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Automated detection of the contrast phase in MDCT by an artificial
neural network improves the accuracy of opportunistic bone mineral
density measurements
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Abstract
Objectives To determine the accuracy of an artificial neural network (ANN) for fully automated detection of the presence and
phase of iodinated contrast agent in routine abdominal multidetector computed tomography (MDCT) scans and evaluate the
effect of contrast correction for osteoporosis screening.
Methods This HIPPA-compliant study retrospectively included 579 MDCT scans in 193 patients (62.4 ± 14.6 years, 48
women). Three different ANN models (2D DenseNet with random slice selection, 2D DenseNet with anatomy-guided slice
selection, 3D DenseNet) were trained in 462 MDCT scans of 154 patients (threefold cross-validation), who underwent triphasic
CT. All ANNmodels were tested in 117 unseen triphasic scans of 39 patients, as well as in a publicMDCT dataset containing 311
patients. In the triphasic test scans, trabecular volumetric bone mineral density (BMD) was calculated using a fully automated
pipeline. Root-mean-square errors (RMSE) of BMD measurements with and without correction for contrast application were
calculated in comparison to nonenhanced (NE) scans.
Results The 2D DenseNet with anatomy-guided slice selection outperformed the competing models and achieved an F1 score of
0.98 and an accuracy of 98.3% in the test set (public dataset: F1 score 0.93; accuracy 94.2%). Application of contrast agent
resulted in significant BMD biases (all p < .001; portal-venous (PV): RMSE 18.7 mg/ml, mean difference 17.5 mg/ml; arterial
(AR): RMSE 6.92 mg/ml, mean difference 5.68 mg/ml). After the fully automated correction, this bias was no longer significant
(p > .05; PV: RMSE 9.45 mg/ml, mean difference 1.28 mg/ml; AR: RMSE 3.98 mg/ml, mean difference 0.94 mg/ml).
Conclusion Automatic detection of the contrast phase in multicenter CT data was achieved with high accuracy, minimizing the
contrast-induced error in BMD measurements.
Key Points
• A 2DDenseNet with anatomy-guided slice selection achieved an F1 score of 0.98 and an accuracy of 98.3% in the test set. In a
public dataset, an F1 score of 0.93 and an accuracy of 94.2% were obtained.

• Automated adjustment for contrast injection improved the accuracy of lumbar bone mineral density measurements (RMSE
18.7 mg/ml vs. 9.45 mg/ml respectively, in the portal-venous phase).
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• An artificial neural network can reliably reveal the presence and phase of iodinated contrast agent in multidetector CT scans
(https://github.com/ferchonavarro/anatomy_guided_contrast_c). This allows minimizing the contrast-induced error in
opportunistic bone mineral density measurements.
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Abbreviations
2D Two dimensional
3D Three dimensional
ANN Artificial neural network
AR Arterial
BMD Bone mineral density
NE Nonenhanced
PV Portal-venous
RMSE Root-mean-square error

Introduction

Abdominal multidetector computed tomography (MDCT) is a
widely used method to evaluate a broad range of pathologies
[1]. In the USA alone, more than 91 million CT scans were
performed in 2019, compared with around 35 million CT
scans in 2000 (i.e., 278.5 vs. 123.7 scans, respectively, per
1000 inhabitants) [2]. Besides visual and anatomical informa-
tion, each CT scan contains extensive biometric data [3]. This
potentially useful information could add value to every exam-
ination and help address the increasing socioeconomic burden
and demands on imaging services worldwide. To date, how-
ever, this data mostly remains unused [4].

Over the recent years, advances in computational perfor-
mance, data processing, and the availability of large datasets have
promoted the application of artificial intelligence [5]. In particu-
lar, CT imaging has been intensively studied for the application
of deep-learning algorithms [6–8]. These frameworks potentially
enable fully automated biomarker extraction independent of the
clinical indication for CT imaging, commonly referred to as op-
portunistic screening. In fact, several studies have already shown
the benefits of automated and semi-automated extraction of tis-
sue biomarkers, most notably in the field of osteoporosis (i.e.,
extraction of bone mineral density (BMD), fracture detection,
and prediction of fracture risk) [9–11].

Many technical factors can influence the accuracy and preci-
sion (reproducibility) of opportunistic CT measurements.
Scanner-specific factors include scanner type, tube voltage, and
reconstruction kernel. Additionally, the application of iodinated
contrast agent in a majority of CT scans also results in a signif-
icant bias in Hounsfield unit (HU) attenuation for various tissues
[12, 13]. For spinal bone measurements, for example, means of
BMD estimates may increase up to 13% on portal-venous (PV)
scans [14]. It follows thatmeasurements in contrast-enhancedCT

scans should be adjusted to avoid possible misdiagnoses, such as
of osteoporosis [15]. Although modern CT scanners usually pro-
vide information on contrast administration in the imaging meta-
data, there is commonly no direct documentation on the contrast
phase present and any application errors that may have occurred
[16]. Furthermore, these metadata are often incompletely report-
ed, causing major problems for fully automated pipelines.

Thus, the purpose of this paper was (1) to introduce a
framework based on an artificial neural network (ANN) that
automatically detects the presence and phase of iodinated con-
trast in an abdominal CT scan and (2) to assess the error in
BMD calculation with vs. without such an automated
correction.

Methods

The local institutional review board approved this HIPPA-
compliant retrospective study and waived written informed
consent (waiver number: 27-19S-SR; 22.04.2020).

Study population and datasets

CT images were retrospectively selected from our digital pic-
ture archiving communication system (PACS) (Sectra AB).
We included 206 consecutive patients with a routine abdom-
inal triphasic MDCT scan (dedicated to investigating liver or
kidney pathologies) acquired between September 2016 and
November 2019. Exclusion criteria were previous contrast
application < 2 h prior to the triphasic CT (n = 6), contrast
administration via the inferior vena cava (n = 2), and insuffi-
cient coverage of the abdomen (n = 5). The final dataset
consisted of 193 adults (48 woman and 145men), with a mean
age of 62.4 ± 14.6 years (Table 1 and Fig. 1). Most patients
included were suspected or proven to have liver or kidney
cancer (higher male-to-female ratio), resulting in more males
being included in the study population. We randomly split the
study set into 80% for training (154 patients, 462 scans, 1456
vertebrae) and 20% for testing (39 patients, 117 scans, 411
vertebrae). The split was held consistent during our study. The
training set was used to train the different ANN models using
a threefold cross-validation. The test set was used to evaluate
the different ANNs in unseen CT scans. A public MDCT
dataset, VerSe (https://osf.io/nqjyw/; https://osf.io/t98fz/; CC
BY-SA), was used to further evaluate the generalizability of
our approach [17–19]. We selected all scans that contained at
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least two vertebrae between the 10th thoracic vertebra and the
4th lumbar vertebra, resulting in 311 patients (158 women and
153 men) with a mean age of 59.6 ± 17.2 years.

CT imaging

In the study set, all CT scans were performed on the same
MDCT scanner (IQon Spectral CT; Philips Medical Care)
using a standardized protocol. The routine abdominal
contrast-enhanced images were acquired in a helical mode
with a peak tube voltage of 120 kVp, an axial slice thickness
of 0.9–1 mm, and an adaptive tube load. After the acquisition
of pre-contrast images, all patients received standardized intra-
venous administration of contrast agent (Iomeron 400; Bracco)
using a high-pressure injector (Fresenius Pilot C; Fresenius
Kabi). Thirty-seven patients additionally received oral contrast
(Barilux Scan; Sanochemia Diagnostics). Post-contrast scans
were performed in both AR and PV phases. The acquisition
of the AR contrast phase was triggered after a threshold of
120 HU was reached in a region of interest (ROI) placed in
the aorta. The PV phase was performed after a standard delay
of 80 s. For further analysis of the study, reformations of the

spine were reconstructed using a filtered back projection favor-
ing sharpness over noise (bone kernel). In the public dataset
VerSe, CT scans were acquired with more than 7 different
scanners from different vendors (Table 1) [19]. Here, the con-
trast phase was visually assessed by two radiologists (2 and
19 years of clinical experience) and served as ground truth.
The CT data were converted into the Neuroimaging
Informatics Technology Initiative (NIfTI) format and reduced
to a maximum of 1 mm isotropic spatial resolution.

Vertebrae localization, labelling, and segmentation

An offline version of the freely available web tool Anduin
(https://anduin.bonescreen.de) was used for fully automated
spine processing [18]. Here, a low-spatial-resolution 3D
ANN created Gaussian heat maps and extracted bounding
boxes around the spine, allowing the extraction of localized
maximum-intensity projections (MIPs) to locate the spine.
Second, a 2D Btrfly Net was applied on the coronal and sag-
ittal MIPs for vertebra labeling [20, 21]. The correct labeling
of the vertebrae was verified by a radiologist and manually
corrected if needed. Third, segmentation masks were created

Table 1 Characteristics of CT
scans and patients in the different
datasets

Study set Public dataset Verse

Training Test All All

Patients

No. of patients 154 39 193 311

No. of women 42 6 48 158

Age† 61.9 ± 14.5 62.1 ± 15.2 62.4 ± 14.6 59.6 ± 17.2

Imaging

No. of scans 462 117 579 311

No. of vertebrae 1456 411 1867 3953

No. of fractures* 30 9 39 N/A

Intravenous contrast

Nonenhanced 154 39 193 152

Arterial phase 154 39 193 28

Portal-venous phase 154 39 193 131

Scanner

Philips IQon 154 39 193 86

Philips Brilliance 64 0 0 0 50

Philips iCT 0 0 0 38

Siemens Definitions AS+ 0 0 0 38

Siemens Definition AS 0 0 0 53

Siemens Biograph 64 0 0 0 9

Siemens Sensation Cardiac 0 0 0 3

Other 0 0 0 67

Note: Unless otherwise indicated, data are numbers of patients
* Only fractures at vertebral level L1–L3 were excluded from BMD assessment
†Data are means ± standard deviations
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around vertebral labels using a 3D U-Net [22, 23]. Fourth,
another 3D U-Net was used to divide segmentations in verte-
bral subregions, including posterior elements as well as the
cortical shell and trabecular compartment of the vertebral
bodies.

Data preprocessing

Three different ANN models (2D random DenseNet, 2D
anatomy-guided DenseNet, and 3D DenseNet) were explored
for our contrast prediction framework. For the 2D models, all
volumes were resampled to an isotropic resolution of 1 mm3

and normalized using z-score normalization. Restricted by the
pre-trained architecture for the 2D random models, crop-
padding to an image size of 224 × 224 was applied. Due to
GPU memory constraints, for the 3D model, all scans were
resampled to 3 mm3 isotropic resolution and normalized using
z-core normalization.

Training of the artificial neural network models

All ANN models were developed in PyTorch (version 1.7.0,
https://pytorch.org) using a 48-GBNvidia RTX 8000 [24]. 2D
models were trained with a batch size of 100 and a learning
rate of 1e−4 using an Adam with weight decay (AdamW)
optimizer. 3D models were trained with a batch size of 32
and a learning rate of 4e−4. Training was performed with early
stopping and monitoring of the validation F1 score to select
the best model. Categorical weighted cross-entropy was used
as the loss function. Heavy data augmentation was applied at

training time and included vertical and horizontal flip, random
rotation, random zoom, random cropping, and random field of
view. A threefold cross-validation was performed when train-
ing the different ANN models. Here, we randomly split the
154 patients (462 scans) from the training set into 3 consecu-
tive subsets (folds). A random seed was set to achieve repro-
ducibility of the training results. During cross-validation, one
of the folds was used as the validation set, and the other two
folds were used for training. This process was repeated three
times, always leaving one different fold for validation. The
final accuracy and the best model were detected by tracking
the F1 score. Finally, after the optimization, each ANNmodel
was tested in unseen CT scans in the test set and in the public
dataset VerSe.

Characteristics of the different ANN models

Three different ANN models (2D random DenseNet, 2D
anatomy-guided DenseNet, and 3D DenseNet) were explored
for our contrast prediction framework. The anatomy-guided
model (2D anatomy-guided DenseNet, https://github.com/
ferchonavarro/anatomy_guided_contrast_ct) selectively
extracted axial slices from the CT scans based on vertebral
centroids that were obtained with the automated pipeline
Anduin (Fig. 2). Here, we evaluated different combinations of
thoracic and lumbar vertebrae levels. The anatomy-guidedmodel
that combined axial images from T8, T9, T10, T11, T12, L1, and
L2 achieved the best performance in the validation sets. The axial
images at those different spine levels served as input to the ANN,
resulting in a probability vector for each image for each contrast

Fig. 1 The flowchart shows the data collection process. In total, 193 patients and 579 scans were collected for the study set. This dataset was split into
training and test sets. Additionally, another public dataset (VerSe) with 311 patients was included for independent testing
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phase (AR, NE, PV). The final contrast prediction was deter-
mined bymajority vote from all available predictions in a specific
scan. The naive random slice selection model (Random 2D)
randomly used seven axial slices independent of the vertebral

centroids. The final contrast prediction for this model was calcu-
lated similarly to the anatomic-guided model. For both the
anatomic-guided model and the 2D random model, a pre-
trained DenseNet161 was used as the deep-learning model

Fig. 2 Overview of the fully automated contrast prediction pipeline. First,
Anduin (https://anduin.bonescreen.de) is used to localize, label, and
segment the vertebrae. Second, the 2D anatomy-guided DenseNet
selectively extracts axial slices from the CT scans based on vertebral
centroids T8–T12 and L1–L2. These seven images serve as the patient-

specific input for a DenseNet161 network depicted in the bottom panel of
the figure. The network generates seven contrast predictions, one for each
image. The average of these predictions is calculated, and the contrast
phase with the highest value is displayed as the final prediction

Table 2 Evaluation metrics of the
different ANNs in the triphasic
MDCT dataset

Model Precision Sensitivity Specificity F1 score Accuracy

3D 0.941 0.940 0.970 0.940 0.940

Random 2D 0.976 0.974 0.987 0.974 0.974

Anatomy-guided 0.984 0.983 0.991 0.983 0.983
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architecture [25]. The 3Dmodel (3D DenseNet) used the full 3D
scan as input [26].

Fracture evaluation and BMD extraction

In the test set, CT scans were screened for fractures using a
semiquantitative approach according to Genant [27].
Vertebrae were graded into non-fractured (grade 0) and frac-
tured according to height loss (grade 1, 20–25%; grade 2, 25–
40%; and grade 3, ≥ 40%). Abnormal morphometry related to
developmental changes, like in Scheuermann disease, was not
rated as a fracture. Vertebrae at the levels of L1–L3 that had a
fracture grade greater than 1 were excluded from further BMD
assessment (n = 22). BMD values were automatically extract-
ed from the segmentations masks of the trabecular compart-
ment of vertebral bodies, and scanner-specific HU-to-BMD
conversion equations previously calculated with density ref-
erence phantoms (QRM)were applied [28]. BMD values were
averaged over non-fractured lumbar vertebrae L1–L3 and lin-
ear correction equations calculated in the training set were
applied for each contrast phase.

Statistical analysis

Statistical analyses were performed by using Prism 8 (Version
9.0.0, 2020, GraphPad Software). BMD values derived from
contrast-enhanced (AR and PV) scans were directly compared
with BMD values derived from NE scans using root-mean-
square errors [29]. Mean errors and 95% confidential intervals

were displayed using standard Bland-Altman plots. Mean
BMD values were compared using paired samples t test.
Statistical significance was defined as p < .05. ANN evalua-
tion metrics were obtained using Scikit-learn (version 0.24.2,
https://scikit-learn.org/stable/index.html).

Results

Automated contrast prediction

The performance for the different ANN models in the two
datasets is tabulated in Table 2 and Table 3. In the study test
set, the anatomy-guided 2D DenseNet model achieved the
highest F1 score of 0.98 compared to the random 2D
DenseNet model (F1 score 0.97) and the 3D DenseNet model
(F1 score 0.94). Accordingly, the 2D anatomy-guided ap-
proach achieved the best performance in other reported met-
rics such as precision, sensitivity, specificity, and accuracy
(Table 2). Table 3 shows the calculated metrics for the inde-
pendent public dataset VerSe. Here, among all proposed
models, the 2D anatomy-guided approach achieved the best
accuracy of 94.2% and an F1 score of 0.93. The random 2D
DenseNet model achieved an accuracy of 89% and an F1
score of 0.83. The 3D DenseNet model achieved an accuracy
of 84.2% and an F1 score of 0.82. Again, the 2D anatomy-
guided approach achieved the highest performance for all oth-
er metrics. To further investigate the sensitivity and specificity
of our ANN models, we plotted receiver operating

Table 3 Evaluation metrics of the
different ANNs in the public
dataset VerSe

Model Precision Sensitivity Specificity F1 score Accuracy

3D 0.827 0.827 0.908 0.827 0.842

Random 2D 0.81 0.86 0.94 0.83 0.89

Anatomy guided 0.946 0.917 0.966 0.931 0.942

Fig. 3 Receiver operating characteristic curves (ROCs) for the different ANN models in both the triphasic MDCT test set (a) and the public dataset
VerSe (b). Red plot: anatomy-guided model; blue plot: 2D random model; green plot: 3D model. AUC = area under the ROC curve
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characteristic (ROC) curves. Although the area under the
ROC curve (AUC) was high (> 0.9) for all approaches (Fig.
3), the 2D anatomy-guided model outperformed all other
models in the study test set (AUC 1.00 vs. 0.99 vs. 0.97), as
well as in the public dataset VerSe (AUC 0.99 vs. 0.97 vs
0.96) (Fig. 3).

Accuracy errors in BMD measurements before and
after the correction for contrast injection

Averaged, uncorrected BMD values derived from
contrast-enhanced CT images were significantly

overestimated compared to NE MDCT scans (all p <
.001). Uncorrected arterial (AR)-phase BMD values
were approximately 4% higher (mean difference
5.68 mg/ml; 138.2 vs. 132.5 mg/ml), and PV-phase
BMD values were approximately 13% higher (mean dif-
ference 17.5 mg/ml; 150.0 vs. 132.5 mg/ml). After the
automated correction for contrast agent, no significant
difference to NE MDCT scans was observed (AR, PV
both p > .05; mean difference 0.94 mg/ml for AR; and
1.28 mg/ml for PV) (see Table 4 and Fig. 4 for respec-
tive mean differences). Accuracy comparison, calculated
as the root-mean-square error, was 6.92 mg/ml for AR
and 18.7 mg/ml for PV; root-mean-square error de-
creased to 3.98 mg/ml for AR and 9.45 mg/ml for
PV, after the automated correction (Table 4).

Discussion

This study showed that an artificial neural network (ANN) can
reliably detect the presence and phase of iodinated contrast
agent in routine abdominal MDCT scans. The proposed
ANN performed well both on the test set, as well as on the
public dataset acquired with multiple different CT scanners,
validating its generalizability and robustness to such a domain

Table 4 Accuracy comparison in the test set before and after the
automated correction

Corrected Not corrected

AR PV AR PV

RMSE (mg/ml) 3.98 9.45 6.92 18.7

Mean difference to NE BMD (mg/ml) 0.94 1.28 −5.68 −17.5

Note: Data are means

RMSE root-mean-square error, BMD bone mineral density, AR arterial,
PV portal venous, NE nonenhanced

Fig. 4 Bland-Altman plots show the means vs. the difference of the bone
mineral density (BMD) values measured in contrast-enhanced and
nonenhanced MDCT scans. Averaged (L1–L3) BMD values derived
from contrast-enhanced scans differ significantly from nonenhanced
(NE) scans (all p < .001). The effect of intravenous contrast agent is
most notable in uncorrected portal-venous (PV) scans. After the

automated correction with the anatomy-guided ANN, no significant
difference is observed (all p > .05). Data points are observed data. The
solid line indicates the mean difference. The dashed lines indicate the
95% limits of agreement. Upper row: arterial phase (AR) CT scans—
not corrected and corrected. Lower row: portal-venous CT scans—not
corrected and corrected
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shift. As one possible application, we showed a significant
improvement in opportunistic BMD assessment.

Three different ANN models were introduced and com-
pared in this study. The random selection of 2D slices for
contrast prediction seems to lack reproducibility. Using a full
3D scan, on the other hand, leads to memory constrains and
higher number of parameters to be optimized decreases the
performance. Thus, we propose an anatomy-guided 2D ap-
proach as the optimal model for an accurate contrast
prediction.

Previous studies have stated that the effect of using intra-
venous contrast agent is negligible [30, 31]. However, the
authors did not provide sufficient validation in terms of accu-
racy and precision, leaving such approaches questionable for
individual BMD assessment [32]. Our data suggests that in-
travenous contrast administration is associatedwith a systemic
bias in vertebral BMD measurements. This is in line with
several studies reporting significant differences between en-
hanced and nonenhanced CT scans [12–15, 33]. Boutin and
colleagues found a mean increase of 33 HU at L4 in the PV
phase [12]. Pompe et al reported a mean difference of 19 HU
at L1 between the NE and the PV phases. They stated that
unadjusted CT scans may lead to an underdiagnosis of osteo-
porosis in 7–25% of patients [15]. In both studies, the mean
difference was greatest in the PV phase. In our study, BMD
values derived from PV scans revealed a mean difference of
17.5 mg/ml compared to those of NE scans. This equals al-
most half the BMD range between normal (BMD >
120 mg/ml) and osteoporosis (BMD < 80 mg/ml) defined
by the American College of Radiology (ACR) [34].

Acu and colleagues suggested that scan delay time is
a significant and quantifiable variable, due to the steady
accumulation of contrast agent [35]. Our data supports
this hypothesis, revealing that the increase in BMD
values from AR to PV phase is statistically significant.
This indicates that measurements are not only contrast
dependent but also contrast phase dependent. This accu-
racy bias should not be neglected, especially in longitu-
dinal studies with repeated measurements. Taken togeth-
er, our findings argue for an adequate correction meth-
od. In our study, this was achieved through simple lin-
ear regression for each contrast phase. Regarding skele-
tal muscle measurements, changes are also known to
occur and linear correction models for measurements
have been proposed [12, 36]. This is important when
using internal (in-body) calibration, as the assessed cal-
ibration tissue also experiences enhancement. Further
studies will have to investigate on how to minimize
other biases, such as patient diameter and patient
positioning.

There are limitations to this retrospective study. As we
focused on lumbar BMD measurements, we did not include
CT scans which only cover the cervical spine for training.

Further studies are needed to investigate the performance of
the proposed framework in cervical spine examinations.

Conclusion

In conclusion, the artificial neural network presented here
works reliably in any given CT scan and could be integrated
into various frameworks to complete the workflow of auto-
mated or semi-automated data extraction from routine
contrast-enhanced CT images. We propose an anatomy-
guided approach as the most accurate tool for automated con-
trast phase assessment. Besides the simple design and little
computation-power requirements, the main advantage is the
high diagnostic accuracy. This reduces false-negative results
in osteoporosis screening.
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