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Abstract: The water cycle in urban areas is called the natural-social dualistic water cycle, and it is
driven not only by natural forces, but also by human activities. As the drivers of the social water cycle,
human perspire continuously, and this is often overlooked as a contributing factor to the water cycle.
This paper proposes a method for quantifying the water evaporation induced by human perspiration
and respiration in megacities. A calculation based on the sweating prediction model was applied
to the city of Beijing to evaluate the evaporation from the human body. The results show that the
greatest volume of evaporation produced by human occurs in summer, and the least in spring. The
total evaporation produced by human was converted to the evaporation on unit area of the city and
reached 5075.2 m3/km2 in the six core districts of Beijing. According to the calculation, the total
volume was considerable and reached 14.0 million m3 in 2020, which was equivalent to the annual
evapotranspiration from an area of 104.9 km2 of Acer truncatum forest (15 cm diameter at breast
height, afforestation density 800 plants/hm2), and even twice the annual total water use in Tartu,
Estonia. The results of the study provide a reference for dualistic water cycle research and water cycle
flux calculation in urban areas.

Keywords: human body evaporation; water resources; urban hydrological cycle; evapotranspiration;
Beijing

1. Introduction

Cities are a result of the development of human society and are the centers of the
majority of a country’s population and its wealth. With the rapid development of the
economy, the process of urbanization is accelerating [1]. According to the forecast of the
United Nations Population Division, the urbanization rate of every developing country
or region in the world will exceed 50% in 2030, and two-thirds of the population will
live in cities by 2050 [2]. With the rapid urbanization process, human beings continue
to congregate in urban areas, and urban transformation activities are becoming more
frequent [3,4], altering the original water cycle system from a single cycle dominated
by nature to a cycle dominated by both nature and human society, which is called a
natural-social dualistic water cycle system [5]. As an essential part of the urban water
cycle process, urban regional evapotranspiration [6,7] is an important source of urban
water vapor, and it has a significant impact on urban microclimate changes and water
cycle flux calculations [8], including outdoor natural water evaporation and indoor water
dissipation from humans [9–11]. Evaporation means the phase transition of water from
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liquid to gas, which is driven by liquid water, the available energy to meet the latent
heat requirements of the phase transition, and the vapor pressure gradient between the
evaporation surface and the atmosphere [12]. Evaporation plays a decisive role in various
water resource management activities, and the quantification of regional evaporation is a
basic requirement for water balance calculations [13]. The quantification of evaporation can
be based on methods such as noting the liquid water that is removed by the water balance,
noting the energy allocated to latent heat using the energy balance, or by the assessment of
water vapor flux [12]. Pereira et al. [14] dissected the concept of evaporation, reviewed from
Penman to Penman–Monteith methods, and introduced the standard concepts of potential
evaporation (EP) and equilibrium evaporation (Ee). Dash et al. [13] used SWAT and VIC
models to predict evaporation at the watershed scale and compared the prediction accuracy
and applicable conditions of each model. Based on the improved Penman–Monteith (PM)
method, Chen et al. [15] established a hybrid deep learning (DL) model that can describe the
physical process to simulate and predict evaporation, and the prediction results were better
than the six classical machine learning models. Most of the natural evapotranspiration in
urban areas is derived from water surfaces and green areas, such as trees, grass, and other
vegetation coverage [16]. The calculation of the area of evapotranspiration is extensively
used in soil–plant–atmosphere system models [17,18] and remote sensing inversion [19],
while the research of plant transpiration water consumption mainly adopts experimental
and analytical methods [20,21]. Indoor social water consumption refers to the water
dissipation generated through human production and day-to-day activities indoors, which
is characterized by the transformation of water from liquid to gas, with only minor research
conducted to date on this aspect. Some studies have focused on the calculation method of
water consumption inside buildings and developed a building water dissipation model
considering the indoor population and total floor area [22]. Along with the in-depth study,
an urban water dissipation calculation model [16] was proposed and applied to the cities of
Beijing [8] and Xiamen [9], and the characteristics of urban water dissipation changes that
consider the water dissipation inside buildings were analyzed. However, when humans
carry out water dissipation activities indoors, they also perspire at the same time. With
the acceleration of urbanization and the increase in the urban population, the evaporation
from humans cannot be ignored.

Water evaporates from human bodies mainly through the skin and breathing, and
this is generally divided into “insensible perspiration” and “sensible perspiration” [23].
“Insensible perspiration” is the evaporation from the human body caused by the diffusion
of water on the skin’s surface and the exchange of water vapor in the respiratory system.
It occurs continuously and is unnoticeable [24]. When the ambient temperature rises or
the activity intensity increases, the heat emitted by the human body through radiation and
convection is unable to eliminate the heat generated by metabolism, so the sweat glands
begin to secrete sweat to maintain body heat balance; this visible sweating phenomenon
is called sensible perspiration [25]. To study the mechanism of human sweating, many
researchers have carried out experimental tests on the amount of human sweat and local
sweating. Test methods that have been commonly used include the weighing method [26],
vinyl bag sweat collection method [27], gauze sponge pad method [28], ventilated sweat sac
method [29], sweat patch method [30], filter paper method [31], etc. Based on the research
and analysis of the test results, some researchers [32] believe that the quantity of human
sweat is related to the evaporation required to maintain heat balance at any given core
temperature and to the maximal evaporative capacity of the environment from the body,
and they constructed a sweat prediction equation called the original Shapiro prediction
equation (OSE). Gonzalez et al. [26] improved on the theoretical basis of Shapiro, extended
the OSE to low-temperature environmental conditions, and established a piecewise (PW)
sweat prediction equation (which was based on fuzzy PW regression analysis) with a wider
range of applications. Based on the above research, it can be found that the research on
evaporation has mainly focused on research fields such as vegetation and soil in nature,
few studies have paid attention to the amount of evaporation produced by the human
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body, and while there have been in-depth studies on the entire and localized sweating of
the human body, there are few studies on human body evaporation on an urban scale from
the perspective of artificial water dissipation.

Based on mathematical models, this study used the city of Beijing as the study area
and calculated the evaporation generated by the human population in 2020. According to
the population data of each district, the spatial distribution of human body evaporation
was analyzed. To quantify the evaporation generated by the human body in 2020 more
intuitively, it was compared with the annual forest evaporation and the total annual water
consumption in some cities in Europe. The research results provide a reference for the
study of the urban dualistic water cycle.

2. Study Area and Methods
2.1. Study Area

Beijing is the capital, the political and cultural center of China. It is located at the
junction of the Taihang and Yanshan Mountains in the North China Plain. The latitude and
longitude of Beijing are 115.7–117.4◦ E and 39.4–41.6◦ N, respectively. Beijing falls within
the semi-humid continental monsoon climate of the northern temperate zone, with four
distinct seasons. Its annual average temperature is 10–13 ◦C, and the annual average rainfall
is 589 mm. The rainfall is unevenly distributed throughout the year, mainly concentrated
in July and August. The rainfall in these two months accounts for 60% of that of the whole
year, and the rainfall from May to August accounts for 82% of that of the whole year,
with low precipitation in spring and winter, with frequent droughts. The average annual
evaporation from 2003 to 2012 was 517 mm [33], and evaporation is greatest in summer and
least in winter. According to the Beijing Regional Statistical Yearbook 2020, at the end of
2020, Beijing comprises 16 districts, with a total area of 16,410.54 km2, and the permanent
population was 21.89 million, making it one of the most populous cities in China. The
population was mainly concentrated in the six core districts of the city. The location and
population density distribution of each district is shown in Figure 1. The population density
data were obtained from the world population database (https://www.worldpop.org/,
accessed on 15 January 2022), with a resolution of 100 m × 100 m.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 4 of 16 
 

 

 
Figure 1. Regional division and population density distribution of Beijing in 2020. 

2.2. Methods 
Regarding the amount of evaporation generated by the human body during daily 

activities, in 2009, Gonzalez et al. established the PW sweat prediction equation [26] as 
follows: 

× − ×sw req maxm = 147 + 1.527 E 0.87 E  (1) 

where msw is the sweating rate, g·m−2·h−1; Ereq is the evaporation required to maintain heat 
balance at a given core temperature, and Emax is the maximal evaporative capacity of the 
environment, W/m2. The amount of sweating for one human can be calculated by msw × 
body surface area × time. Furthermore, the amount of human sweating in each district can 
be calculated by multiplying the population of each district. 

The equation of the evaporation required to maintain heat balance at any given core 
temperature is shown as: 

− − − −r esq re W C R QE = M  (2) 

where M is the metabolic rate, which depends on the amount of human activity, W/m2; W 
is the rate of accomplished mechanical work, W/m2; C is the rate of convective heat loss, 
W/m2; R is the rate of radiant heat loss (or gain) from the surrounding surfaces, W/m2; and 
Qres is the human breathing heat dissipation, W/m2. 

The equation of the metabolic rate is shown as: 

O2

D

21(0.23RQ + 0.77)VM =
A

 (3) 

where RQ is the molar ratio of exhaled carbon dioxide and inhaled oxygen per unit time, 
dimensionless; VO2 is the volume of oxygen consumed per unit time under the conditions 
of 0 °C and 101.325 kPa, mL/s; and AD is the surface area of naked human skin, m2. 

The equation of the rate of accomplished mechanical work is shown as: 

Figure 1. Regional division and population density distribution of Beijing in 2020.

https://www.worldpop.org/


Int. J. Environ. Res. Public Health 2022, 19, 8638 4 of 15

2.2. Methods

Regarding the amount of evaporation generated by the human body during daily
activities, in 2009, Gonzalez et al. established the PW sweat prediction equation [26]
as follows:

msw = 147 + 1.527 × Ereq − 0.87 × Emax (1)

where msw is the sweating rate, g·m−2·h−1; Ereq is the evaporation required to maintain
heat balance at a given core temperature, and Emax is the maximal evaporative capacity
of the environment, W/m2. The amount of sweating for one human can be calculated
by msw × body surface area × time. Furthermore, the amount of human sweating in each
district can be calculated by multiplying the population of each district.

The equation of the evaporation required to maintain heat balance at any given core
temperature is shown as:

Ereq = M − W − C − R − Qres (2)

where M is the metabolic rate, which depends on the amount of human activity, W/m2; W
is the rate of accomplished mechanical work, W/m2; C is the rate of convective heat loss,
W/m2; R is the rate of radiant heat loss (or gain) from the surrounding surfaces, W/m2;
and Qres is the human breathing heat dissipation, W/m2.

The equation of the metabolic rate is shown as:

M =
21(0.23RQ + 0.77)VO2

AD
(3)

where RQ is the molar ratio of exhaled carbon dioxide and inhaled oxygen per unit time,
dimensionless; VO2 is the volume of oxygen consumed per unit time under the conditions
of 0 ◦C and 101.325 kPa, mL/s; and AD is the surface area of naked human skin, m2.

The equation of the rate of accomplished mechanical work is shown as:

W = η× M (4)

where η is the mechanical efficiency, which is generally 5–10% under different activity
intensities. For most activities, the mechanical efficiency of the human body is almost 0.

The equation of the rate of convective heat loss is shown as:

C = fclhc(tcl − ta) (5)

where fcl is the clothing area factor; hc is the convective heat transfer coefficient, W/(m2·K);
tcl is the clothing surface temperature, K; and ta is the air temperature around the human
body, K.

The equation of the rate of radiant heat loss from the surrounding surfaces is shown as:

R = frhr(tcl − tr) (6)

where fr is the effective radiation area factor; hr is the linear radiation transfer coefficient,
W/(m2·K); and tr is the ambient average radiant temperature, K.

The equation of the human breathing heat dissipation is shown as:

Qres = 0.0173M(5.867 − Pa) + 0.0014M(34 − ta) (7)
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The equation of the maximal evaporative capacity of the environment is shown as:

Emax =
(Psk − Pa)

Ie,cl +
1

fclhe

(8)

where Psk is the vapor pressure of water on the skin’s surface; Pa is the vapor pressure
of the water of the ambient air, KPa; Ie,cl is the latent heat transfer and thermal resis-
tance of clothing, m2·kPa/W; and he is the convective mass exchange coefficient on the
garment surface.

Psk = exp
(

18.6686 − 4030.183
Tsk + 235

)
(9)

where Tsk is the mean skin temperature, ◦C, which can be estimated using Saltin’s equation [34]:

Tsk = 0.215Ta + 26.6 (10)

where Ta is the air temperature, ◦C.
The equation of the latent heat transfer and thermal resistance of clothing is shown as:

Ie,cl =
Icl

iclLR
(11)

where Icl is the thermal resistance of clothing, m2·K/W; icl is the water vapor permeabil-
ity coefficient of clothing; and LR is the Lewis ratio, ◦C/kPa. For a typical indoor air
environment, the Lewis ratio is 16.5.

The equation of the convective mass exchange coefficient on the garment surface is
shown as:

he = LR × hc (12)

The following assumptions were made for daily human activities: all activities took
place indoors, including 8 h of sleep, 14 h of light work, and 2 h of moderate work. Since
sweating is affected by the metabolic rate, temperature, clothing, and other factors during
daytime activities, in our calculation, we used the average daily temperature data and
considered the difference in the clothes worn during each season. The PW model was
used to calculate the amount of sweating during each activity, and the total amount of
perspiration in a whole day was calculated. The parameter values used are shown in
Table 1, and the technical roadmap is shown in Figure 2.

Table 1. Parameters used within the calculation.

Type of Activity M (W/m2) hc (W/(m2·K)) fr

Sleep 40 2.7 0.35
Light work 75 4.0 0.7

Moderate work 220 8.2 0.73

Season fcl Icl (m2·K/W) icl

Spring 1.22 0.89 0.5
Summer 1.1 0.36 0.55
Autumn 1.28 1.01 0.48
Winter 1.33 1.20 0.43
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3. Results
3.1. Distribution of Human Body Perspiration in Different Seasons

Figure 3 shows the human body perspiration in the 16 districts of Beijing over four
seasons in 2020. The population of each district differed, so the overall distribution was
characterized by the south being more populous than the north, with there also being
seasonal differences in each district. The greatest evaporation from humans occurred
in summer, followed by winter, autumn, and spring. The temperature in summer is
significantly higher than in other seasons, causing the human body to have a higher
amount of sweat. Despite the low temperature outside in winter, the central heating in
Beijing leads to high indoor temperatures, and people wear more clothes in winter than
in other seasons. Moreover, the climate is very dry in winter, with less moisture in the
air, making it easier for evaporation to occur, so humans sweat more at the same exercise
intensity. The indoor temperature in spring and autumn is obviously lower than that in
summer and winter, and humans wear less clothing than in winter, which results in less
evaporation from the human body as a whole. It can be seen from Figure 3 that the top two
districts where the highest values of human body perspiration occurred were the Chaoyang
and Haidian districts. The permanent population of these two districts was much higher
than that of other districts, both exceeding 3 million, and perspiration values in each season
exceeded 400 thousand m3 and more than 500 thousand m3 in summer. The district with
the third highest value was Changping, with a permanent population of 2.166 million and
a human body perspiration total exceeding 200 thousand m3 for each season, with a total
of more than 400 thousand m3 in summer. In addition, the total perspiration rates in the
Fengtai, Daxing, and Tongzhou districts exceeded 200 thousand m3 for each season, with
more than 300 thousand m3 in summer. In the Xicheng, Shunyi, and Fangshan districts,
it was more than 120 thousand m3 for each season, with more than 200 thousand m3 in
summer. In Dongcheng District, it exceeded 80 thousand m3 for every season, with more
than 120 thousand m3 in summer. Districts with lower figures are in suburbs with a less
permanent population, including the Shijingshan, Mentougou, Yanqing, Huairou, Miyun,
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and Pinggu districts, with the evaporation amount generated in each season less than
120 thousand m3.
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3.2. Distribution of Human Body Perspiration Intensity in Six Core Districts

It can be seen from Figure 1 that the population was mainly concentrated in the six
core districts of Beijing. Therefore, the annual evaporation produced by the human body
in these six districts was calculated and converted into the evaporation intensity per unit
area, as shown in Figure 4. We can see that the annual evaporation produced by the human
body in the six districts was 0–78 mm/year, and the distribution was uneven. In total,
the distribution of human evaporation values in the six core districts showed a gradual
decrease from the city center to the surrounding area. The central areas, the Dongcheng and
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Xicheng districts, maintained high evaporation. The evaporation from Chaoyang District
was mainly concentrated in the west, while the evaporation from Haidian District was
mainly concentrated in the east and south, that from Shijingshan District was concentrated
in the south and center, and that from Fengtai District was concentrated in the northeast.
When converting the amount of human body evaporation into the unit area, the amount of
evaporation in the six core districts of Beijing reached 5075.2 m3/km2.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 8 of 16 
 

 

  
Figure 3. Distribution map of human body perspiration in different seasons of Beijing in 2020. (a) 
Spring; (b) summer; (c) autumn; (d) winter. 

3.2. Distribution of Human Body Perspiration Intensity in Six Core Districts 
It can be seen from Figure 1 that the population was mainly concentrated in the six 

core districts of Beijing. Therefore, the annual evaporation produced by the human body 
in these six districts was calculated and converted into the evaporation intensity per unit 
area, as shown in Figure 4. We can see that the annual evaporation produced by the hu-
man body in the six districts was 0–78 mm/year, and the distribution was uneven. In total, 
the distribution of human evaporation values in the six core districts showed a gradual 
decrease from the city center to the surrounding area. The central areas, the Dongcheng 
and Xicheng districts, maintained high evaporation. The evaporation from Chaoyang Dis-
trict was mainly concentrated in the west, while the evaporation from Haidian District 
was mainly concentrated in the east and south, that from Shijingshan District was concen-
trated in the south and center, and that from Fengtai District was concentrated in the 
northeast. When converting the amount of human body evaporation into the unit area, 
the amount of evaporation in the six core districts of Beijing reached 5075.2 m3/km2. 

 
Figure 4. Distribution map of human body perspiration intensity in six core districts of Beijing. Figure 4. Distribution map of human body perspiration intensity in six core districts of Beijing.

4. Discussion

Through accumulating the amount of human body evaporation in each district of
Beijing, the amount of human body evaporation in 2020 is shown in Figure 5. The human
body evaporation in Beijing reached 2.75, 4.12, 3.23, 3.90 million m3 in spring, summer,
autumn, and winter, respectively. When integrating the four seasons, the annual figure in
Beijing reached 14.0 million m3. To further quantify the amount of evaporation generated
by the human body in Beijing in 2020, this study compared human body evaporation
with the evapotranspiration of trees. The zonal vegetation types in Beijing are warm-
temperate deciduous broad-leaved forests, with temperate coniferous forests. According
to the data from the census of gardens, broad-leaved trees account for more than 80% of
the total number of trees. Acer truncatum is one of the common broad-leaved trees in
Beijing, with most trees being between 14–24 cm in diameter [35], so plants with a 15 cm
diameter at breast height were chosen as examples, and the annual evapotranspiration
per plant is available from relevant research [36]. According to the afforestation technical
regulations promulgated by the People’s Republic of China [37], the afforestation density
of Acer truncatum for timber was obtained, and its evapotranspiration per unit area was
calculated, as shown in Table 2. The annual evapotranspiration of each tree reached
1667.6 kg, and the annual evapotranspiration of the Acer truncatum forest per square
kilometer reached 133,408 m3. By comparison, the annual human body perspiration in
Beijing was 14.0 million m3, which was equivalent to the annual evapotranspiration of
104.92 km2 of Acer truncatum forest.

Table 2. Annual evapotranspiration of Acer truncatum.

Diameter at Breast
Height

(cm)

Afforestation
Density

(Plants/hm2)

Evapotranspiration
per Plant
(kg/year)

Evapotranspiration
(m3/km2)

15 800 1667.6 133,408
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The urban water system is a complex system involving the natural water cycle and
the influence of artificial factors, and evaporation is a crucial part of it, which is often
overlooked [38,39]. In order to further quantify the evapotranspiration produced by the
human body, this study compared the calculated evapotranspiration with the urban average
annual evaporation. The distribution of the evaporation produced by the human body was
uneven. According to our calculation, the higher the population density, the higher the
evaporation, and it ranged between 0–78 mm/year in Beijing. Converting the evaporation
generated by the human body into the unit area of the urban land, the average was about
10.37 mm/year. Cong et al. [33] used the SEBS model to simulate the evaporation in
the urban area of Beijing from 2003–2012, and the annual evaporation was 348 mm/year.
Comparing human body evaporation with natural urban evaporation, the evaporation
generated by the human body was equivalent to 3% of the natural evapotranspiration in
the urban area. Cao et al. [40] performed simulations based on the SEBS model to predict
the annual evaporation in Tianjin from 2015 to 2017, and the average annual evaporation
value was about 485 mm/year. The evaporation generated by the human body was almost
2.2% of the natural evapotranspiration in Tianjin.

When reflecting on the amount of human body evaporation generated in Beijing in
2020, this study referred to the annual total water use data of some European cities in 2015
and compared it with the amount of human body evaporation generated in Beijing. The rele-
vant data sources are from each country’s official website of the Bureau of Statistics [41–44],
as shown in Table 3. The total water uses of the European cities of Kronoberg, Esbjerg,
Aust-Agder, and Tartu were 17.42, 14.30, 15.67, and 6.75 million m3, respectively, in 2015.
Thus, the 14.0 million m3 of water produced through perspiration in Beijing was equivalent
to the total annual water uses of Esbjerg and Aust-Agder, and almost twice the annual
water use of Tartu.

Table 3. Total water use of some European cities in 2015.

City Kronoberg Esbjerg Aust-Agder Tartu

Country Sweden Denmark Norway Estonia

Total water use
(million m3) 17.42 14.30 15.67 6.75

Further, the Xicheng and Shijingshan districts were selected in order to analyze the
impact of population density on human body evaporation. According to the land use data,
which were obtained from the ESA WorldCover database with a resolution of 10 m × 10 m
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(https://esa-worldcover.org/en, accessed on 15 January 2022), the land structure was
divided to get the green space area in the built-up area. Assuming that the green space
was planted with Acer truncatum, based on the evaporation data in Table 1, the annual
evaporation from green space was calculated and compared with human body evapora-
tion. Figure 6a–c show the land use types, human body evaporation distribution, and the
comparison between the green space and human body evaporation in Xicheng District in
2020, respectively. From Figure 6b, the human body evaporation in Xicheng District was
3–78 mm per square meter, and that in the southwest and north sides were significantly
greater than in other areas. The annual human body evaporation in Xicheng District was
summarized and compared with the annual evaporation from green space, as shown
in Figure 6c. At the current population density of 21,800 people/km2 in Xicheng Dis-
trict, this reached 707.3 thousand m3. Meanwhile, evaporation from green space reached
1347.8 thousand m3, which was equivalent to the amount of human body evaporation in
Xicheng District, at a population density of 41,500 people/km2.
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Figure 7a–c show the land use types, human body evaporation distribution, and the
comparison between the green space and human body evaporation in Shijingshan District
in 2020, respectively. From Figure 7b, we can see that the human body evaporation in
Shijingshan District was 0–27 mm per square meter, significantly smaller than in Xicheng
District. Similarly, the human body evaporation in Shijingshan District was summarized
and compared with the green space evaporation in the built-up area, as shown in Figure 7c.
At the current population density of 10,100 people/km2 in Shijingshan District, the human
body evaporation reached 363.1 thousand m3. The evaporation from green space reached
2118.5 thousand m3, which was equivalent to the amount of human evaporation in Shi-
jingshan District at a population density of 58,700 people/km2. The above comparison
illustrates that the amount of evaporation produced by the human body cannot be ignored.
With the process of urbanization, the urban population density will continue to increase,
and the evaporation produced by the human body in urban areas will gradually approach,
or even exceed, the evaporation produced by green space, which will have a significant
impact on the water vapor balance in urban areas.

https://esa-worldcover.org/en
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The study calculated the amount of evaporation produced by the human body from the
perspective of homogenization based on the hypotheses, and the quantitative results were
obtained. Considering the differences between individuals, the results were supplemented
and improved. The “China Sleep Research Report 2022” shows that most Chinese people
go to bed at 22:00–24:00 p.m. and get up at 6:00–8:00 a.m., with the length of sleeping
being between 6–10 h. According to the data released in the “2020 National Fit-ness
Activity Survey Bulletin”, it is estimated that the average daily activity time in China is
0.5–2 h, which was the moderate work in this study. Taking the time allocation of each
type of activity above, the calculation and analysis of human body evaporation was carried
out. Based on the current research result of 14.0 million m3, the range of change is from
−11.71% to 4.5%.

Human body evaporation is a significant part of indoor water vapor. Zhou et al. [9]
compared urban buildings to “trees” cast by reinforced concrete based on the principle
of bionics, and the doors and windows of buildings are like the pores of these concrete
“trees”, which are the channels for indoor and outdoor water vapor transfer. The indoor
and outdoor water vapor transfer is essentially the circulation of air, and the indoor and
outdoor temperature gradient is the main driving force. There are many factors that affect
the temperature gradient, which can be analyzed from the outside of the building, the inside
of the building, and the building itself. For outside the building, solar radiation [45] is an
important factor affecting indoor temperature, and the solar irradiance in different regions
is affected by the local atmospheric transparency, atmospheric pressure, and geographic
location. The outdoor temperature [46] is an important indicator with which to characterize
the indoor thermal environment. It mainly transfers heat to the indoor area by thermal
convection heat transfer to change the indoor temperature. Building infiltration wind [47]
refers to the direct generation of unorganized air flow in the room by building openings or
by gaps in the envelope, thereby affecting the indoor temperature. For inside the building,
the indoor heat source [48] mainly comes from the heating terminal, indoor lighting, the hu-
man body, indoor equipment, etc., and the heat emitted from the indoor heat source affects
the indoor temperature. In addition, the material, structure, and geographic location of the
building itself also affect the indoor temperature [49,50]. Regarding the indoor and outdoor
water vapor transfer efficiency, it may be related to different building types, air circulation,
indoor and outdoor relative humidity, etc., and as a next step, this could be explored by
monitoring the indoor and outdoor temperatures and by humidity experiments.
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In the present study, the weight loss of the human body during sleep was regarded as
“insensible perspiration” [51]. Some relevant studies [52,53] have shown that the “insensible
perspiration” of the human body is stable between 20 and 50 g/h when the ambient
temperature is 20–34 ◦C. Through comparison, it can be assumed that the results in this
paper are consistent with the range of previous studies [52,53]. The calculation results in
this paper are also consistent with the result of the previous test study, where the average
daily water evaporation per person was 1480 ± 230 mL [54]. Currently, the research on
human body perspiration has been expanded to include many fields, such as aerospace,
military, clinical medicine, and clothes, but most of the research focuses on evaporation
per individual. Based on the definition of the urban water cycle, this study calculated
human evaporation on a much greater scale, and the results indicated that the evaporation
generated by the human body is considerable. From the calculations, we can see that
the amount of human body perspiration in Beijing even exceeded the annual total water
use of some less populated European cities, so it is worth considering in the study of
evapotranspiration in urban areas in the future, especially in densely populated cities.
The mechanism of human body perspiration is relatively complicated, as it is affected
by external and internal factors, such as environmental temperature and humidity, age
and gender, human body skin temperature and humidity, body metabolic rate, etc. [55].
Therefore, the differences between individuals should be taken into consideration to make
the calculation of human body evaporation more accurate in future research.

5. Conclusions

In the present study, human body evaporation was defined as the water evaporation
induced by human perspiration and respiration. Based on PW sweat prediction equations,
the human body evaporation in Beijing was quantified, and several main conclusions were
drawn as follows.

(1) Affected by factors such as temperature and the clothing worn, there was a significant
seasonal difference in the human body evaporation in Beijing. The highest amount
occurred in summer, followed by winter, autumn, and spring.

(2) According to the population distribution, the human body evaporation in six core
districts of Beijing was converted into the evaporation intensity, which ranged between
0 to 78 mm/year and decreased from the center to the surroundings. Additionally,
the amount of evaporation in the six core districts of Beijing reached 5075.2 m3/km2.

(3) The total human body evaporation in Beijing was 14.0 million m3 in 2020, which
was equivalent to the annual evapotranspiration of an Acer truncatum forest area of
104.92 km2, comprising trees whose diameters were 15 cm at breast height, with an
afforestation density of 800 plants/hm2. This exceeded the annual total water use of
some European cities, which shows the huge amount of human body evaporation in
megacities. From the comparison between the evaporation of human bodies and that
of green spaces in the Xicheng and Shijingshan districts, it was found that the human
body evaporation in the two districts reached 52.48% and 17.14% of the green space
evaporation, respectively, proving that human body evaporation is considerable.

(4) With the progress of urbanization, the population will continue to congregate in
urban areas. In addition, the amount of evaporation produced by the human body
should be considered when calculating water vapor balance and water flux for densely
populated cities. To calculate the evaporation generated by the human body more
precisely, the differences between individuals, such as age and other physiological
factors, should be taken into consideration in future research.
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