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Abstract

Background: Several studies have shown that organ size, and the proliferation of tumor
metastases, may be regulated by negative feedback loops in which autocrine secreted factors called
chalones inhibit proliferation. However, very little is known about chalones, and how cells sense
them. We previously identified two secreted proteins, AprA and CfaD, which act as chalones in
Dictyostelium. Cells lacking AprA or CfaD proliferate faster than wild-type cells, and adding
recombinant AprA or CfaD to cells slows their proliferation.

Results: We show here that cells lacking the G protein components Galpha8, Galpha9, and Gbeta
proliferate faster than wild-type cells despite secreting normal or high levels of AprA and CfaD.
Compared with wild-type cells, the proliferation of galpha8:, galpha9- and gbeta cells are only
weakly inhibited by recombinant AprA (rAprA). Like AprA and CfaD, Galpha8 and Gbeta inhibit
cell proliferation but not cell growth (the rate of increase in mass and protein per nucleus), whereas
Galpha9 inhibits both proliferation and growth. galpha8- cells show normal cell-surface binding of
rAprA, whereas galpha9-and gbeta cells have fewer cell-surface rAprA binding sites, suggesting that
Galpha9 and Gbeta regulate the synthesis or processing of the AprA receptor. Like other ligands
that activate G proteins, rAprA induces the binding of [3H]GTP to membranes, and GTPgammaS
inhibits the binding of rAprA to membranes. Both AprA-induced [*H]GTP binding and the
GTPgammaS inhibition of rAprA binding require Galpha8 and Gbeta but not Galpha9. Like aprA-
cells, galpha8- cells have reduced spore viability.

Conclusion: This study shows that Galpha8 and Gbeta are part of the signal transduction pathway
used by AprA to inhibit proliferation but not growth in Dictyostelium, whereas Galpha9 is part of a
differealnt pathway that regulates both proliferation and growth, and that a chalone signal
transduction pathway uses G proteins.

Background repress the proliferation of the cells that secrete the
Many tissues or organs have an inherent property of grow-  chalones, so that when there is a high number or density
ing to a particular size [1]. In some cases, it appears that  of the cells, the corresponding high concentration of the
size regulation is mediated by secreted factors called  chalone slows proliferation [2-4]. For instance, myostatin,
chalones, which, as part of a negative feedback loop, = a member of the TGF superfamily, is secreted by muscle
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cells and negatively regulates myoblast proliferation, and
thus controls muscle size in a body [5]. Interestingly,
many primary tumors appear to secrete factors that repress
the proliferation of the metastatic cells, but the factors are
unknown [6,7]. Although some chalones have been iden-
tified, much remains to be understood about their signal
transduction pathways.

Dictyostelium is a unicellular eukaryote and an excellent
model system to study the regulation of proliferation and
growth. We previously identified two proteins secreted by
Dictyostelium, AprA and CfaD, which appear to act like
chalones. Cells lacking AprA or CfaD have an abnormally
high proliferation rate, and as a result when cells reach a
high cell density they have less mass and protein per
nucleus [3,4]. When starved, aprA- and cfaD- cells form
spores that have poor viability compared with wild-type
spores, or if cultures are maintained after cells reach satu-
ration, the cells then die relatively quickly [3,4]. This sug-
gests that Dictyostelium cells use chalones to slow
proliferation at high cell density (when they are probably
about to overgrow their food supply and starve) so that
the cells will have more nutrient reserves. Overexpression
of either AprA or CfaD, or adding either recombinant
AprA (rAprA) or recombinant CfaD (rCfaD) to cultures,
slows cell proliferation [3,8]. Dictyostelium cells have satu-
rable cell-surface high-affinity binding sites for AprA, sug-
gesting the presence of an AprA signal transduction
pathway [8].

A common type of signal transduction pathway in eukary-
otes involves G proteins [9,10]. Upon activation, G pro-
tein-coupled receptors induce the Go subunit of the
heterotrimeric G protein complex to release GDP and
bind GTP, and induce dissociation of the G protein com-
plex to generate active o and By subunits. These further
activate other downstream effectors to trigger intracellular
processes [11]. Binding of GTP to the plasma membrane
is thus increased in the presence of ligand, and this has
been observed for the G protein coupled cAMP receptors
in Dictyostelium [12]. Conversely, treating membranes
with GTPyS, a non-hydrolyzable GTP analog generally
reduces affinity of the receptors for the ligand, and this has
also been observed for the cCAMP receptor in Dictyostelium
[13].

The Dictyostelium genome appears to encode 12 Ga, 2 G,
and 1 Gy subunits [14], and 55 G-protein-coupled recep-
tors [15]. Of the 12 Ga subunits, 8 have been character-
ized, and all characterized Ga subunits and the single
characterized Gf are expressed in vegetative cells, with the
possible exception of Ga5 [16].

In this study we investigated whether AprA uses a G pro-
tein mediated signaling to repress proliferation. We found
that the proliferation of ga8-, ga9-, and gf cells was faster

http://www.biomedcentral.com/1741-7007/7/44

than wild-type cells, and compared with wild-type their
proliferation was only weakly inhibited by rAprA. Cells
lacking Ga9 and Gp have a reduced number of cell-sur-
face rAprA binding sites, suggesting that Ga.9 and Gf reg-
ulate the availability or processing of the AprA receptor.
rAprA induces GTP binding to membranes, and this proc-
ess requires Ga8 and Gp. In addition, GTPyS inhibits the
binding of AprA to membranes, and this also requires
Go8 and GB. These data suggest a key role of Ga8 and G
in the AprA signaling pathway that regulates proliferation
in Dictyostelium.

Methods

Cell culture

Wild-type Ax2, aprA- strain DB60T3-8 [4], cfaD- strain
DB27C-1 [3], crlA- strain JH557 [17], gol- strain
DBS02306088 (the DBS numbers are the Dictybase strain
identifiers) [18], ga2- strain DBS0236094 [19], g3~ strain
DBS0235986 [20], ga4- strain DBS0235984 [21], ga>-
strain DBS0236451 [22], ga7- strain DBS0236106 [23],
goa8 strain DBS0236107 [23], g9 strain DBS0236109
[24], and gf strain DBS0236531 [25] cells were grown in
shaking culture as previously described [3]. The different
transformant strains were produced in different labs at
different times, and have different wild-type backgrounds.
However, we have examined the proliferation rate of a
large variety of different 'wild type' strains, including dif-
ferent sources of Ax2, Ax3, and Ax4, and we found that all
of them have similar proliferation rates and sensitivities to
rAprA (data not shown). Proliferation assays were done
following [4,26]. Measurements of cell mass and protein,
and counts of nuclei were done following [4] using cells
harvested at 5 x 10¢/ml with the exception that for nuclei
counts, cells were fixed with 4% paraformaldehyde
(Sigma Aldrich, St Louis, MO, USA) in PBS for 45 min and
were then washed with PBS/0.1% Tween-20 for 15 min
before staining with DAPI. Spore viability assays were
done following [4].

Purification and quantification of rAprA, and proliferation
inhibition assay

His/Myc tagged rAprA was expressed and purified as
described in [3]. Quantification of rAprA and the effect of
exogenous rAprA on proliferation were done following
[8]. To measure the amount of extracellular AprA and
CfaD, conditioned growth medium was collected from
cells at a density of 5 x 10° cells/ml following [8]. SDS-
polyacrylamide gels of aliquots of the conditioned growth
medium were silver stained to check for the amount of
proteins in the samples. For the proliferation inhibition
assays, cells were grown to 2 x 106cells/ml, and resus-
pended in HL5 media to 5 x 105 cells/ml. We then added
rAprA to 300 ng/ml, or an equal volume of buffer, and
after 12 h cells were counted. Proliferation inhibition was
defined as the percent decrease in cell density caused by
rAprA compared with buffer control.
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Recombinant AprA binding assay

Binding of rAprA to cells was carried out following [8],
where cells were incubated with different concentrations
of rAprA at 4°C on an end-to-end tumbler for 10 min.

Effect of GTP)S on rAprA binding to membranes

To determine the effect of GTPyS on the binding of rAprA
to membranes, cells were washed twice with ice-cold HL5
and resuspended to 5.0 x 10° cells in 485 pl of ice-cold
HL5. Either 5 pl of PBM (20 mM KH,PO,, 0.01 mM
CaCl,, 1 mM MgCl,, pH 6.1 with KOH) or 5 pl of 10 mM
GTPyS (Sigma) in PBM was added to cells. The cells were
then lysed by passing the cell suspension through a
Cameo 17N 5 pm pore size syringe filter (GE Osmonics,
Minnetonka, MN, USA) into ice-chilled Eppendorf tubes
containing 150 ng of rAprA in 10 pl of ice-cold HL5. The
tubes were mixed on an end-to-end rotor at 4°C. After 10
min, the crude membranes were collected by centrifuga-
tion at 17,000 x g for 10 min at 4°C. The pellet of mem-
branes was gently washed (without resuspending the
pellet) with 500 pl of ice-cold HL5 and the pellet was col-
lected by centrifugation at 17,000 x g for 1 min at 4°C.
The supernatant was removed and the membranes were
resuspended in 50 pl of SDS sample buffer and heated at
95°C for 5 min. The amount of rAprA bound to the mem-
branes was analyzed following [8], loading 5 pul of sample
per lane.

Effect of recombinant AprA on GTP binding to membranes
Binding of 5.1 Ci/mmol [3H]GTP (GE Healthcare, UK) to
membranes was measured following [27] with the follow-
ing modification. Eppendorf tubes containing 100 pl of
binding reaction (500 nM [3H]GTP, 5 mM ATP, 25 mM
MgCl, in ice-cold PBM) with or without 60 ng of rAprA
were chilled on ice. To exclude non-specific binding,
duplicate tubes additionally contained 0.1 mM GTP. Cells
were collected and washed as described above and were
resuspended to 5 x 107 cells in 1 ml of ice-cold PBM. The
resuspended cells were then lysed by passing through
Cameo 17N 5 pm pore size syringe filters (GE Osmonics).
To initiate binding, 100 pl of lysed cells was added to the
binding reaction and incubated on ice for 10 min. Mem-
branes were collected by centrifugation at 17,000 x g for 5
min at 4°C. The pellet of membranes was gently washed
without resuspending the pellet with 1 ml of ice-cold
PBM, and the pellet was collected by centrifugation at
17,000 x g for 1 min at 4°C. The pellet was then dissolved
in 100 pl of 1% SDS and mixed with 10 ml of Bio safe II
counting cocktail (Research Products International,
Mount Prospect, IL, USA). The amount of [3H|GTP was
determined using a scintillation counter (Beckman Coul-
ter, Fullerton, CA, USA). The counts from the tubes with
0.1 mM unlabeled GTP were subtracted from the experi-
mental tube counts to obtain the counts for bound
[3H]GTP.
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Statistics

All statistics were done with Prism (GraphPad software,
San Diego, CA, USA). One-way ANOVA using Dunnett's
or Tukey's tests were done to compare multiple values,
and paired t tests were done to compare paired values. Sig-
nificance was defined as P < 0.05.

Results

Ga8, Go9, and G potentiate AprA signal transduction
We previously found that Dictyostelium cells are able to
bind AprA, suggesting that ApraA is sensed by a cell surface
receptor [8]. Since the Dictyostelium genome encodes
many G protein coupled receptors, it is possible that G
proteins could be involved in AprA signal transduction.
To examine this possibility, we analyzed the effect of
rAprA on the proliferation of g/ cells. When treated with
TAprA, the proliferation of wild-type cells was inhibited by
~17% (Figure 1), which is similar to what we have previ-
ously observed [8], whereas the proliferation of gf cells
was only minimally inhibited. This suggests that AprA sig-
nal transduction may be defective in gf cells. As with
wild-type cells, rAprA inhibited the proliferation of gal-,
ga2-, ga3-, ga5, and ga7- cells but had little effect on the
proliferation of ga8- and ga9- cells (Figure 1). Although
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The effect of recombinant AprA (rAprA) on cell pro-
liferation. Cells were grown in the presence or absence of
rAprA for 12 h, and the percent decrease in cell density
caused by rAprA was calculated. When compared with the
inhibition of wild-type (WT) cell proliferation, the inhibition
of gal-, ga2-, ga3-, g5, and ga7- cells is not significant with
P > 0.05 (one-way ANOVA, Dunnett's test), whereas the
inhibition of ga4- is significant with P < 0.01, and the inhibi-
tion of ga8-, ga9-, and gf cells is significant with P < 0.001.
The inhibition values for ga8-, ga9-, and gf cells are not sig-
nificantly different between each other with P > 0.05 (one-
way ANOVA, Tukey's test), but the inhibition of Ga4- cells is
significantly different from that of ga8-, ga9-, and g/ cells
with P < 0.01 (one-way ANOVA, Dunnett's test). Values are
the mean * s.e.m. from at least four separate experiments.

Page 3 of 10

(page number not for citation purposes)



BMC Biology 2009, 7:44

the proliferation of ga4- cells was partially inhibited by
rAprA, the inhibition was significantly higher than that for
ga8, g9, and gp cells (Figure 1). Together, the data sug-
gest that ga8, ga9 and G strongly potentiate AprA signal-
ing.

Ga8, Ga9, and G slow cell proliferation

Cells lacking AprA proliferate faster than wild-type cells,
and exogenous AprA slows proliferation [3,4]. Cells defi-
cient in AprA signal transduction thus may also have
altered proliferation. Proliferation curves were done to
determine whether cells lacking G proteins had altered
proliferation. We found that wild-type cells proliferated
similarly to what we have previously seen [3] (Figure 2A).
The proliferation of ga2-, ga5-, and ga7- cells was similar
to the wild-type cells, while ga8, ga9-, and gf cells prolif-
erated faster and reached higher cell densities, similar to
aprA- and cfaD- cells (Figure 2A). At low cell densities,
where the levels of secreted factors such as AprA or CfaD
are low [3,4], all the cell lines have doubling times
between 10 and 14 h, with the proliferation of aprA-, cfaD-
, 8§08, ga9-, and Gf cells significantly faster than wild-type
(Figure 2A and 2B, and Table 1). At high cell densities,
where the levels of AprA and CfaD are high, the doubling
time of wild-type cells slowed to ~35 h (Table 1). The dou-
bling times of aprA-, c¢faD-, ga8, and ga9- were signifi-
cantly shorter, with the doubling time of ga8- cells at high
cell density similar to the doubling time of the wild-type
cells at low cell density (Figure 2B and Table 1). We previ-
ously observed that after cells reached stationary phase
and stopped proliferating, aprA-and cfaD- cells died faster
than wild-type cells [3,4]. In the growth curves presented
here, we invariably saw that at days 10 and 11 there were
still viable wild-type, ga2-, go5-, and ga7- cells, but the
aprA-, cfaD-, and ga8- cells appeared to be all dead at day

Table I: The effect of G proteins on the doubling time of cells

Doubling time, hours

Cell type Low density High density

Wild-type 13.0 £ 0.6 354 + 43
aprA- 9.7 £ 0.1** 20.7 + 0.4*
cfabD- 10.9 £ 0.4* 17.7 £ 0.1
gaz 13.9£0.1 349 +33
gas 122+ 0.5 346+ 1.3
gal 122+ 0.9 28.6 + 5.4
gas 10.9 + 0.3* 13.4 £ 0.2
ga9 10.1 £ 0.3%* 18.3 + |.5%*
gb 1.1 £0.4* 24.1 £ 3.0

Doubling times were calculated using the data from Figure 2. Low
density doubling times were calculated for cells in the range of 2 x 105
to 5 x 10¢ cells/ml. High density doubling times were calculated for
cells in the range of 5 x 106to 2 x 107 cells/ml. All values are means *
SEM's from three or more independent assays. A * indicates a
statistically significant difference with p < 0.05; ** indicates p < 0.0,
comparing the value to the wild type value (1-way ANOVA, Dunnett's

test).
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Cells lacking Ga.8, Ga9 or Gf} proliferate faster than
wild-type cells. (A) Cells were diluted to 2 x 105cells/ml in
HLS5 and the cell density was measured daily. The graph
shows means * s.e.m. from three independent experiments.
The differences between the maximum cell density attained
by wild-type cells and aprA-, cfaD-, ga8-, ga9-, and g/ mutants
are significant with P < 0.05, whereas the difference between
the wild-type maximum density and the ga2-, ga5-, and ga7-
maximum densities are not significant (one-way ANOVA,
Dunnett's test). (B) The data from the first five days was
plotted using a log scale for the density. The absence of error
bars indicates that the error was smaller than the plot sym-
bol.

10, and there were few if any live ga9-and G/ cells at day
11. Together, the data suggest that, like AprA and CfaD,
Ga8, Ga9, and G slow cell proliferation, and cells lack-
ing these proteins die off faster than wild-type after cells
reach stationary phase.

Ga8 and G do not dffect growth, while Go9 slows growth
Cell growth, defined as the rate of increase in mass or pro-
tein content per cell (or per nucleus if cells are multinucle-
ate), can be regulated separately from proliferation [28-
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32]. We previously observed that AprA and CfaD do not
affect the mass or protein content of cells [3,4]. In con-
trast, compared with wild-type, ga8-, g9, and gf cells
had more mass per cell, and ga9- and gf cells had more
protein per cell (Table 2). Compared with wild type, aprA-
and cfaDr cells tend to be multinucleate [3,4]. Similarly,
ga8 and gf cells also tended to be multinucleate (Table
2). Both aprA- and cfaD- cells have less mass and protein
per nucleus [3,4]. In contrast, we observed that compared
with wild-type, ga9- cells have more mass and protein per
nucleus, whereas ga5- cells have less protein per nucleus
(Table 2). Compared with wild-type cells, g8, g9, and
g/ cells had a greater increase in mass and protein per cell
per hour, and ga8 and gf cells had a greater increase in
nuclei per cell per hour (Table 3). However, when normal-
ized to nuclei, only ga9- cells had a greater increase in
mass or protein per hour. Together, the data indicate that
although ga8 and gf cells proliferate faster than wild-
type cells, their growth per nucleus is not statistically dif-
ferent from wild-type. Conversely, go9- cells have a greater
growth per nucleus than wild-type cells.

ga8, ga9- and g cells proliferate rapidly despite normal
levels of AprA and CfaD

The rapid proliferation of ga8-, ga9-, and gf cells could be
due to low levels of extracellular AprA or CfaD. To check
this, we stained Western blots of conditioned growth
media for AprA and for CfaD. Silver-stained SDS polyacr-
ylamide gels showed that the protein profile of the condi-
tioned growth media, and approximate amounts of the
protein in the different bands, was consistently the same
for all strains except for ga2-, where there appeared to be
less protein in all the bands despite the fact that the start-
ing and final density of the cells in the go2- cultures was
very similar to wild-type (data not shown). Wild-type cells
accumulated extracellular AprA to levels (~165 ng/ml)
similar to what we previously observed [8] (Figure 3A and
data not shown). The amount of AprA accumulated by
a5, ga7-, ga8, g9, and gpf cells was similar to that of
wild-type cells, whereas ga2- cells had lower (33 ng/ml)
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levels of AprA (Figure 3A). Wild-type cells accumulated 15
ng/ml of CfaD (Figure 3B and data not shown), again sim-
ilar to what we previously observed [3]. ga5-, ga7-, ga8,
ga9-, and gf cells accumulated similar or higher levels of
CfaD, while ga2- cells accumulated less (2 ng/ml) CfaD.
Together, the data indicate that ga2- cells accumulate less
extracellular protein, including AprA and CfaD, than wild-
type cells, and that the rapid proliferation of ga8-, ga9-,
and g/ cells is not due to low levels of extracellular AprA
or CfaD.

G 9 and G dffect the number of cell surface AprA binding
sites

We previously observed that wild-type cells show high-
affinity saturable binding of rAprA, suggesting that they
have an AprA receptor [8]. To determine whether cells that
are relatively insensitive to AprA have an observable defect
in the ability of rAprA to bind to this receptor, we meas-
ured binding of rAprA to cells. Wild-type cells bound
TAprA as previously observed (the binding experiments
shown here were done in parallel with the experiments
presented in [8]). g5  and ga8- cells also bound rAprA
(Figure 4 and Table 4). The K, and number of binding
sites (Bmax) for rAprA on ga5-and ga8- cells were not sig-
nificantly different by ANOVA from wild-type cells. ga9-
and g/ cells had significantly reduced numbers of rAprA
binding sites, with K}, values that were not significantly
different from wild-type (Figure 4 and Table 4). Although
the binding data for the ga8- cells appeared to show a sig-
moidal curve, F tests comparing binding with a Hill coef-
ficient of 1 to binding models with a variable Hill
coefficient indicated that a model with a Hill coefficient of
1 was preferred for all cell lines except for ga5-, where a
model with a Hill coefficient of 2.9 + 0.9 (mean + s.e.m, n
= 3) was preferred. In addition, F tests to compare a one-
site binding model with a two-site binding model indi-
cated that a one-site binding model was the preferred fit
for all cell lines. Taken together, the data indicate that cells
lacking Ga8 have roughly normal cell-surface rAprA bind-
ing, that the lack of Ga5 affects the AprA receptor cooper-

Table 2: The effect of G proteins on the mass and protein content of cells

Per 107 cells

Percent of cells with n nuclei

Per 107 nuclei

Cell type Mass, mg Protein, mg | 2 3+ Nuclei/100 cells Mass, mg Protein, mg

Wild-type 108 £ 0.6 0.32 £ 0.0l 76 £3 21 2 31 129 £ 5 84+0.6 0.25 + 0.0l
gaz 107 £0.3 0.33 £ 0.01 723 22+2 62 1346 8005 0.25 £ 0.02
gas 12.1 £0.5 0.25 + 0.01 59+6 3l £4 I3 154 +8 79+0.6 0.16 £0.01*
garl 88+0.3 0.28 £ 0.01 68+ 6 25+4 62 140 £ 9 63+05 0.20 £ 0.01
gas 155£0.1*%  0.40 + 0.02 56 + 5* 30+4 14 £ 2% 166 + 8* 93+05 0.24 £ 0.02
ga9 163+ 1.5% 042 +0.01* 78+ 4 20+3 2+ 124 + 4 132+ 1.3%  0.34 £ 0.02*
gp 5.8 £ 1.3%  0.47 £ 0.05** 52 + 5% 322 17 £ 2%F 180 + 9% 88+ 0.9 0.26 + 0.03

The mass and protein content of cells was measured as described in the Materials and Methods, and the percent of cells with |, 2, 3, or more nuclei
was measured by counts of DAPI-stained cells. After calculating the average number of nuclei per 107 cells, the mass and protein per 107 nuclei was
calculated. All values are means + SEM's from three or more independent assays. A * after a value indicates that the value was significantly different
from the wild-type value with p < 0.05; ** indicates p < 0.01(1-way ANOVA, Dunnett's test).
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Table 3: The effect of G proteins on the mass and protein increase of cells

http://www.biomedcentral.com/1741-7007/7/44

Per 107 cells per hour

Per 107 nuclei per hour

Cell type Mass, mg Protein, ug Nuclei, x 10-5 Mass, mg Protein, ug
Wild-type 0.83 + 0.06 24+ | 99+ 0.6 0.64 + 0.05 19+ 1|

gaz 0.77 £ 0.02 24+ | 9.6 +04 0.57 £ 0.03 18+ |

gas 0.99 + 0.06 21 £ 1 12.6 + 0.8 0.64 + 0.05 131

gal- 0.72 £ 0.06 232 1.5+ 1.1 0.51 £ 0.05 16 £2

gas 1.43 £ 0.04** 37 £ 2% 15.3 £ 0.8%* 0.86 + 0.05 22+2

ga9- 1.61 £ 0.15%* 42 + 2% 122 £ 0.5 1.30 £ 0.13%* 33 £ 2%

gf 1.42 £ 0.13%* 42 + 4+ 16.2 £ 1.0%* 0.79 £ 0.08 23+£3

The mass, protein, and nuclei number values shown in Table 2 were divided by the observed high density doubling times from Table | (the mass,
protein, and nuclei numbers were measured in this density range) to obtain the approximate increases in mass, protein, and nuclei per hour. All
values are means * SEM's from three or more independent assays. A ** indicates that the value was significantly different from the wild-type value

with p < 0.0l (I-way ANOVA, Dunnett's test).

ativity, and that cells lacking Ga9 and Gf have a reduced
number of rAprA binding sites.

Go8 and G are required for GTP)S inhibition of rAprA
binding

GTPyS is a non-hydrolyzable analog of guanosine triphos-
phate that keeps Ga subunits in the GTP-bound active

A WT ga2 go5 go7 go8 ga9 gp

80 —

- . e e -

50 —
40—

25—

80 =—

-~ ae--

-

0 — -

25 =—

Figure 3

The accumulation of extracellular AprA and CfaD.
The indicated cell types were grown in HL5 and conditioned
growth media were collected. Western blots of the condi-
tioned growth media were stained with anti-AprA antibodies
(A) or anti-CfaD antibodies (B). The arrow in A indicates
the 60 kDa AprA band, and the arrow in B indicates the 62
kDa CfaD band. The lower molecular mass bands stained in
B are breakdown products of CfaD [3]. Data are representa-
tive of three independent experiments.

form [11]. Adding GTPyS to membranes affects ligand
binding to G protein-coupled receptors [11]. To deter-
mine whether the binding of rAprA is affected when Ga
subunits are activated, membranes from vegetative wild-
type cells were incubated with rAprA in the presence of
GTPyS. Wild-type membranes bound rAprA, and GTPyS
caused a ~25% decrease in the binding (Figure 5). To
identify which Ga subunit is involved in the AprA signal
transduction pathway, similar binding assays were done
with membranes from cells lacking Ga2, Ga8, Ga9, or
GB. GTPyS decreased rAprA binding to membranes from
ga2- and ga9- cells, whereas GTPyS had no significant
effect on rAprA binding to membranes from ga8-and g4
cells (Figure 5). In addition, the binding of rAprA to mem-
branes from gf cells was strongly reduced when com-
pared with all other cell lines. Together, the data suggest
that Ga8 and Gp are required for the GTPyS-induced
decrease in rAprA binding to membranes.

Ga8 and Gf are required for AprA-stimulated GTP binding
Binding of a ligand to a G protein coupled receptor
induces the associated Ga protein to bind GTP [33]. To
determine whether AprA induces GTP binding, we incu-
bated cells with [3H]GTP in the presence or absence of
rAprA. The addition of rAprA increased the binding of
[*H]GTP to membranes from wild-type cells (Figure 6).
rAprA also increased the binding of [3H]GTP to ga2-and
ga9-membranes. However, rAprA had no significant effect
on the binding of [3H]GTP to membranes from ga8-and
gp cells (Figure 6). These results indicate that Ga8 and G
are required for the AprA-induced binding of GTP to
membranes.

Like AprA, Go8 potentiates spore viability

We previously observed that aprA- cells, when starved,
form fruiting bodies that have an abnormally low number
of spores, and these spores have very poor viability [4]. To
determine whether ga8- cells have a similar phenotype, we
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Table 4: Binding kinetics of rAprA to cells

http://www.biomedcentral.com/1741-7007/7/44

Cell type Kp, 1g/ml Kp, nM Bmax, ng/5 x 105 cells Bmax, molecules/cell
Wild-type 0.16 + 0.05 27+08 3.1 £04 62,000 + 8,000

gas 0.54 £ 0.21 9.0+35 26+04 52,000 + 10,000

gas 0.56 + 0.28 9347 3.8+£09 76,000 £ 18,000

ga9- 0.16 +0.06 2710 0.7 £0.1* 14,000 + 2,000%*

gf 0.85+0.33 142 +5.5 1.0 £ 0.2% 20,000 + 4,000*

For the indicated cell lines, the Ky in pg/ml and the Bmax in ng/5 x 105 cells was obtained from the curve fits in Fig 4. The Ky in nM and Bmax in
molecules/cell were calculated using a molecular mass of 60 kDa for rAprA. All values are mean + SEM, n = 3. A * after a value indicates that the
value was significantly different from the wild-type value with p < 0.05 (I-way ANOVA, Dunnett's test).

examined spore production and viability (Table 5). Cells
lacking GB do not aggregate or form spores [25]. We
found that ga8- cells form roughly normal numbers of
spores, but these spores have a significantly reduced via-
bility. This suggests that although both aprA-and ga8- cells
have the advantage of rapid proliferation, they both have
the disadvantage of poor spore viability.

Discussion

AprA appears to act like a chalone that binds to cell surface
receptors and negatively regulates proliferation (the
increase in the number of cells per hour) [4]. We found
here that, like aprA- cells, ga8-and g4 cells proliferate rap-
idly but have normal growth rates (the increase in the cell
mass and protein per nucleus per hour), and that cells
lacking Ga.8 or Gp have a low sensitivity to rAprA. Like
aprA- and cfaD- cells, ga8 and gf cells die off faster than
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Figure 4

The binding of recombinant AprA to cells. The indi-
cated cells (WT is wild-type) were incubated with different
concentration of recombinant AprA (rAprA). After 10 min,
bound rAprA was quantitated by Western blots (staining for
the Myc tag), using known amounts of rAprA as standards.
Values are mean £ s.e.m. (n = 3). The lines are curve fits to a
one-site binding model with no cooperative binding with the
exception of the fit to the binding to ga5- cells, where the
line is a fit to a one-site binding model with a Hill coefficient
of 2.9.

wild-type after cells reach saturation. Spores tend to be
mononucleate, and like aprA-and cfaD- spores, ga8 spores
have poor viability (gf cells do not aggregate or form
spores). rAprA increases GTP binding to membranes, and
this requires Ga8 and Gf. Conversely, GTPyS inhibits the
binding of rAprA to cells, and this also requires Ga8 and
GB. Together, the data suggest that AprA uses a G protein
signaling pathway to slow proliferation but not growth at
high cell density, and that Ga.8 and Gf3 are components of
part of this pathway.

There are four main classes of Ga subunits, G, G/, Gy
and Gy, [34]. G protein pathways that regulate prolifera-
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Figure 5

The effect of GTPyS on recombinant AprA binding
to membranes. Membranes from the indicated strains
were incubated with recombinant AprA (rAprA) in the pres-
ence or absence of GTPyS. rAprA bound to the membranes
was measured as in Figure 4. The presence of GTPyS signifi-
cantly decreased the binding of rAprA to WT, ga2-and ga9-
membranes in comparison with the buffer control (¥, P <
0.05), while the presence of GTPYS had no significant effect
(ns) on the binding of rAprA to ga8-and gff membranes
(paired t-tests). Values are mean * s.e.m. (n = 3).
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Figure 6

The effect of recombinant AprA on GTP binding to
membranes. The binding of [3H]GTP to membranes in the
presence or absence of recombinant AprA (rAprA) was
measured following [27]. Wild-type membranes showed sig-
nificantly increased [3H]GTP binding in the presence of
rAprA when compared with [3H]GTP binding in the absence
of rAprA with P < 0.01 (**), while ga2-and ga9- membranes
showed increased [3H]GTP binding with P < 0.05 (*).
[BH]GTP binding to ga8-and gf# membranes was not signifi-
cantly different (ns) (paired t-tests). Values are the mean *
s.e.m of at least three independent experiments.

tion in response to paracrine signals tend to contain Gy,
type Ga subunits [9]. For instance, the neurotransmitter
dopamine inhibits forebrain neural stem cell proliferation
by binding to the D2 receptor that couples with a Gy, pro-
tein [35,36]. The sequence of Ga8 has high identity
(40%) to many other G;,-like Go subunits.

Ga8 is expressed in vegetative cells and throughout devel-
opment, and cells lacking Ga8 form fruiting bodies with
a roughly normal morphology [37]. Developing aprA-
cells have abnormal fruiting bodies and a more severe
spore viability defect than ga8-cells [4]. In addition, aprA-
cells have less mass and protein per nucleus than wild-
type, whereas ga8- cells have roughly normal amounts of

Table 5: Spore viability

http://www.biomedcentral.com/1741-7007/7/44

mass and protein per nucleus, and ga8- cells have a small
residual sensitivity to rAprA. These four differences
between aprA- cells and ga8- cells indicate that Ga.8 medi-
ates some but not all of the effects of AprA.

GB is also expressed in vegetative cells and throughout
development, and cells lacking G do not aggregate [25].
Gp interacts with different Go subunits to form functional
heterotrimeric G protein complexes [25]. Our observation
that G is part of the AprA signaling pathway increases the
list of different pathways, such as CAMP and folic acid sig-
nal transduction, that involve G [38].

Ga9 is expressed during growth and throughout Dictyos-
telium development [24]. During the aggregation stage of
development, Ga9 inhibits chemotaxis [24,39]. In addi-
tion, Ga9 couples to a GABA receptor, GrlE, to regulate
spore differentiation during late development [40]. The
rapid proliferation of ga9- cells, and their low sensitivity
to rAprA, would at first glance suggest that Ga9 is part of
the AprA signal transduction pathway. However, three
observations suggest that Ga9 is part of a different signal
transduction pathway that regulates the response of cells
to AprA. First, unlike AprA, CfaD, Ga8, or GB, Ga9
appears to inhibit both proliferation and growth. Second,
unlike Ga8, Ga9 is not required for AprA-stimulated GTP
binding to membranes. Third, again unlike Ga8, Ga9 is
not required for the GTPyS-induced decrease in rAprA
binding to membranes. Interestingly, although ga9- cells
have fewer cell-surface rAprA binding sites than wild-type
cells, the binding of AprA to membranes from mechani-
cally lysed ga9- cells is similar to that of wild-type cells,
suggesting the possibility that Ga9 regulates the transport
of AprA receptors to the plasma membrane. A second gf-
like gene (gpbB, DDB_G0275045) is encoded by the Dic-
tyostelium genome [15], so Ga.9 may possibly interact with
this other Gp to regulate growth.

Despite having very low extracellular levels of AprA and
CfaD, ga2- cells have roughly normal proliferation curves,
and rAprA slows their proliferation. The latter observation
suggests that Ga.2 is not part of the AprA signal transduc-
tion pathway. One would predict that cells with low extra-
cellular AprA and CfaD would cause rapid proliferation,
so it appears that the loss of Ga2 has some deleterious

Cell type Percent of cells forming visible spores Percent of cells forming detergent-resistant spores
Wild-type 89+8 316
gas 75+8 14+5%*

Cells were counted and then starved on filter pads to generate fruiting bodies. After three days, spores were harvested and counted. Spores were
then treated with detergent to kill other cells (stalk cells are already dead), washed, and then diluted and plated with bacteria on agar plates. The
number of colonies that appeared was then counted to determine the number of viable detergent-resistant spores. All values are mean + SEM, n =
3. A * after a value indicates that the value was significantly different from the wild-type value with p < 0.05 (t test).
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effect on cell proliferation through a mechanism (possibly
associated with accumulating less extracellular protein)
that does not involve the AprA pathway.

Although the g5 mRNA was not detected in the vegeta-
tive cell RNA pool on a Northern blot of RNA from differ-
ent developmental time points [41], the binding of rAprA
to vegetative ga5- cells showed cooperativity with a Hill
coefficient of ~3, unlike the binding of rAprA to vegetative
wild-type, ga8-, g9, and gf cells. This suggests that Ga.5
is expressed in vegetative cells, and is somehow required
for the normal function of the AprA receptor.

Conclusion

A variety of indirect evidence has led to the hypothesis
that some chalones act through G protein-mediated path-
ways [2]. Our observation that the Dictyostelium chalone
AprA uses a G protein-mediated signal transduction path-
way involving Goa8 strongly supports this hypothesis, and
suggests that therapeutics targeting chalone-activated G
protein signal transduction pathways may be useful to
regulate the proliferation of specific cell types.
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