 9300 (Danisco Animal Nutrition) is produced 
in Trichoderma longibrachiatum, Ronozyme WX (DSM-
Novozyme) in Aspergillus oryzae, and Hostazym X 
(Huvepharma) in Trichoderma citrinoviride (Table  2). 
There is also a commercial example of a recombinant 
xylanase produced in bacteria (Belfeed B 1100 MP, Bel-
dem, B. subtilis) (Table 2).

However, as previously described, most of these com-
mercial products are not pure enzymes, but a complex 
fermentation product that in some cases contains a 
mixture of different enzymatic activities that may have 
a synergistic effect (Table  2). In many cases, xylanase is 
combined with β-glucanase, whereas in others amylase, 
protease, pectinase, phytase, and/or α-galactosidase are 
also present in the mixture (Table 2).

β-Glucanases are enzymes capable of breaking down 
cellulose and have been used in poultry, pigs, ruminants, 
and fish since early 1980 to facilitate the bioconversion 
of cellulose to animal products (Table  2). On the other 
hand, α-amylases are used in dairy cow nutrition to 
increase feed efficiency and milk production [119–123]. 
The most widely used is Roxazyme® RumistarTM (DSM-
Novozyme), which has been produced in a genetically-
modified B. licheniformis (Table 2).

Given the importance of xylanases, β-glucanases, and 
α-amylases to improve the nutritional value of non-
starch polysaccharides, and the increasing demand of 
more stable, highly-active, and non-expensive carbohy-
drases, different microbial hosts have been explored for 
their production. Although commercial carbohydrases 
are mainly derived from fungi, research in this field 
focuses in the development of bacterial and yeast-based 
production systems [124]. This is particularly evident for 
xylanases.

Considering that, in many cases, glycosylation is nec-
essary to obtain functional and stable xylanases [125, 
126], yeasts appear as the most promising heterologous 
expression host for their production as an alternative 
to fungi. Besides, some yeast have been accredited with 
the generally recognized as safe (GRAS) status by the 
American Food and Drug Administration (FDA), which 
brings additional value to this expression system. Alto-
gether these advantages make yeast, and more specifi-
cally K. pastoris, the most widely used microorganism 
for xylanase production (extensively reviewed by [126]). 
Briefly, K. pastoris has been explored for the produc-
tion of xylanases from T. reesei [127], Aspergillus sul-
phureus [128], A. niger [129, 130], and Streptomyces sp. 
S38 [131], among others [126]. Albeit at a lesser extent, 
S. cerevisiae has also been studied for the production of 
fungal xylanases [112, 132, 133]. Different enzymes in 
different yeast-based cell factories have been evaluated 
under diverse production conditions aiming to optimize 
enzyme production yields [133]. Li et  al. and Fu et  al., 
for instance, improved the production efficiency of the 
enzyme simply using an optimized sequence with the 
appropriate codon usage [128, 131]. On the other hand, 
Fang and collaborators described that xylB gene over-
produced is not glycosylated, but it is still fully active 
and highly stable under different conditions [130]. Other 
fungal xylanases have also been shown to be non-gly-
cosylated enzymes [118]. In line with this observation, 
different groups have described the production of cata-
lytically-active eukaryotic xylanases in E. coli [134, 135]. 
Thus, E. coli, although to a lesser extent due to their lack 
of secretion system, has also been used to study differ-
ent bacterial xylanases [136, 137]. Alternatively, other 
Gram-positive bacteria, such as Lactobacillus spp. and 
B. subtilis, also classified as GRAS organisms, have been 
used as cell factories for xylanase production purposes. 
Interestingly, these Gram-positive bacteria have a dual 
effect, since they are explored as probiotics to enhance 
gut health, but at the same time they are able to secrete 
recombinant enzymes of interest such as xylanases [138, 
139]. In some cases, strategies to anchor xylanases in the 
bacterial cell wall have been explored [140]. Lastly, fila-
mentous fungal expression systems (mainly Aspergillus 
spp. and Trichoderma spp.) have been also extensively 
studied for xylanase expression (reviewed in [116]) and, 
in fact, they are, as previously mentioned, the microor-
ganism behind some products commercially available 
(Table 2). Other fungi such as Thermoascus aurantiacus 
have also been explored as potential cell factories for 
xylanase production [141]. Although fungi produce high 
levels of xylanase, they have two important limitations 
for industrial application, a reduced yield in fermenter 
conditions, and poor secretion efficiency.



Page 8 of 17Gifre et al. Microb Cell Fact  (2017) 16:40 

Phytases
Non-ruminant intestinal microorganisms, in contrast to 
what occurs with ruminal bacteria, are unable to degrade 
phytate from plant-derived feedstuffs [142]. This is par-
ticularly important considering that phytate is the major 
source of phosphorous in animal diets. Thus, tradition-
ally, the main phosphorous source in poultry, swine, and 
fish diets came from the inorganic phosphates via die-
tary supplementation. However, the excretion of excess 
phosphorous by animals fed supplemented diets was 
accumulated in the soil and water, creating a major envi-
ronmental problem [143, 144]. This challenge was mini-
mized with the commercialization in 1991 of the first 
recombinant phytase, which allowed avoiding the sup-
plementation of diets with inorganic phosphorous and, 
consequently, decreasing phosphorus pollution in animal 
waste [145].

Since the development of the first commercial phytase 
product (Natuphos, BASF), others have been launched 
in the market and are nowadays available [113] (Fig.  1). 
Phytases that are available today are produced recom-
binantly in microbes including fungi (T. resei, A. niger, 
and A. oryzae) and yeast (Saccharomyces pombe and K. 
pastoris) (Fig.  1) and are widely used in diets for non-
ruminant animals.

The market of feed enzymes and, more specifically of 
acidic phytases, has significantly grown in the last dec-
ades and its demand is estimated to continue growing in 
the next years. Phytases are enzymes with a large mar-
ket (60% of the total feed enzyme market), which com-
bine the capacity to improve feed efficiency with the 
advantage of reducing the phosphorus pollution. Due to 
the important phytase applicability in animal feeding, 
several groups are working on the design, production 
and characterization of phytases with optimized prop-
erties. Haefner et al., Lei et al., and Rao et al. have pub-
lished extensive reviews describing all the advances in the 

production of phytases using recombinant cell factories 
[113, 142, 146].

Research on phytase synthesis has used fungi, bac-
teria, yeast, and plants [113, 142, 146–148] (Fig.  2). 
Among fungi, the genus Aspergillus has been the most 
widely explored for the isolation of phytases with inter-
esting properties. Besides, different species from the 
genus Bacillus, as well as some Lactobacillus and E. coli 
have been deeply studied [147]. Although phytases were 
initially isolated from their natural origin, it is widely 
accepted that the levels of production in such wild type 
strains is too low. In this context, recombinant DNA 
technology has allowed to make a major step toward 
the production of phytases at high production levels 
using optimized cell factories. Summarizing, among all 
the recombinant cell factories reported in the literature 
used for the production of phytases, K. pastoris and E. 
coli appear as the most widely used microbial factories 
for research purposes, whereas A. oryzae is the preferred 
option among fungi (Fig. 2).

Currently, phytase research is still focused on the iden-
tification of new phytases, but more importantly there is 
a clear trend towards the optimization of key properties 
of the already described enzymes. For the development 
of a new generation of phytases as feed additives, genetic 
and protein engineering play a key role, since they are 
powerful tools to develop tuned phytase variants.

Considering that the action of phytases takes place 
in the stomach, one of the most important require-
ments for phytases is a high resilience at low pHs and 
resistance to proteolytic degradation. Aside from this 
high stability to the upper digestive tract conditions, 
phytases used to increase animal feed efficiency must 
resist high temperatures to cope with the conditions of 
the feed pelleting process. Obviously, it is also necessary 
to develop enzymes with a good catalytic efficiency and 
produced through cost-effective production processes 
[113]. Aiming to produce modified phytases with optimal 

Fig. 1  Recombinant cell factories (expressed in percentages) used for 
the production of commercial phytases

Fig. 2  Recombinant cell factories (expressed in percentages) used for 
the production of phytases described in research articles
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properties, different expression systems are being evalu-
ated, using the sequence of phytases from different 
sources as starting point for further improvements. It 
is important to note that different expression systems 
(combined with phytases from different origins) pro-
duce enzymes with different biophysical and biochemi-
cal properties. For instance, the molecular mass greatly 
depends on the phytase origin and on the glycosylation 
pattern. Because bacterial phytases do not have post-
translational modifications, they are easier to produce 
and thus have an important advantage over those from 
other origins. Thermostability, catalytic performance, 
substrate specificity, and stability at acidic pHs are greatly 
influenced by both heterologous system and origin. Thus 
far, although important advances have been achieved in 
this field, no enzyme with all the optimal parameters has 
been developed [149]. Among all those that have been 
studied, enzymes derived from extremophylic organisms 
such as Rhizomucor pusillus, Thermomyces lanuginosus, 
Aspergillus fumigatus, Peniophora lycii, Agrocybe pedia-
des, and Ceriporia sp., appear as the most promising 
candidates [150–154]. Resolution of the crystallographic 
structure of some phytases allows a better understanding 
of this enzyme, providing a good starting point to opti-
mize the protein engineering process. Besides, sophis-
ticated optimization of the condition for the growth 
processes are also contributing to maximize titers of the 
variant of interest [142, 155].

In short, fibrolytic enzymes extracted from their natu-
ral sources have a low productivity yield and poor ther-
mal and pH stability. In this context, all the efforts have 
focused on the development of highly active enzymes 
able to support extreme environments and resistant to 
proteases. Importantly, this needs to be done through 
cost-effective and high-production processes to make 
the new enzymes a real alternative to the existing com-
mercial ones. In this context, bacteria and yeast represent 
promising alternative microbial cell factories for the pro-
duction of these enzymes [124].

Recombinant proteins for prevention and therapy
Recombinant antibodies
The use of passive immunization (administration of anti-
bodies) for the control of infectious disease has been 
recognized as a successful approach in the modern pro-
duction of a wide range of animals, including pigs, cattle, 
sheep, goats, poultry, and fish [156]. In contrast to vacci-
nation or active immunization, administration of immu-
noglobulins establishes instant immunity and provides 
short-term protection with no induction of immuno-
logical memory. With multifactorial infectious diseases, 
especially those that have proven hard to control by vac-
cination, the potential of passive immunization is high. 

Moreover, this type of therapy may be considered as 
an alternative to antibiotics, whose use is starting to be 
limited due to concerns about potential development of 
antibiotic-resistant bacteria.

During the last decade, the development of recombi-
nant antibody technologies has offered the possibility 
for developing highly specific pathogen-specific antibod-
ies using a cost-effectiveness and reproducible technol-
ogy [157]. Some studies have demonstrated the success 
of using recombinant antibodies in animal production. 
Transmissible gastroenteritis virus (TGEV) is a positive-
strand RNA virus of the family Coronaviridae, infecting 
both enteric and respiratory tissues of pigs and causing 
a mortality rate close to 100% when newborn pigs are 
infected [158]. Single-chain fragments (scFv) obtained 
by joining the light- and heavy-chain variable regions 
(VL and VH) from a monoclonal antibody (mAb) recon-
stitute the original VL–VH association and retain the 
binding specificity of the original mAb in a single poly-
peptide [159]. To improve the affinity of monovalent 
scFv, dimeric single-chain mini-antibody molecules, 
named minibodies or SIPs (small immunoproteins), have 
been generated by connecting an scFv to the dimerizing 
domain of immunoglobulin heavy chains. These recom-
binant proteins are efficiently assembled and secreted 
in dimeric form by mammalian cells. In vivo protection 
experiments on newborn piglets have demonstrated a 
strong reduction of virus titers in infected tissues of ani-
mals orally treated with TGEV-specific SIPs [160].

On the other hand, available vaccines for bovine herpes 
virus 1 (boHV-1), which causes respiratory and genital 
diseases in cattle, do not confer adequate protection. Koti 
et al. developed a bovine scFv that has a proven specific-
ity and in  vitro neutralization activity against BoHV-1 
[161]. K. pastoris was selected over bacterial expression 
systems available, since yeast has protein processing and 
post-translational modifications similar to those pre-
sent in higher-order eukaryotes as well as providing high 
recombinant protein yield under the influence of AOX1 
promoter. In a posterior study, the authors demonstrated 
that scFvs against BoHV-1 with a short linker (2 amino 
acids) were capable of assembly into functional multim-
ers that conferred high avidity, resulting in increased 
virus neutralization in  vitro compared with that of 
monovalent scFv [162]. These studies need to be further 
expanded to experiments involving virus challenges to 
determine the efficacy of passive protective immunity 
provided by bovine scFv. However, since the virus neu-
tralization ability of the scFv in vitro was comparable to 
the parental mAb against BoHV-1, which reduces mor-
tality in rabbits infected with BoHV-1, there is a future 
potential to be used in infected animals, to treat semen 
preventing the spread of BoHV-1 infection, or even by 
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local application to treat infectious pustular vulvovagini-
tis caused by BoHV-1.

Another example is the foot-and-mouth disease virus 
(FMDV), which is a contagious viral disease that affects 
cloven-hoofed animals such as cattle, swine, and sheep 
with a potential for rapid spread. Emergency treatment 
by passive immunization can be used as an important 
control measure for FMDV outbreaks in FMDV-free 
regions such as the European Union. Harmsen et  al. 
produced recombinant llama single-domain antibody 
fragments (VHHs) using recombinant strains of S. cerevi-
siae to confer rapid protection against FMDV by passive 
immunization in pigs [163].

VHHs have a number of advantages for therapeutic 
applications because they are well produced by micro-
organisms, have a high physicochemical stability and are 
well-suited for the construction of genetic fusions of several 
VHH domains [164]. Moreover, it is important to note that 
in that study no immunogenicity of VHHs was detected in 
treated pigs, which is an important aspect because passive 
immunotherapy can be complicated by the induction of an 
antibody response against the administered heterologous 
therapeutic recombinant antibody, especially when such 
antibodies are administered repeatedly.

From our knowledge, the only case of recombinant 
antibody produced thus far in E. coli as a potential ther-
apy for animal production is related to the treatment of 
intrammamary infections. Bovine intrammamary infec-
tions are an important disease that causes large eco-
nomical losses in the dairy industry and where passive 
immunization could be an interesting alternative, espe-
cially to treat infections such as those caused by Staphy-
lococcus aureus, where vaccines do not confer adequate 
protection and the conventional antibiotic treatments 
have a limited success rate. Wang and collaborators con-
structed a recombinant scFv against fibronectin-binding 
protein A (FnBPA) and clumping factor A (ClfA), two 
important virulence factors in S. aureus infection [165]. 
However, future in  vivo studies of the functionality of 
these scFvs are needed to confirm the potential of such 
scFvs.

Other therapies
Cytokines are small molecules, which act as intercellular 
communication signals and play a role in various aspects 
of the differentiation and maturation of immune system 
cells and the host response to infection. Although this 
network is complex, there is already available informa-
tion on the role of specific cytokine in the modulation of 
the immune system in livestock as a preventive strategy 
of diseases or even controlling metabolic and physiologi-
cal processes. There are many in vivo studies testing tar-
geted recombinant cytokines that stimulate the immune 

system to fight intramammary infections during both the 
lactation and the dry (the last 2  months of pregnancy, 
when the cow does not lactate) periods in dairy cows. 
Intramammary infusion of recombinant IL-2, IFNγ, 
IL-1β, and IL-8 in the mammary gland of lactating cows 
have been shown to offer protection against S. aureus or 
E. coli infections [166–169]. Moreover some recombinant 
cytokines such as IL-8 and recombinant bovine granu-
locyte–macrophage colony stimulating factor (rboGM-
CSF) [170] have been able to foster the involution of the 
mammary gland during the dry period (a period where 
tissue of mammary gland is involuted and regenerated in 
the preparation for the subsequent lactation).

Dairy cows often experience decreased immune func-
tion around the time of calving, typified by impaired 
polymorphonuclear neutrophil (PMN) function and 
increased incidence of disease. Subcutaneous injections 
of recombinant bovine granulocyte colony-stimulating 
factor covalently bound to polyethylene glycol (PEG rbG-
CSF) dramatically increased circulating numbers of PMN 
[171]. Other applications concern to the improvement of 
reproductive performance of production animals using 
IFN-τ. Recombinant buffalo IFN-τ (buIFN-τ) increased 
in vitro buffalo blastocyst production rate [172] although 
intrauterine administration of liposomized bovine IFN-τ 
had no effect on the length of the estrous cycle and the 
lifespan of the corpus luteum in dairy cows [173]. How-
ever, Shirasuna et al. found that recombinant IFN-τ was 
associated to greater amounts of protein, IL-8, and neu-
trophils in the corpus luteum of pregnant cows [174]. 
Lastly, supplementing recombinant porcine leukemia 
inhibitory factor (poLIF) in the in  vitro maturation 
medium can improve oocyte maturation [175].

The ability of IL-3 to stimulate the development of 
eosinophils makes it a particularly important candidate 
for therapeutic use to protect against parasites. Mor-
ris et  al. demonstrated that in  vivo administration of 
poIL-3 induced a significant increase in the number of 
eosinophils in the blood of pigs [176]. In a similar con-
text, chicken IFN-γ (chIFN-γ) demonstrated reductions 
in intracellular sporozoite development in  vitro without 
affecting sporozoite invasion of host cells. Furthermore, 
chickens treated with recombinant chIFN-γ showed 
decreased oocyst production and significant improve-
ment in body weight gain following an Eimeria acer-
vulina challenge infection [177, 178].

All these cytokines have been produced in several 
recombinant systems such as mammalian cells in the 
case of bovine IFN-τ (boIFN-τ) [173], bovine IL-2 (boIL-
2) [167], porcine IL-3 (boIL-3) [176], poLIF [175], and 
chIFN-γ [177]. Insect cells have been chosen for the pro-
duction of chIFN-γ [177], Brevibacillus choshinensis for 
boIL-8 [168], K. pastoris for boIL-2, IFN-γ, and GM-CSF 
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[170] and E. coli for buIFN-τ [172], boIFN-τ [174], and 
chIFN-γ [178].

Also in the context of the immune system modulation, 
the mammary serum amyloid A (M-SAA3) protein (an 
acute phase protein from the mammary gland) has been 
produced recombinantly in E. coli [179] and proposed 
as an immunostimulator of the mammary gland to fight 
against infections and enhance mammary involution dur-
ing the dry cow period. The administration of M-SAA3 
triggers an inflammatory response, the maturation of 
dendritic cells, and reduces the infection of mammary 
epithelia by pathogens such as S. aureus. Furthermore, 
relevant functions have been demonstrated in mammary 
function of dry cows such as the increase in neutrophil 
recruitment and of some key effectors of tissue involu-
tion such as metalloproteinase 9 (MMP-9) [180].

In summary, a new era of recombinant proteins, mostly 
key effectors in the immune system, opens the possibility 
to modulate physiological processes and prevent infec-
tions reducing the use of antibiotics in livestock and pav-
ing a safer and more productive future.

Future perspectives
The use of genetic and protein engineering techniques 
have led to a significant progress in animal produc-
tion and it is starting to have a commercial impact in 
this field. Nowadays it is possible to design tailor-made 
sequences of enzymes, which in some cases combine spe-
cific properties of different enzymes in one molecule to 
obtain an optimal functional protein [181]. On the other 
hand, this technology allows the production of recom-
binant hormones through cost-effective processes using 
microbial cells as production hosts. In addition to this, 
novel strategies such as those based on passive immuni-
zation are gaining ground due to the broad range of pos-
sibilities that recombinant protein production offers. In 
this context, although important efforts have been done 
toward the minimization of recombinant protein produc-
tion costs, currently, much remains still to be achieved. 
Cost effectiveness is particularly important in the con-
text of animal production, where marginal returns are 
tight. Currently, the main restriction for the applica-
tion of recombinant products in animals is still the cost 
associated to the production processes. Overcoming 
this bottleneck requires developing alternative strategies 
to further reduce the production costs of recombinant 
products and there is a wide range of unexplored strat-
egies to improve recombinant production of proteins of 
interest for animal production.

The use of bacterial strains with an oxidizing cyto-
plasm, for example, represents a good approach to 
improve the production yields of proteins containing 
disulfide bonds. In this line of work, the development and 

optimization of production protocols for both bacteria 
and yeast and the use of genetic engineering to obtain 
proteins with improved stability is useful. On the other 
hand, though yeast and bacteria are being explored as 
alternatives for the production of many proteins of inter-
est, the catalogue of other promising microorganisms for 
this purpose is limited. Lactic acid bacteria (LAB) are an 
attractive alternative for recombinant protein produc-
tion, since they are GRAS organisms able to produce 
difficult-to-express proteins [182, 183]. Even though 
these microorganisms have been explored in some cases 
for animal production purposes, especially for the pro-
duction of fibrolytic enzymes, broadening their field 
of application would be highly convenient. They do not 
only show the ability to produce recombinant proteins, 
but they also have interesting properties as probiotics. 
Besides, they are able to efficiently secrete the protein of 
interest, which reduces the purification costs of the prod-
uct of interest, and also are used for surface display pur-
poses [184]. Interestingly, surface display, which allows 
to naturally anchor the enzyme of interest to the cell 
envelop once it is produced by the recombinant cell, has 
already been proven to improve the stability of an endo-
glucanase produced in K. pastoris [185].

However, it is also necessary to think beyond these 
classical strategies and make use of novel approaches, 
such as nanobiotechnology, which has been explored in 
other fields of research. Considering that recombinant 
proteins are poorly used in animal production due to 
their normally high associated costs, new protein formats 
need to be explored. Among them, inclusion bodies (IBs), 
which are a low-cost, highly stable, and functional pro-
tein nanoparticles mainly containing the protein of inter-
est overproduced in a recombinant system, represent a 
new and appealing protein format [186, 187]. Production 
of recombinant proteins as IBs allows the production of 
any protein of interest through a much more affordable 
process [186–189], which could open a wide range of 
possibilities in animal science. Thus far, in the context of 
animal production, IBs from E. coli have only been used 
as a source of protein. For that, as previously described, 
solubilization protocols using denaturants such as urea 
or guanidinium chloride followed by renaturation pro-
cesses have been used to obtain properly folded and 
functional soluble proteins [76, 190, 191]. Nevertheless, 
IBs have never been explored as protein-based nanopar-
ticles for animal reproduction, enhancers of feed effi-
ciency, or treatment purposes, with only one exception. A 
recent article described for the first time that IBs formed 
by cytokines can successfully be used as a prophylactic 
measure, showing that zebra fish treated with IBs are 
protected against a lethal infection [192]. In the same way 
that cytokines have been successfully produced as IBs 
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for prevention purposes in fish, other proteins of inter-
est (hormones, enzymes, and antibodies, among others) 
or other animal species could also be explored, unfold-
ing enormous possibilities in this field. Contrarily to what 
has been widely believed, the formation of IBs does not 
only occur in E. coli, but in many other expression sys-
tems including yeast [193] and LAB [186, 194], meaning 
that their production can be conducted in a wide variety 
of microbial cell factories. Moreover, their size and shape 
are easily tunable.

Alternatively, protein encapsulation and/or coat-
ing could also be interesting nanobiotechnological 
approaches to increase protein stability, minimize doses 
and, consequently, reducing costs of proteins of inter-
est for animal production. Nanoemulsions, liposomes, 
polymersomes, protein nanocapsules, polymeric nano-
particles, and hydrogel nanoparticles are some exam-
ples of different nanostructured systems used for protein 
encapsulation [195–198]. As an example, Diwan and 
collaborators described the encapsulation of gonado-
tropin-releasing hormone in polylactic-co-glycolic acid 
microspheres [199]. In another recent example, the use of 
gold nanoparticles has been studied to increase the sta-
bility and efficiency of a xylanase [200].

In summary, new protein formats such as IBs and 
encapsulation methods need to be further explored in 
animal science as attractive alternatives to make recom-
binant molecules affordable. Molecule stability and func-
tionality can significantly be improved through these 
strategies.

Conclusions
Recombinant DNA technology allows modulating pro-
tein sequence, which therefore makes it possible to 
obtain recombinant products with improved properties 
compared with those isolated from their native hosts. 
This has helped to make a significant step forward in the 
development of recombinant products for a wide array of 
applications, including animal production, as reviewed 
in the text. A broad catalogue of microbial cell facto-
ries is being explored for the successful development of 
enzymes, hormones, and therapeutic molecules. Never-
theless, to continue advancing in this field of study, it is 
necessary to make a giant leap towards the use of novel 
strategies that combined with recombinant technology 
would allow the development of products with applica-
bility in animal science. In this context, nanotechnol-
ogy, and more specifically nanostructuration, could play 
a crucial role in the development of a new generation of 
recombinant biomolecules with affordable costs for ani-
mal industry.
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