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Abstract

Congenital heart disease (CHD) has been associated with structural brain growth and long-

term developmental impairments, including deficits in learning, memory, and executive func-

tions. Altered functional connectivity has been shown to be altered in neonates born with

CHD; however, it is unclear if these early life alterations are also present during adulthood.

Therefore, this study aimed to compare resting state functional connectivity networks asso-

ciated with executive function deficits between youth (16 to 24 years old) with complex CHD

(mean age = 20.13; SD = 2.35) who underwent open-heart surgery during infancy and age-

and sex-matched controls (mean age = 20.41; SD = 2.05). Using the Behavior Rating Inven-

tory of Executive Function–Adult Version questionnaire, we found that participants with

CHD presented with poorer performance on the inhibit, initiate, emotional control, working

memory, self-monitor, and organization of materials clinical scales than healthy controls.

We then compared the resting state networks theoretically corresponding to these impaired

functions, namely the default mode, dorsal attention, fronto-parietal, fronto-orbital, and

amygdalar networks, between the two groups. Participants with CHD presented with

decreased functional connectivity between the fronto-orbital cortex and the hippocampal

regions and between the amygdala and the frontal pole. Increased functional connectivity

was observed within the default mode network, the dorsal attention network, and the fronto-

parietal network. Overall, our results suggest that youth with CHD present with disrupted

resting state functional connectivity in widespread networks and regions associated with

altered executive functioning.
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Introduction

Congenital heart disease (CHD) refers to the presence of structural malformation(s) of the

heart walls, valves, main blood vessels, and their relationships, resulting in impaired blood

flow. With an incidence of 0.85% live births per year in Canada, CHD is the most common

neonatal defect [1]. The standard of care practice for most complex CHD lesions is to perform

open-heart surgery utilizing cardiopulmonary bypass during infancy, resulting in a significant

improvement in life expectancy [2]. Although these individuals are now expected to live well

into adulthood, a large variety of neurodevelopmental impairments are reported during child-

hood and adolescence. Among these, difficulties with language, social cognition, and higher

order cognitive abilities have been widely reported [3–6]. Moreover, the emerging literature in

older children, adolescents, and adults with CHD converge in reporting specific difficulties

with executive functions associated with poorer psychosocial health status and quality of life

[3–5, 7, 8].

It is now well recognized that CHD impacts brain development during the antenatal and

neonatal periods [9]. Magnetic Resonance Imaging (MRI) has contributed to our understand-

ing of cerebral pathophysiological mechanisms in CHD. Indeed, a growing body of quantita-

tive structural MRI studies have reported the presence of regional alterations in brain

development in adolescents and young adults with complex CHD [10]. Differences reported

include smaller volumes or morphometric variations in the cortical and subcortical grey mat-

ter [3, 11–13], as well as microstructural alterations predominantly in the association tracts

and frontal regions [14, 15]. Moreover, previous findings have reported associations between

regional structural alterations and cognitive functions; however, these relationships were gen-

erally small in magnitude [3, 13, 16].

When examining brain functional connectivity in CHD, results are scarce. Resting state

functional MRI (rs-fMRI) is a neuroimaging technique that evaluates regional brain interac-

tions occurring while the participant is at rest (i.e., not performing any task). This technique

allows the investigation of resting state networks, which provide information about inherent

brain function during normal development or following injury. Resting state fMRI uses the

blood-oxygen-level-dependent (BOLD) signal to measure spontaneous low frequency fluctua-

tions (<0.1 Hz) in absence of a stimulus. This technique allows for the exploration of synchro-

nous activations between different brain regions to describe networks, known as Resting State

Networks, that can be reproducible across subjects [17]. Since the discovery of resting state

networks, rs-fMRI studies have provided new insights into the understanding of typical and

atypical brain functioning at rest when studying various pediatric and adult brain pathologies,

including autism spectrum disorder, schizophrenia, and Alzheimer’s disease [18–20]. To the

best of our knowledge, only one study to date has examined functional connectivity using rs-

fMRI in individuals with CHD. The authors reported that neonates with complex CHD, prior

to open-heart surgery, presented with preserved global functional network organization, but

altered regional functional connectivity, when compared to healthy controls [21]. More pre-

cisely, altered functional connectivity was found in subcortical regions, including the putamen,

caudate nucleus, globus pallidus, and thalamus, and in various cortical regions, especially in

frontal, parietal, and temporal areas. Although this first study provides valuable insight into

functional network topology and regional functional connectivity, it remains unknown if these

functional connectivity deficits remain present beyond the post-surgical period. Moreover,

whether these connectivity alterations are associated with later-developing cognitive functions

remains to be determined. The current study aimed to fill these gaps. To do so, we sought to

compare functional connectivity between youth with complex CHD who had undergone

open-heart surgery during infancy and healthy peers, targeting networks associated with at-
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risk executive functions. We hypothesized that youth with complex CHD would exhibit altered

functional connectivity in networks associated with executive functioning. As a secondary

objective, we also explored the direct relationships between functional network connectivity

and altered executive functions. A better understanding of the neural correlates of cognitive

difficulties in youth with complex CHD will provide insight into the development and implica-

tions of the disease.

Materials and methods

Participants

French- and English-speaking youth aged 16 to 24 years old born with complex CHD who

underwent open-heart surgery (OHS) using cardiopulmonary bypass during the first year

after birth were enrolled in this study. Participants born preterm (<37 weeks of gestation),

with documented congenital infection, a known chromosomal or genetic abnormality, or mul-

tiorgan dysmorphic features were excluded. Participants with CHD were recruited from the

pediatric and the adult cardiology units of the McGill University Health Center (MUHC) as

previously reported [13].

A control group, matched for age and sex, was recruited from local colleges, universities,

and the community through advertisements and word of mouth. Controls were considered

healthy if they had no history of brain tumor or malformation, traumatic brain injury, devel-

opmental or neurologic conditions and had not received rehabilitation or special education

services during childhood or adolescence. Written informed consent was obtained from the

participant, or legal guardians when younger than 18 years old. The study was approved by the

MUHC Pediatric Research Ethics Board.

Individual and clinical variables

All the participants underwent a single study visit at the Montreal Children’s Hospital to com-

plete a brain MRI. Height and weight were measured before the MRI to compute body mass

index (BMI). Socioeconomic status (SES) was measured using the Hollingshead Four-Factor

Index questionnaire [22] and relevant clinical information, such as cardiac diagnosis, age at

first surgery, and number of open-heart surgeries, was extracted from the medical records of

the CHD participants.

Executive function and self-regulation

On the day of the MRI, participants completed the Behavior Rating Inventory of Executive

Function–Adult Scale (BRIEF-A) a norm-referenced, self-reported questionnaire that evalu-

ates executive function and self-regulation [23]. This test is composed of nine clinical scales:

inhibit, shift, emotional control, self-monitor, initiate, working memory, plan/organize, task

monitor, and organization of materials, which together provide a total score for metacognition

and behavioral regulation. On the BRIEF-A, higher scores represent poorer executive

functioning.

MRI data acquisition

Participants underwent a single brain MRI on a 3.0 T MRI (Achieva X-series, Philips Health-

care) using a 32-channel head coil. The acquisition protocol included three-dimensional 1 mm

isotropic T1-weighted images (TE = 3.7 ms, TR = 8.1 ms, TI = 1010 ms, pixel bandwidth = 191.4

Hz/pixel, FOV = 240x240 mm, slice thickness = 1 mm, flip angle = 8˚) and a gradient-echo

echo planar imaging (EPI) sequence (TE = 30 ms, TR = 2600ms, pixel bandwidth = 2197.48
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Hz/pixel, FOV = 240x240 mm, acquisition matrix = 80x80, slice thickness = 3 mm, flip

angle = 70˚, 47 slices/volume, interleaved, no gap). During the resting-state sequence, partici-

pants were awake and instructed to keep their eyes closed. The anatomical images were

reviewed for overt brain anomalies by an experienced neuroradiologist, who was blinded to

the clinical history of the participants.

MRI data processing

Before pre-processing, T1-weighted and EPI images were visually inspected for possible arti-

facts (e.g., spikes, signal loss, aliasing). Spatial pre-processing of images was first performed

and included the following steps: functional cross-realignment for head motion correction,

slice timing correction, outlier scrubbing [24], tissue segmentation, normalization to Montreal

Neurological Institute (MNI) 152 space, and outlier detection using the Artifact Detection

Tool (ART) (www.nitrc.org/projects/artifact_detect). Total grey matter masks before normali-

zation were used to examine grey matter volume differences between the two groups. After-

wards, data were spatially smoothed with an 8 mm full-width half-maximum gaussian kernel

[25].

We used a gaussian kernel of 2–3 times the voxel size, as this has been shown to be optimal

to correct for truncation artifacts [26], to increase signal-to-noise ratio, and to reduce the influ-

ence of residual variability and gyral anatomy across subjects. After spatial pre-processing,

realigned images in MNI space were visually inspected by overlapping the MNI structures

over structural and functional data to confirm optimal realignment.

The BOLD signal of interest may be altered by macro vessel signal, mainly those located in

the pial surface, as well as by some non-physiological signals, such as head motion. To correct

for these nuisance variables, temporal processing was performed using a component-based

noise correction method [27–29]. From the T1-weighted images, white matter and cerebrospi-

nal fluid were segmented using SPM12 (www.fil.ion.ucl.ac.uk/spm) and used in a subsequent

step to remove the temporal confounding factors. Nuisance variables were based on cerebro-

spinal fluid signal, white matter signal, motion, and realignment parameters [28]. Potential

outliers were identified from subject motion and observed global BOLD signal using ART.

Volumes with framewise displacement higher than 0.5 mm and/or that presented global signal

changes above 3 standard deviations were identified as outliers. The anatomical CompCor

method was used for nuisance correction [27, 30], as it has been shown to be as efficient as

global signal regression-based methods, but without inducing undue anti-correlations [27, 31].

Functional data were linearly detrended and band-pass filtered [0.008–0.09Hz] to adjust for

low frequency fluctuations related to very slow head displacements, scanner-related drifts, and

high frequency noise effects [32–35].

A quality control plot was created to detect outliers after denoising, consisting of a voxel-to-

voxel correlation histogram. Before denoising, functional connectivity distribution values

within the whole brain showed highly positively skewed distributions and appeared to be very

different across subjects due to the influence of large-scale physiological signals and head

motion effects. After having corrected for the aforementioned confounders, functional con-

nectivity distributions appeared to be well centered and very similar across subjects, suggesting

that the noise effect had been appropriately removed [S1 Fig]. To achieve the desired denoising

data quality, we employed for every subject: white matter (5 components), cerebrospinal fluid

(5 components), scrubbing (one per identified outlier volume), motion (6 components + 1st

order derivatives). After this step, as the degrees of freedom of every participant were still high,

we decided to include the quadratic effects to the realignment component to improve motion

related denoising. Finally, we used the number of degrees of freedom remaining after the
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denoising process as an exclusion factor, excluding subjects with less than 15 degrees of free-

dom. All the participants presented with centered and normalized data and enough degrees of

freedom to be analyzed.

To process and analyze the resting state fMRI data, we used the CONN Toolbox 18.b

(http://nitrc.org/projects/conn), based on SPM12 and running in MATLAB R2018a (Math-

Works, Inc, Natick, MA, USA) on an Ubuntu 18.04 machine.

Seed selection

Seed-based functional connectivity (SBC) analysis was performed to identify differences in

brain functional connectivity between the CHD and control groups. Considering the increas-

ingly recognized functional challenges reported in adolescents and young adults with CHD,

we chose to use a hypothesis-driven approach over a data-driven approach to compare func-

tional connectivity in networks related to executive function as identified by the BRIEF-A.

Seeds for each region and network were placed using the probabilistic Harvard-Oxford atlas

(http://neuro.debian.net/pkgs/fsl-harvard-oxford-atlases.html). The selected seeds corre-

sponded to brain regions or networks known to be involved in executive functions that were

found to be significantly different in our group comparisons of the BRIEF-A clinical scales. In

line with these findings, we analyzed the default mode network (internal modes of cognition)

[36], the dorsal attention network (attentional capabilities) [37], the fronto-parietal [38] and

fronto-orbital networks (high-level cognition function) [39, 40], and the amygdalar network

(emotional control) [41, 42]. To assess the different networks, seeds were placed as specified in

the Conn toolbox [32]. The medial prefrontal cortex (mPFC) and the posterior cingulate cor-

tex (PCC) were chosen to assess the default mode network (DMN), the intra-parietal sulcus

(IPS) and the frontal eye fields (FEF) to assess the dorsal attention network (DAN), and the lat-

eral prefrontal cortex (LPFC) and the parietal cortex (PPC) to assess the fronto-parietal net-

work (FPN). The fronto-orbital network was added to the analyses given its link with

executive functions and the amygdalar network was added for playing an important role in

emotional control, with seeds placed in the fronto-orbital cortex and in the amygdala,

respectively.

Statistical analysis

Participants’ characteristics and BRIEF-A scores. Participants’ characteristics were

compared between the CHD and control groups using independent sample t-tests or chi-

square tests, as appropriate. Variables that showed significant group differences were consid-

ered potential confounders and included in subsequent analyses. Analyses of covariance

(ANCOVA) were performed for each clinical scale of the BRIEF-A, using potential confound-

ers as covariates when relevant. The only significantly different confounder between the CHD

and control groups was socioeconomic status, which was included as a covariate in subsequent

analyses. In all analyses, the alpha level was set at 0.05.

Resting state functional connectivity. The average time series of each single seed was

computed across each seed region in each participant, and then correlated with the time series

of every other voxel in the brain. Correlation maps were calculated using the standard Pearson

product-moment formula as described in Biswal et al. [43]. Correlation coefficients were nor-

malized by Fisher’s z-transformation.

Group differences in functional connectivity between CHD and controls were assessed

using ANCOVA, using socioeconomic status as a covariate. Statistical significance between

groups was established as p< 0.001 (uncorrected) at the voxel level and as p< 0.05 (corrected

for family wise error [FWE]) at the cluster level [44, 45].
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Additionally, to explore the direct associations between network functional connectivity

and executive function deficits, we performed two-tailed Pearson correlations between func-

tional connectivity and BRIEF-A scores, focusing on the BRIEF-A scales previously identified

to be significantly different between the two groups. These correlation analyses were per-

formed separately in the control and CHD groups. The level of statistical significance as set at

p< 0.05. We did not correct for multiple comparisons considering the exploratory nature of

these analyses.

Results

Participants’ characteristics

In total, we collected 43 rs-fMRI acquisitions in the CHD group and 47 in the control group.

Of these, five participants from the CHD group and two from the control group were excluded

from the analysis for not having a complete rs-fMRI acquisition. Another CHD participant

was excluded from the analysis for not passing the aforementioned quality assessment. Our

final sample for analysis consisted of 37 participants with CHD (14/37 male) and 45 controls

(19/45 male). Of the 37 participants with CHD, 32 (86.49%) presented with a two-ventricular

cardiac physiology: dextro-transposition of the great arteries (n = 13), Tetralogy of Fallot

(n = 10), total anomalous pulmonary venous connection (n = 2), ventricular and atrial septal

defects (n = 5), and truncus arteriosus type I (n = 2). Only 5/37 (13.51%) presented with a uni-

ventricular physiology: double outlet right ventricle (n = 1), pulmonary atresia (n = 3), and

hypoplastic left heart syndrome (n = 1). CHD participants had between one and four open-

heart surgeries (median 1) at the time of the study visit. Mean age at first surgery was 68.65

days old, with a range from zero to 293 days after birth. Socioeconomic status was found to be

significantly higher in the control group when compared to the CHD group and was conse-

quently included as a covariate in subsequent analyses. No other significant group differences

were found for age at MRI, sex, and BMI [Table 1].

Brain anomalies on conventional MRI likely from an acquired origin were detected in 7/37

(18.92%) CHD participants and 4/45 (8.89%) of the controls, which was not statistically differ-

ent (p = 0.210) These anomalies included: One CHD participant with cystic dilation of the

perivascular spaces; two CHD participants with periventricular white matter injury; two CHD

participants and three controls with susceptibility artifact, likely representing blood deposition

or calcification; and two CHD participants and one control with asymmetrical ventricles.

Brain anomalies likely from a developmental origin were found in 6/37 (16.22%) CHD partici-

pants and 2/45 (4.44%) controls, (p = 0.123). These anomalies included: Three CHD partici-

pants and one control with grey matter heterotopia; two CHD participants and two controls

with developmental venous anomalies; one CHD participant with cortical developmental

anomaly; and one CHD participant with Chiari I malformation. The observed anomalies were

all considered to be mild and from a remote origin, and none of the brain anomalies detected

on conventional MRI overlapped with any of the connectivity networks analyzed.

Executive functions

After controlling for SES, participants with CHD demonstrated significantly poorer perfor-

mance than control participants on the inhibit (F(1,76) = 7.16; p = 0.009), emotional control

(F(1,76) = 7.24; p = 0.009), self-monitor (F(1,76) = 7.09; p = 0.009), initiate (F(1,76) = 4.22;

p = 0.04), working memory (F(1,76) = 5.25; p = 0.025), and organization of materials (F(1,76)

= 18.51; p<0.001) clinical scales of the BRIEF-A. By contrast, there were no significant differ-

ences between groups for the shift (F(1,76) = 1.21; p = 0.27), plan/organize (F(1,76) = 3.40;

p = 0.07), and task monitor (F(1,76) = 3.53; p = 0.06) clinical scales. Scores for BRIEF-A scales
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are summarized in Table 2. Participants were classified as having a clinically significant deficit

on a given clinical scale when having a score� 65. On average, a greater percentage of partici-

pants with CHD had clinically significant executive function deficits as compared to controls

(6–40% in CHD vs. 0–13.6% in controls) across the different clinical scales. Differences in the

prevalence of clinically significant deficits were statistically significant for the inhibit (χ2 =

Table 1. Participants’ characteristics.

Variables; mean [SEM], N (%) CHD (n = 37) CTL (n = 45) p-value

Age at MRI, years 20.13 [0.38] 20.41 [0.30] 0.34

Age first surgery, days 68.65 [15.51] - -

Sex 0.80

Male 14 (37.8%) 19 (42.2%)

Female 23 (62.2%) 26 (57.8%)

Body mass index 23.31 [0.67] 23.92 [0.56] 0.23

Grey matter volume, dm3 0.25 [0.015] 0.26 [0.014] 0.36

Socioeconomic status 39.95 [2.07] 50.73 [1.54] <0.001

Type of CHD

Single ventricle 5/37 (13.5%) - -

Tetralogy of Fallot 10/37 (27.0%) - -

Transposition of great arteries 13/37 (35.1%) - -

Other two-ventricle physiology

Ventricular/atrial septal defects 5/37(13.5%) - -

Truncus arteriosus type I 2/37(5.4%) - -

Total anomalous pulmonary 2/37(5.4%) - -

venous connection

Total surgery time (min) 134.5 [8.57] - -

Aortic cross clamp time (min) 76.59 [6.09] - -

Deep hypothermia time (min) 19.28 [4.06] - -

Catheterizations 22/32 (68.75%) - -

Balloon atrial septostomy before surgery 8/15 (53.33%) - -

CHD: congenital heart disease, CTL: control, SEM: standard error of the mean.

https://doi.org/10.1371/journal.pone.0264781.t001

Table 2. BRIEF-A scales results.

Mean (SEM) CHD (n = 35) CTL (n = 44) p-value

Inhibit�� 55.6 (2.21) 50.4 (2.04) 0.009

Shift 53.6 (2.15) 51.5 (2.41) 0.27

Emotional control�� 56.9 (1.93) 49.5 (2.57) 0.009

Self-monitor�� 54.1 (2.28) 46.5 (2.19) 0.009

Initiate� 54.9(1.80) 51.2 (2.42) 0.04

Working memory� 59.1 (2.11) 53.0 (2.34) 0.02

Plan/ Organize 53.5 (1.62) 50.5 (1.93) 0.07

Task monitor 57.0 (2.02) 52.8(2.86) 0.06

Organization of materials��� 55.2 (2.19) 46.6 (2.76) <0.001

� p < 0.05

�� p < 0.01

���p < 0.001. NB: Higher scores of BRIEF-A indicate poorer performance.

https://doi.org/10.1371/journal.pone.0264781.t002
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14.23; p< 0.001), working memory (χ2 = 7.1; p = 0.008), and organization of materials (χ2 =

11.09; p< 0.001) clinical scales (S1 Table).

Resting state functional connectivity

We performed comparisons of seed-based functional connectivity between the two groups for

the default mode, dorsal attention, fronto-parietal, fronto-orbital, and amygdalar networks.

For each analysis, the threshold of statistical significance as set to p< 0.001 (uncorrected) at

the voxel level and p< 0.05 (corrected for family wise error [FWE]) at the cluster level. Voxels

that did not survive the threshold were not displayed.

Decreased functional connectivity. Fronto-orbital network. Our analyses revealed lower

inter-network functional connectivity in the CHD group when compared to controls between

the right fronto-orbital cortex and the left hippocampus and between the left fronto-orbital

cortex and bilateral hippocampi [Fig 1, Table 3].

Amygdalar network. We found significantly lower inter-network functional connectivity in

the CHD group compared to controls between the left amygdala and the right frontal pole and

between the left amygdala and the right cingulate and paracingulate gyrus [Fig 1, Table 3].

Increased functional connectivity

Default mode network. When compared to controls, participants with CHD presented with

higher intra-network functional connectivity between the medial prefrontal cortex and the

posterior cingulate cortex [Fig 2, Table 4].

Dorsal attention network. Similar to the DMN, our analyses showed significantly higher

inter-network functional connectivity in participants with CHD when compared to controls

between the left intraparietal sulcus (ips_l) and the bilateral hippocampal and parahippocam-

pal regions, but also between the right intraparietal sulcus (ips_r) and the right hippocampal

and parahippocampal regions [Fig 2, Table 4]. No significant differences were found for the

frontal eye fields.

Fronto-parietal network. We observed significantly higher inter-network functional con-

nectivity in the CHD group when compared to controls between the left parietal cortex (ppc_l)

and the left caudate, left accumbens, and left putamen, and between the ppc_l and the right

crus of the cerebellum [Fig 2, Table 4]. No significant differences were found for the lateral

prefrontal cortex.

Correlations between functional connectivity and BRIEF-A scores

We observed two different sets of significant correlations between functional connectivity and

BRIEF-A scores in the CHD participants and in the control participants. In the CHD group,

significant correlations were found between right frontal orbital–left hippocampus functional

connectivity and the inhibit scale (r = -0.36, p = 0.03), as well as between medial prefrontal cor-

tex–posterior cingulate functional connectivity and the organization of materials scale

(r = 0.35, p = 0.038). In the control group, significant correlations were observed between left

intraparietal sulcus–right hippocampus functional connectivity and the emotional control

scale (r = 0.36, p = 0.014), as well as between left amygdala–cingulate/paracingulate gyrus func-

tional connectivity and the organization of materials scale (r = -0.35, p = 0.019).

Discussion

The present study investigated cerebral functional connectivity in brain networks associated

with executive functioning in youth born with complex CHD who had undergone open-heart
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Fig 1. Functional connectivity differences between CHD and control groups where CHD presented lower functional

connectivity. CHD: congenital heart disease, CTL: controls, F.Orb: fronto-orbital network, Amyg: amygdalar network.

https://doi.org/10.1371/journal.pone.0264781.g001

Table 3. Functional connectivity differences between CHD and control groups where CHD participants presented with lower functional connectivity than controls.

Affected region Cluster size Peak p-uncorrected Cluster p<FWE

CHD lower FC than CTL

F.Orb (right cortex) Left hippocampus 113 <0.001 0.03

F.Orb (left cortex) Right and left hippocampus 185 <0.001 <0.01

Amyg (left amygdala) Frontal pole right 270 <0.001 <0.001

Amyg (left amygdala) Cingulate and paracingulate gyrus right 134 <0.001 0.01

FC: functional connectivity, CHD: congenital heart disease, CTL: controls, F.Orb: fronto-orbital network, Amyg: amygdalar network.

https://doi.org/10.1371/journal.pone.0264781.t003
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surgery using cardiopulmonary bypass during infancy. Our evaluation of function-specific

resting state networks revealed statistically significant differences in functional connectivity in

youth born with complex CHD, when compared to healthy peers, with significant alterations

of functional connectivity within the fronto-orbital cortex, amygdala, default mode, dorsal

attention, and fronto-parietal networks.

To the best of our knowledge, this is the first resting state functional connectivity study on

post-operative CHD patients. The only other previous study of resting state functional connec-

tivity in this population was performed in neonates with complex CHD prior to open-heart

surgery [21]. This prior study reported that pre-operative CHD neonates exhibited reduced

Fig 2. Functional connectivity differences between CHD and control groups where CHD participants presented

with higher functional connectivity than controls. CHD: congenital heart disease, CTL: controls, DMN: default

mode network, DAN: dorsal attention network, FPN: fronto-parietal network.

https://doi.org/10.1371/journal.pone.0264781.g002
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rich club network organization in functional brain network connectivity when compared to

healthy term-born neonates, as well as reduced sub-network connectivity, predominantly

implicating the subcortical areas, such as the caudate, putamen, and thalamus, and their con-

nections to the contralateral frontal, parietal, and temporal cortices. They also reported

reduced functional connectivity within the hippocampus and other brain structures, in line

with our current findings. Indeed, we found decreased functional connectivity in youth with

CHD between the fronto-orbital network and the hippocampus. Taken together, these obser-

vations may suggest that alterations in hippocampal functional connectivity that are present

prior to open-heart surgery likely persist during development and after cerebral hemodynam-

ics have been restored following cardiac surgery. Our results also converge with previous find-

ings from anatomical studies that have demonstrated smaller hippocampal volumes and

morphometric differences in adolescents and young adults with CHD, associated with poorer

memory and executive functioning [3, 13]. Future fMRI studies using the hippocampal struc-

tural input as a seed in network analysis could clarify the relationship between the structural

alterations and functional connectivity alterations reported in youth with CHD.

Participants with complex CHD in our study also presented with decreased functional con-

nectivity between the amygdala and frontal and cingulate regions. The amygdala’s interaction

with the frontal cortex plays a crucial role in the regulation of emotion [46], known to be vul-

nerable in CHD survivors and found to be significantly different from controls on the associ-

ated BRIEF-A clinical scale. Elevated rates of anxiety disorders, attention deficit hyperactivity

disorder, and depression have been reported in adolescents and adults with complex CHD [47,

48], which could theoretically be related to amygdala dysfunction. In adolescents with major

depressive disorders, studies have previously shown decreased amygdala functional connectiv-

ity [49, 50]. A recent study reported that adults with complex CHD are more likely than con-

trols to present with some personality traits, in particular neuroticism (i.e., experiencing

emotional negativity and instability) [51]. However, whether these psychiatric symptoms are

present in youth with CHD and are related to altered functional amygdalar connectivity will

need to be further investigated, considering that we did not specifically evaluate mental health.

An unexpected finding was the observation of increased functional connectivity of the

DMN in participants with CHD when compared to controls. The DMN has been extensively

studied in the healthy populations and in various psychiatric, neurological, and neurodevelop-

mental conditions [36, 44, 52–54]. While decreased functional connectivity within the DMN

has been widely reported in pathologies such as autism spectrum disorder, schizophrenia, and

Alzheimer’s disease [55], an increased functional connectivity between the mPFC and the PCC

has been demonstrated in patients with mild cognitive impairment [53]. This is particularly of

Table 4. Functional connectivity differences between CHD and control groups where CHD participants presented with higher functional connectivity than

controls.

Affected region Cluster size Peak p-uncorrected Cluster p<FWE

CHD higher FC than CTL

DMN (medial prefrontal cortex) Posterior cingulate cortex 133 <0.001 0.018

DAN (intraparietal sulcus left) Right hippocampal and parahippocampal regions 405 <0.001 <0.001

DAN (intraparietal sulcus left) Left hippocampal and parahippocampal regions 263 <0.001 <0.001

DAN (intraparietal sulcus right) Right hippocampal and parahippocampal regions 348 <0.001 <0.001

FP (parietal cortex left) Left caudate, left accumbens and left putamen 161 <0.001 0.01

FP (parietal cortex left) Cerebellum Crus 1–2 right 151 <0.001 0.01

FC: functional connectivity, CHD: congenital heart disease, CTL: controls, DMN: default mode network; DAN: dorsal attention network; FPN: fronto-parietal network.

https://doi.org/10.1371/journal.pone.0264781.t004
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interest considering that there is emerging literature suggesting that seniors living with CHD

are at greater risk of early onset dementia [56, 57]. Moreover, the DMN is engaged in self-ref-

erential (internal) thinking and is disengaged during attentional-demanding (external) pro-

cesses [54]. Thus, greater activity within the DMN when individuals are at rest is thought to be

reflective of difficulties in switching from internal to external thoughts [58]. In participants

with CHD, this may reflect their cognitive and attentional dysfunction in daily life [59–61], as

they may experience difficulties switching from internal to external stimulation. However,

considering that we have not evaluated attention and hyperactivity, this hypothesis remains

speculative. Similarly, altered amygdalar connectivity, combined with DMN dysfunction, may

underlie in part some of the difficulties in regulating emotions or internal states that are fre-

quently observed in individuals with CHD [52].

Participants with CHD also demonstrated increased functional connectivity in the dorsal

attention network and the fronto-parietal network when compared to controls. The dorsal

attention network is known to be engaged during externally directed attentional tasks and its

activity is increased when individuals must focus their attention on external stimuli. Its level of

activity is thought to reflect and predict attentional skills [37]. Although we did not evaluate

attention specifically, participants with CHD presented with lower scores on the organization

of materials scale, likely reflecting difficulty when handling more than one stimulus at the

same time, which is driven in part by attentional skills. Regarding the fronto-parietal network

differences, increased resting state functional connectivity was specifically observed in the

CHD group between the parietal cortex and the cerebellar Crus 1 and Crus 2 regions. Theses

cerebellar regions are known to be involved in executive functions, coherent with our findings

[62].

When performing correlations between functional connectivity and BRIEF-A scores, we

observed different modest correlations in the two groups. Interestingly, we observed a negative

correlation between amygdala–cingulate/paracingulate gyrus connectivity and the organiza-

tion of materials scale in the control group, while a positive correlation between the default

mode intra-network functional connectivity and this scale was detected in the CHD group.

Higher levels of inhibition have been shown to correlate with decreased amygdala–cingulate

functional connectivity [63]. However, we could not find previous reports of a relationship of

organizational cognitive tasks with amygdala–cingulate or default mode network functional

connectivity. The lack of strong associations in these exploratory analyses may have been miti-

gated by the use of a self-reported questionnaire to measure executive functioning, which may

have induced some bias. Although the BRIEF-A has been demonstrated to be valid and reliable

for measuring executive function in various clinical populations [23], standardized batteries

may be more objective in examining a wider range of higher-order cognitive performance.

Abnormalities in functional connectivity may reflect alterations of the structural organiza-

tion of white matter tracts. Indeed, several diffusion tensor imaging studies have detected

lower fractional anisotropy in adolescents with CHD [14, 15, 64–66]. These findings may

reflect potential alterations to numerous facets of white matter microstructure, including alter-

ations to myelination, axon density, axon diameter, axon orientation, or cell membrane per-

meability [67]. Additionally, we recently applied neurite orientation dispersion and density

imaging, an advanced diffusion MRI modelling technique, in this cohort of CHD survivors,

detecting widespread reductions in the neurite density index, reflecting a lower density of

axon packing [14]. Altered regions included frontal and limbic white matter tracts, in line with

the altered functional connectivity we describe in these regions. Nevertheless, future multi-

modal MRI studies combining structural and functional connectivity analyses are needed to

disentangle these complex relationships.
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Limitations

Our results should be considered within the context of their limitations. It is important to

highlight that our sample of CHD participants included a mixed cohort of different CHD

physiologies, and therefore cannot be generalized to a specific subtype. Nevertheless, the fact

that we included participants with a variety of complex CHD physiologies operated during

infancy is representative of the clinical diversity of this condition. Also, we recognize that the

use of atlas-based seed selection may have introduced a potential bias [68]. Future studies

using data driven approach such as independent component analyses may provide comple-

mentary information to the current findings. Additionally, it is important to consider that dif-

ferences in brain volume and morphometry are common in individuals with CHD as

compared to healthy peers [10, 13], which theoretically could have influenced our resting state

fMRI results. However, considering that total grey matter volume did not differ between the

groups in our sample and that we used a validated pre-processing pipeline that included non-

linear registration [69] to overcome this potential effect, we believe this risk to be minimal in

the current sample. Lastly, the differences found in socioeconomic status between the two

groups may be a limitation of the study; however, we carefully corrected for this potential con-

founder in our analyses.

Conclusion

The current study provides the first evidence supporting the presence of altered functional

connectivity in youth born with complex CHD. Specifically, we found atypical functional con-

nectivity in youth with CHD in the fronto-orbital cortex, amygdala, default mode, dorsal

attention, and fronto-parietal networks. In this new era of open-science, future studies using

longitudinal imaging in large multi-center cohorts will strengthen our understanding of long-

term altered connectivity and how to measure the risk for these alterations at an individual

level, in order to better identify at-risk children and adolescents that could benefit from tar-

geted interventions.

Supporting information

S1 Fig. Functional connectivity distribution before and after denoising.

(TIF)

S1 Table. Proportion of participants who performed below clinical cut-off on the

BRIEF-A. Overall, a greater percentage of youths with CHD performed below scale’s clinical

cutoff (i.e., >65) than control (5.7–40.0% in CHD vs. 0–13.6% in controls) and reaching statis-

tical significance level for three subscales: inhibit (X2 = 14.23; p< 0.001), working memory (X2

= 7.1; p = 0.008) and organization of material (X2 = 11.09; p< 0.001).

(PDF)
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