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ABSTRACT
Objective To use echocardiographic and clinical features 
to develop an explainable clinical risk prediction model 
in patients with aortic stenosis (AS), including those with 
low- gradient AS (LGAS), using machine learning (ML).
Methods In 1130 patients with moderate or severe 
AS, we used bootstrap lasso regression (BLR), an ML 
method, to identify echocardiographic and clinical features 
important for predicting the combined outcome of all- 
cause mortality or aortic valve replacement (AVR) within 
5 years after the initial echocardiogram. A separate hold 
out set, from a different centre (n=540), was used to test 
the generality of the model. We also evaluated model 
performance with respect to each outcome separately and 
in different subgroups, including patients with LGAS.
Results Out of 69 available variables, 26 features were 
identified as predictive by BLR and expert knowledge 
was used to further reduce this set to 9 easily available 
and input features without loss of efficacy. A ridge logistic 
regression model constructed using these features had 
an area under the receiver operating characteristic curve 
(AUC) of 0.74 for the combined outcome of mortality/
AVR. The model reliably identified patients at high risk of 
death in years 2–5 (HRs ≥2.0, upper vs other quartiles, 
for years 2–5, p<0.05, p=not significant in year 1) and 
was also predictive in the cohort with LGAS (n=383, 
HRs≥3.3, p<0.05). The model performed similarly well in 
the independent hold out set (AUC 0.78, HR ≥2.5 in years 
1–5, p<0.05).
Conclusion In two separate longitudinal databases, ML 
identified prognostic features and produced an algorithm 
that predicts outcome for up to 5 years of follow- up 
in patients with AS, including patients with LGAS. Our 
algorithm, the Aortic Stenosis Risk (ASteRisk) score, is 
available online for public use.

INTRODUCTION
Aortic stenosis (AS) is increasingly prevalent 
and is associated with increased mortality, 
even when moderate in severity.1 2 Identifying 
patients with AS who are at increased risk of 
death is challenging because of the complex 
interplay of multiple factors that determine 

risk. Conventional risk assessments use few 
echocardiographic criteria, namely aortic 
valve area, mean transvalvular gradient and 
peak transvalvular velocity.3 This is clearly 
incomplete4—two patients with identical 
valve gradients can have very different risks 
based on other interacting, and unaccounted 
for, features.

Machine learning approaches can provide 
enhanced analysis of otherwise wasted data 
that are acquired as part of routine clinical 
care and can be used to estimate clinical 
risks. Such approaches applied to electronic 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Current guideline criteria used to make clinical de-
cisions in aortic stenosis (AS) are limited in number 
and are particularly challenging to apply in partic-
ular patient subgroups, namely low- gradient AS 
(LGAS). Machine learning (ML) models in medicine 
are traditionally challenging to apply at the bedside.

WHAT THIS STUDY ADDS
 ⇒ We show that application of an ML algorithm to 
combined echocardiographic and clinical data in 
patients with AS can provide good predictive capa-
bility for mortality and aortic valve replacement up 
to 5 years post echocardiography, and the algorithm 
performs well inthe clinically challenging patient 
subgroup LGAS. Furthermore, the algorithm devel-
oped is explainable and interpretable at a clinical 
level and uses few inputs that can be easily incor-
porated at the bedside.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE AND/OR POLICY

 ⇒ ML algorithms applied to echocardiographic and 
clinical data can yield valuable risk- predictive capa-
bility using few inputs at the bedside, extending the 
use of ML in AS beyond phenotyping and diagnosis 
and making use of available data that current guide-
lines for AS ignore.
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health record (EHR) data have been used to accurately 
predict clinical outcomes.5–7 Yet, findings are not always 
explainable and are not currently practically usable at 
the bedside. No study to date has evaluated clinical risk 
prediction in AS using machine learning analysis of 
combined echocardiographic and clinical data.

We sought to develop an explainable model8 that could 
be readily used at the bedside through a simple risk calcu-
lator requiring a few easily available input features. We 
also aimed to have a model that would be effective in the 
subgroup of patients with low- gradient aortic stenosis 
(LGAS) in whom clinical decision- making is extremely 
challenging.9 10

METHODS
Primary cohort
This study analysed a previously described longitudinal 
‘loyalty’ cohort of patients (n=1130) with moderate 

or greater severity AS defined by echocardiographic 
aortic valve area ≤1.5 cm2 and mean gradient ≥20 mm 
Hg.11 All patients had longitudinal primary care at the 
Massachusetts General Hospital (MGH), Boston, Massa-
chusetts, USA, with complete outcome follow- up until 
either death or the end of the study period (study period 
commencing 2006 and ending 31 December 2017) with 
no loss to follow- up. Patients with aortic dissection, coarc-
tation, high left ventricular outflow tract velocity (≥1.6 
m/s, which might indicate subaortic restriction to flow) 
or moderate or greater aortic or mitral regurgitation 
were excluded. One patient from the originally described 
cohort11 was excluded from this study because the exact 
date of death was not available.

Data preprocessing
Patients in the primary cohort were described by a 
total of 316 (62 clinical and 254 echocardiographic) 

Figure 1 Flowchart describing feature selection and model construction. AS, aortic stenosis; CHF, congestive heart failure; 
CKD, chronic kidney disease; LGAS, low- gradient aortic stenosis; MI, myocardial infarction; PVD, peripheral vascular disease.
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features. We excluded features that had missing data 
in greater than 50% of the patients leaving 69 features 
(online supplemental table 1). Of these remaining 69 
features, the missing data rate was very low overall with 
most variables complete (median missing data per vari-
able 0.15%, mode 0% and mean (skewed data) 5.6%). 
Categorical variables with more than two categories were 
binarised (ie, recoded to have only two categories). For 
example, aortic valve morphology was originally coded 
as either tricuspid, bicuspid, vertical bicuspid or hori-
zontal bicuspid. We grouped all bicuspid categories into 
a single category, leaving only two categories—bicuspid 
or tricuspid. We also binarised the aortic valve area (≤1.0 
cm2 coded as 1), the mean pressure gradient (≥40 mm 
Hg coded as 1) and the flow rate (≤210 mL/s coded as 
1). All continuous features were min–max normalised to 
fall between 0 and 1, inclusive. This was done to facilitate 
all input variables being on the same scale (ie, between 0 
and 1) helping to interpret the coefficients arising from a 
logistic regression model.

Missing data were handled in one of two ways. For some 
binary variables, we assumed that a missing entry for 
each of these fields indicated that the result was normal, 
and considered not worth reporting, by the reporting 

clinician. We refer to these features as presumed normal and 
replaced these missing entries with the appropriate code 
for normal for that variable. For aortic valve morphology, 
for example, a blank was assumed to be normal tricuspid 
morphology. For features where a missing entry could 
not be presumed normal, we imputed values using a 
multivariate imputation method.12 Thirty- one features 
had missing data requiring imputation.

Feature selection
Bootstrap lasso (Least Absolute Shrinkage and Selection 
Operator) regression (BLR) was used for feature selec-
tion.13 14 In this method, an L1- regularised logistic regres-
sion model is trained using repeated rounds of boot-
strapping. Lasso regression models have the property 
that many of the feature weights in the model are forced 
to zero, leaving only the most important features in the 
final model. Since the features that are selected by lasso 
regression may differ depending on the precise dataset 
used for training, we only use features that are consist-
ently retained (ie, have non- zero weights) after many 
bootstrap iterations. We used 100 bootstrap splits, strati-
fied by outcome, in which 80% of the data were used for 
training. Each bootstrap split consisted of a different set 

Table 1 Descriptive statistics

Primary cohort (n=1130)
Mean±SD or n (%)

Validation cohort (n=540)
Mean±SD or n (%) Significance*

Age 76.7±11.0 69.5±13.2 <0.001

Female sex 453/1130 (40.1) 230/540 (43.6) NS (0.17)

White race 1041/1130 (92.1) – –

Aortic valve area (cm2) 1.04±0.27 0.96±0.27 <0.001

Mean gradient (mm Hg) 29.5±13.7 29.5±15.9 NS (0.17)

Peak gradient (mm Hg) 51.8±22.0 49.9±24.9 <0.001

Transvalvular flow rate (mL/s) 243.5±52.1 226.4±54.6 <0.001

Energy loss 19.4±10.6 20.4±12.6 <0.001

Posterior wall thickness (mm) 11.3±1.9 10.8±2.0 <0.001

Left ventricular ejection fraction (%) 65.3±12.1 62.3±12.4 0.02

Myocardial infarction 235/1130 (20.8) 164/540 (30.3) <0.001

Peripheral vascular disease 447/1130 (39.6) – –

Regional wall motion abnormality 133/1130 (11.8) – –

Hyperlipidaemia 1011/1130 (89.5) 320/540 (59.3) <0.001

Chronic kidney disease 296/1130 (26.2) 96/540 (17.8) <0.001

Heart failure 358/1130 (31.7) 121/540 (22.4) 0.002

Mortality rate 395/1130 (35.0) 252/540 (51.3) <0.001

AVR rate 354/1130 (31.3) 344/540 (63.7) <0.001

LGAS mortality rate 162/383 (42.3) 196/316 (62.0) <0.001

LGAS AVR rate 126/383 (32.9) 189/316 (59.8) <0.001

Mortality rate in the absence of intervention (AVR) 340/776 (43.8) 138/196 (70.4) <0.001

*Using Mann- Whitney U test and χ2 test, two- sided significance. 

AVR, aortic valve replacement; LGAS, low- gradient aortic stenosis; NS, not significant.

https://dx.doi.org/10.1136/openhrt-2022-001990
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of patients randomly sampled with replacement from the 
entire dataset. Features with non- zero weight in at least 
85% of the bootstrapped splits were retained for further 
model development. The regularisation parameter for 
the L1 regression was chosen using threefold cross valida-
tion, with the parameter being chosen separately for each 
bootstrap split (see online supplemental information).

The choice of BLR threshold (85% in this case) entails 
a trade- off between which features are deemed important 

according to domain knowledge and the number of 
features selected. Based on prior work,12 we initially used 
a value of 90%, but found that the mean gradient, a 
feature that is known to have prognostic significance, was 
not selected. We elected to lower the threshold to 85% to 
include this classically prognostic feature (see Discussion 
section).

Aortic Stenosis Risk (ASteRisk) score
We trained a logistic regression model to predict a 
combined outcome consisting of all- cause mortality or 
aortic valve replacement. As we hypothesised that patients 
who received an aortic valve replacement (AVR) were 
deemed to be at high risk of death if they did not receive 
a valve replacement, we included AVR in the combined 
outcome to improve our ability to identify patients who 
are at high risk of death; that is, AVR was treated as an 
aborted death event.

From 69 input features, we obtained 26 features from 
BLR. We then selected a subset of these 26 features to 
form a parsimonious set that could be readily entered 
into an online risk calculator. In reducing the feature set 
size, we kept features that were readily available to clini-
cians, are measured by current practice guidelines and 
appeared in the most bootstrap splits (figure 1). The 
resulting 9 features were used to train an L2- regular-
ised logistic regression model to predict the combined 
outcome of death/AVR. Model performance, by area 
under the receiver operating characteristic curve (AUC) 
analysis, was compared among models containing 69, 26 
and 9 features. For transvalvular flow rate, we used an 
empiric cut- off of 230 mL/s in the early BLR but chose 
to refine the threshold to 210 mL/s in the final model 
construction, to be consistent with the recent identifica-
tion of this threshold flow rate at which aortic valve area 
becomes prognostic.11 The thresholds for the aortic valve 
area and mean gradient were the same as those used in 
the BLR analysis.

Box 1 Features selected in final algorithm

Model features
Features identified by bootstrap lasso regression

1. Transvalvular flow rate*
2. Mean gradient
3. Aortic valve area
4. Race
5. Heart failure
6. Peripheral vascular disease
7. Hyperlipidaemia
8. Myocardial infarction
9. Beta- blocker

10. Angiotensin receptor blocker
11. Nitrate
12. Statin
13. Antiplatelet
14. Oral anticoagulant
15. Chronic kidney disease (CKD)
16. Posterior wall thickness
17. Regional wall motion abnormality
18. CKD stage change event
19. Energy loss†
20. Gender
21. Hypertension
22. Coronary artery disease
23. Potassium sparing diuretics
24. Aortic insufficiency
25. Mitral insufficiency
26. Energy loss coefficient‡

Final 9 features
1. Aortic valve area
2. Mean gradient
3. Transvalvular flow rate†
4. Energy loss†
5. Posterior wall thickness
6. Heart failure
7. Myocardial infarction OR peripheral vascular disease OR regional 

wall motion abnormality
8. Hyperlipidaemia
9. CKD

*Calculated from aortic valve area, mean gradient and peak velocity using 
validated formula. 

†Calculated from aortic valve area, aortic sinus diameter and transvalvular flow 
rate using validated formula. 

‡Calculated from aortic valve area and aortic sinus diameter using validated 
formula; differs from feature 19 in that this feature does not use the 
transvalvular flow rate.

Table 2 Discriminatory ability of baseline and ASteRisk 
score for the combined outcome of death/AVR in both the 
primary and validation cohorts

Combined outcome death/AVR*

Model AUC P value

Primary cohort

Baseline 0.69 (0.68,0.71) 0.000042

ASteRisk score 0.74 (0.73, 0.76)

Validation cohort

Baseline 0.75 (0.73, 0.77) 0.02

ASteRisk score 0.78 (0.77,0.80)

*For death alone, the AUC results are: primary cohort: ASteRisk 
score 0.66±0.04, baseline: 0.61±0.04; validation cohort: ASteRisk 
score 0.61±0.05, baseline: 0.59±0.03.
ASteRisk score, Aortic Stenosis Risk score; AUC, area under 
the receiver operating characteristic curve; AVR, aortic valve 
replacement.

https://dx.doi.org/10.1136/openhrt-2022-001990
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Bootstrapping was done to obtain statistical measures 
of performance. A total of 10 stratified bootstrap splits 
(80% training, 20% testing) were performed for evalua-
tion, and the results are reported over the bootstrapped 
test sets. We used AUC analysis as well as the 1–5 year 
HRs. For the HRs, we chose the upper quartile of risk to 
denote the high- risk subgroup. Cox proportional hazards 
models were used for time- to- event analyses. CIs for the 
AUCs were calculated by mean±2 SEs of the AUCs across 
the 10 bootstrap splits. All CIs in the primary cohort 
are reported on these 10 bootstrap splits. AUCs were 
compared using paired t- test.

Validation cohort
The validation cohort consisted of 540 patients with AS 
from Laval University, Quebec, Canada, who also had 
longitudinal follow- up and similar inclusion and exclu-
sion criteria. This cohort came from a previously reported 
subset of patients,11 which itself was drawn from a prior 
study cohort that recruited 1999–2007.15 There were 

differences in coding of two features between the primary 
cohort (MGH) and validation cohort (Laval). First, 
the MGH dataset encodes a history of congestive heart 
failure without specifying the New York Heart Association 
(NYHA) class, while the validation cohort lists the NYHA 
class for each patient. To unify the coding structure, in 
the validation cohort we coded NYHA class ≤2 as zero 
and NYHA class >2 as one. Second, peripheral vascular 
disease at baseline and regional wall motion abnormal-
ities were not available in the Laval dataset. Since the 
MGH- based model uses the ‘logical or’ of ‘myocardial 
infarction, peripheral vascular disease, or abnormal wall 
motion’ to represent significant atherosclerotic burden, 
we used only myocardial infarction in the Laval dataset 
for this feature.

To impute missing data, a second multivariate impu-
tation model was trained on the final set of 9 features 
from the primary cohort and applied to the validation 
cohort.

CIs for the AUCs were calculated by randomly sampling 
20% of the dataset, computing the AUC in that sample, 
and calculating the SD over 10 such random samples. 
The CIs were computed using the mean±2 SEs as in the 
primary cohort.

Baseline risk model
For comparison, we also constructed a baseline risk model 
using conventional clinical features: (1) mean transval-
vular gradient, (2) aortic valve area, (3) age and (4) left 
ventricular ejection fraction.6 16 These four features were 
used as input to an L2- regularised logistic regression 
model that was trained and tested in the same way as the 
ASteRisk score was, as described above.

Statistical analyses were performed using Python 3.6.8 
(Python Software Foundation, Wilmington, Delaware, 
USA), MATLAB 2017a (MathWorks, Natick, Massachu-
setts, USA) and SPSS V.26 (IBM, Armonk, New York, 
USA).

Table 3 HRs for death in the primary cohort, LGAS subset and subset of patients in whom no intervention was performed 

HRs for death in the primary cohort (n=1130)

Model 1- Year HR (95% CI) 2- Year HR (95% CI) 3- Year HR (95% CI) 4- Year HR (95% CI) 5- Year HR (95% CI)

Baseline 2.8 (1.2 to 6.9) 1.7 (0.9 to 3.2) 1.5 (0.8 to 2.6) 1.6 (0.9 to 2.6) 1.6 (1.0 to 2.5)

ASteRisk score 2.2 (0.9 to 5.5) 2.1 (1.1 to 4.0) 2.1 (1.2 to 3.7) 2.0 (1.2 to 3.3) 2.0 (1.3 to 3.2)

Patients with LGAS (n=383)

Baseline 10.9 (2.3 to 62.4) 3.7 (1.4 to 9.7) 3.5 (1.5 to 8.3) 3.7 (1.7 to 8.2) 3.6 (1.7 to 7.7)

ASteRisk score 3.0 (0.7 to 13.4) 3.5 (1.3 to 9.5) 4.1 (1.7 to 10.0) 3.5 (1.6 to 7.6) 3.3 (1.6 to 7.0)

Patients without intervention (n=776)

Baseline 4.8 (1.9 to 12.0) 2.9 (1.4 to 5.7) 2.5 (1.3 to 4.6) 2.5 (1.4 to 4.4) 2.4 (1.4 to 4.3)

ASteRisk score 3.0 (1.2 to 7.7) 2.9 (1.5 to 5.7) 3.0 (1.7 to 5.5) 2.8 (1.6 to 4.8) 2.8 (1.7 to 4.9)

P value <0.05, where HR (95% CI) does not cross/include 1. Results are from 10 bootstrapped test sets. HRs are calculated using the upper 
quartile of risk.
ASteRisk score, Aortic Stenosis Risk score; LGAS, low- gradient aortic stenosis.

Figure 2 Time- to- event analysis based on Aortic Stenosis 
Risk score (ASteRisk score) in patients with aortic stenosis 
within the primary cohort. High- risk group determined by 
upper quartile of ranked risk. Curves are averaged over 10 
bootstrapped test sets. p<0.05 high- risk group versus others.
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Ethics approval
Studies complied with the Declaration of Helsinki and 
were approved by the respective Institutional Review 
Board and Ethics Committees for the primary and valida-
tion cohorts (human ethics approval given by MGH Insti-
tutional Review Board Approval ID 2009P000122 and 
Quebec Heart and Lung Institute). Informed consent 
was not required.

RESULTS
Descriptive statistics for the primary and validation 
cohorts are shown in table 1. Of the 69 features available 
for each patient, 26 were selected by the algorithm. This 
was further reduced to 9 features (box 1).

Primary cohort
The minimum sample size required for a model with 9 
features, an event fraction of 0.35, and a maximum root 
mean squared prediction error of 0.05 is 450, which is 
met in this analysis.17

The ASteRisk score, which was trained on all 9 
features, had an AUC of 0.74 (95% CI 0.73 to 0.76) for 
the combined outcome. The discriminatory ability of 
this model was superior to that of the baseline model 
(table 2). The ASteRisk score reliably identified patients 
at high risk of death at years 2–5 of follow- up, while the 
baseline model identified high- risk patients only at year 
1 (table 3). Moreover, the discriminatory ability of the 
ASteRisk score was similar to that of a model trained 
with all 69 features (AUC of full model 0.75 with 95% CI 
0.73 to 0.77, p=0.37 vs ASteRisk score). There was also no 
significant difference to the performance of the ASteRisk 
score to the intermediary model with 26 features.

For patients with LGAS (n=383), both the baseline 
and ASteRisk score reliably identified those at high risk 
of death for years 2–5, with the baseline model also 
being predictive at year 1 (table 3). Among the cohort 
of patients who did not receive an intervention (n=776), 
both models had statistically significant HRs for years 1–5 
(table 3, see also online supplemental table 2).

Time- to- event analyses for both the combined outcome 
and mortality alone are shown in figure 2. Time- to- 
event analyses for patients with LGAS and for patients 
not undergoing intervention are presented in figures 3 
and 4, respectively. For both the combined outcome and 
mortality alone, both curves separate at 1 year, with differ-
ences between years 2 and 5 being statistically significant 
for predicting mortality.

Average risk of combined death/AVR in the risk quar-
tiles is as follows: first quartile (lowest 25% of risk): 37.6%; 
second quartile: 55.2%; third quartile: 67.9%; fourth 
quartile (highest 25% of risk): 88.7%.

Validation cohort
In the validation cohort, the ASteRisk score had supe-
rior discriminatory ability relative to that of the base-
line model (table 2). The ASteRisk score also identified 
patients at high risk of death at years 1–5 in the entire 
validation cohort, LGAS cohort (n=316) and patients not 
undergoing intervention (n=196) (table 4). By contrast, 
the baseline model identified high- risk patients in the 
overall cohort and patients not undergoing an interven-
tion at years 1–5, but not at any time point in the LGAS 
cohort (table 4).

Time- to- event analyses for all patients in the valida-
tion cohort are presented in figure 5 for the ASteRisk 
score. Time- to- event analyses for patients with LGAS and 
patients not undergoing intervention in the validation 
cohort are presented in figures 6 and 7, respectively. 
Again, both curves separate by 1 year, with differences 
between years 1 and 5 being statistically significant for 
predicting mortality.

Figure 3 Time- to- event analysis in patients with low- 
gradient aortic stenosis (LGAS) within the primary cohort. 
High- risk group determined by upper quartile of ranked risk. 
Curves are averaged over 10 bootstrapped test sets. p<0.05 
high- risk group versus others.

Figure 4 Time- to- event analysis in patients with aortic 
stenosis not undergoing an intervention within the primary 
cohort. High- risk group determined by upper quartile of 
ranked risk. Curves are averaged over 10 bootstrapped test 
sets. p<0.05 high- risk group versus others.

https://dx.doi.org/10.1136/openhrt-2022-001990
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DISCUSSION
Using two independent longitudinal databases from 
large tertiary hospitals, we have demonstrated that a 
machine learning algorithm using a small set of impor-
tant features, readily available at the bedside, can be 
input to reliably calculate clinical risk in patients with 
aortic stenosis over long- term follow- up (figure 8). The 
algorithm outperforms a baseline risk model using 
conventional risk factors used to judge severe AS and also 
works in the traditionally challenging subgroup of LGAS. 
Moreover, the algorithm development process identified 
important features not traditionally considered in clinical 
risk assessment, but known from physiology to contribute 
to haemodynamic loading in AS.

A driving principle of this work was that a successful 
clinical risk model is not only determined by its perfor-
mance but also by its ease of use.8 Although modern EHR 
systems can implement risk models that use an arbitrary 
number of features, such systems are not available in all 
clinical settings.18

Samad et al5 demonstrated good prediction capa-
bility (AUC 0.89) with a random forest model, but used 
echocardiography and clinical data to predict all- cause 
mortality in a general population. Our study focused 
on outcome within AS, and specifically also evaluated 
the extremely clinically challenging subgroup of LGAS. 
While the results of Samad et al are compelling, the 
models work at a population level, and teasing out specific 
risks in particular phenotypic subgroups is a different 
challenge altogether. This brings up the fundamental 
dilemma in machine learning applied to health, whereby 
there is a debate about the degree of ‘explainability’ a 
model needs.8 We take the view that if clinical practices 
are to be informed and influenced by machine learning 
models, and clinicians are to accept them, they first need 
to start with comprehensible models rather than broad 
‘black- box’ approaches.

In addition to providing insight into how risks were 
determined, our model also permits some insights into 
the pathophysiology of AS. The set of features that appears 
in our predictive model includes both clinical (eg, heart 

Table 4 HRs for death in the validation cohort, LGAS subset and patients not undergoing intervention 

HRs for death in the validation cohort (n=540)

Model 1- Year HR (95% CI) 2- Year HR (95% CI) 3- Year HR (95% CI) 4- Year HR (95% CI) 5- Year HR (95% CI)

Baseline 2.1 (1.6 to 3.0) 1.9 (1.5 to 2.5) 1.9 (1.5 to 2.4) 1.9 (1.5 to 2.3) 1.8 (1.5 to 2.2)

ASteRisk score 2.6 (1.9 to 3.6) 2.6 (2.0 to 3.5) 2.6 (2.0 to 3.3) 2.4 (1.9 to 3.1) 2.4 (1.9 to 3.0)

Patients with LGAS (n=316)

Baseline 1.0 (0.7 to 1.4) 1.0 (0.8 to 1.4) 1.1 (0.8 to 1.5) 1.1 (0.8 to 1.5) 1.2 (0.9 to 1.6)

ASteRisk score 2.3 (1.3 to 3.8) 2.6 (1.6 to 4.0) 2.5 (1.7 to 3.8) 2.5 (1.8 to 3.7) 2.5 (1.7 to 3.5)

Patients without intervention (n=196)

Baseline 2.4 (1.5 to 3.9) 2.3 (1.6 to 3.5) 2.8 (2.0 to 3.9) 2.9 (2.2 to 4.0) 3.1 (2.4 to 4.2)

ASteRisk score 3.3 (2.0 to 5.3) 3.9 (2.6 to 5.7) 4.0 (2.8 to 5.6) 3.9 (2.8 to 5.4) 4.3 (3.1 to 5.9)

P value <0.05, where HR (95% CI) does not cross/include 1. HRs are calculated using the upper quartile of risk.
ASteRisk score, Aortic Stenosis Risk score; LGAS, low- gradient aortic stenosis.

Figure 5 Time- to- event analysis based on ASteRisk score 
in patients with aortic stenosis within the validation cohort. 
High- risk group determined by upper quartile of ranked risk. 
p<0.05 high- risk group versus others. ASteRisk score, Aortic 
Stenosis Risk score.

Figure 6 Time- to- event analysis in patients with low- 
gradient aortic stenosis (LGAS) within the validation cohort. 
High- risk group determined by upper quartile of ranked risk. 
p<0.05 high- risk group versus others.
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failure) and echocardiographic (eg, mean gradient) vari-
ables that are known to have prognostic power. But inter-
estingly, the model also identified transvalvular flow rate 
and transvalvular energy loss as important features. These 
findings are consistent with recent work highlighting the 

importance of flow rate in patients with AS9 11 19 which 
is not yet commonly used in current clinical practice. 
Transvalvular energy loss is considered the best measure 
of left ventricular afterload resultant from AS,16 20 21 and 
our algorithm’s selection of energy loss as a key determi-
nant of outcome suggests that the concept of energy loss 
should be revisited in the assessment of AS. Furthermore, 
our findings suggest that echocardiographic approxima-
tions of energy loss are indeed clinically valuable and 
discriminatory for outcomes.20 21

The fact that our algorithm performs well on two 
large, independent datasets argues that it is indeed 
generalisable and therefore can be applied more widely 
to different patient cohorts. We therefore constructed a 
user interface that enables clinicians and researchers to 
easily use our algorithm. This online risk calculator, the 
MGH- MIT Aortic Stenosis Risk (ASteRisk) Calculator, is 
available at https://calc-as.herokuapp.com/. Our goal 
is to provide this tool for clinicians to use as an assis-
tance in clinical decision- making in AS, but we recog-
nise that it also provides an opportunity for prospective 
validation of our model across disparate geographic, 
demographic and healthcare settings globally. The 
calculator provides users with quantitative risk scoring 
based on our machine learning algorithm applied to the 
9 bedside inputs.

Although the final ASteRisk score uses 9 inputs, it ulti-
mately requires 11 features, all of which can be derived 
from the nine routine measurements that a clinician is 
required as input. Transvalvular flow rate and energy 
loss are derived from other inputs (figure 1).11 16 This 
was done because transvalvular flow rate and energy loss 
are not routinely measured during a routine echocar-
diographic study and we wanted inputs to be clinically 
accessible.

Figure 7 Time- to- event analysis in patients not undergoing 
an intervention within the validation cohort. High- risk group 
determined by upper quartile of ranked risk. p<0.05 high- risk 
group versus others.

Figure 8 Training and validation of a machine learning algorithm that allowed prediction of mortality and AVR in patients with 
AS, including in LGAS. AS, aortic stenosis; AVR, aortic valve replacement; LGAS, low- gradient aortic stenosis.

https://calc-as.herokuapp.com/
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Furthermore, this algorithm does not require EHR 
infrastructure for clinicians to use, increasing the poten-
tial utility of our algorithm in a range of clinical settings 
where these technologies are unavailable or limited in 
their scope.18 We narrowed input number to 9 and there 
was no significant difference in model performance to a 
model with all 69 inputs.

Some limitations should be considered when inter-
preting our findings. We excluded patients with moderate 
or greater aortic or mitral regurgitation. Longitudinal 
data were retrospectively analysed. To achieve sufficient 
numbers to train a machine learning algorithm, it is 
necessary to use such retrospective data, but prospective 
validation would be important. The majority of patients 
in the primary cohort were Caucasian, making applica-
bility to other demographics less certain.

Our data are only applicable to patients with moderate- 
to- severe AS. Patients with mild AS were excluded because 
they are unlikely to proceed to adverse clinical outcomes 
within 5 years of diagnosis.22

The outcome of AVR in the combined death/AVR is 
subject to clinical bias based on clinical decision- making 
to refer for and proceed with AVR—but nonetheless this 
is a commonly used outcome in AS studies. We also used 
all- cause mortality as a stand- alone outcome, which is less 
susceptible to bias.

We chose a BLR threshold of 85% (rather than 90%) 
to incorporate mean gradient as a feature. We did this 
because numerous studies have established the predictive 
power of mean gradient in AS23–27 and mean gradient is 
a central tenet of clinical AS risk assessment.3 9 We there-
fore believed that any model that left out mean gradient 
will be viewed with scepticism in the clinical commu-
nity. Our cohort did have a large number of patients 
with LGAS and as such, this may have skewed findings 
to miss mean gradient as a selected feature using a 90% 
threshold. Nonetheless, we felt it important to include 
maintaining our model’s external validity and applica-
bility across a range of cohorts, acknowledging our own 
data skew toward LGAS. We believed that the adjustment 
of BLR threshold by 5% was a small but necessary adjust-
ment to permit inclusion of the important and univer-
sally recognised feature.

The recruitment periods for the primary and validation 
cohorts were different with respect to the ease of access 
and technical success rates with transcatheter aortic inter-
ventions which have improved considerably in the last 
decade. This may have had an effect on outcomes within 
the two cohorts.

Finally, our cohorts (and hence models) arise from 
two large tertiary referral centres in North America. The 
applicability to other settings must be considered in this 
context and further data in other populations and setting 
would be of value.

Using a machine learning algorithm, we were able to 
predict clinical outcome in two separate longitudinal 
cohorts for patients with AS, including in LGAS and 
patients not undergoing intervention. We provide an 

online risk calculator that permits the use of our algo-
rithm for clinical and research purposes.
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