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Deep learning in estimating prevalence and systemic risk
factors for diabetic retinopathy: a multi-ethnic study
Daniel S. W. Ting1,2, Carol Y. Cheung3, Quang Nguyen1, Charumathi Sabanayagam1,2, Gilbert Lim 4, Zhan Wei Lim4, Gavin S. W. Tan1,
Yu Qiang Soh1, Leopold Schmetterer1,5,6,7, Ya Xing Wang8, Jost B. Jonas8,9, Rohit Varma10, Mong Li Lee4, Wynne Hsu4,
Ecosse Lamoureux1, Ching-Yu Cheng1,2 and Tien Yin Wong1

In any community, the key to understanding the burden of a specific condition is to conduct an epidemiological study. The deep
learning system (DLS) recently showed promising diagnostic performance for diabetic retinopathy (DR). This study aims to use DLS
as the grading tool, instead of human assessors, to determine the prevalence and the systemic cardiovascular risk factors for DR on
fundus photographs, in patients with diabetes. This is a multi-ethnic (5 races), multi-site (8 datasets from Singapore, USA, Hong
Kong, China and Australia), cross-sectional study involving 18,912 patients (n= 93,293 images). We compared these results and the
time taken for DR assessment by DLS versus 17 human assessors – 10 retinal specialists/ophthalmologists and 7 professional
graders). The estimation of DR prevalence between DLS and human assessors is comparable for any DR, referable DR and
vision–threatening DR (VTDR) (Human assessors: 15.9, 6.5% and 4.1%; DLS: 16.1%, 6.4%, 3.7%). Both assessment methods identified
similar risk factors (with comparable AUCs), including younger age, longer diabetes duration, increased HbA1c and systolic blood
pressure, for any DR, referable DR and VTDR (p > 0.05). The total time taken for DLS to evaluate DR from 93,293 fundus photographs
was ~1 month compared to 2 years for human assessors. In conclusion, the prevalence and systemic risk factors for DR in multi-
ethnic population could be determined accurately using a DLS, in significantly less time than human assessors. This study highlights
the potential use of AI for future epidemiology or clinical trials for DR grading in the global communities.
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INTRODUCTION
By 2040, nearly 600 million people will have diabetes worldwide.1

Diabetic retinopathy (DR), a major microvascular complication, is a
leading cause of vision impairment.2–4 Among people with
diabetes, about a third have signs of DR, and up to 10% have
more severe levels that require referral (referable DR) or are vision-
threatening DR (VTDR).5 Clinical trials have shown that controlling
major risk factors such as hyperglycemia and hypertension can
reduce the risk of DR progression.6–8 Thus, vision loss from DR can
be reduced by 50% or more by screening, appropriate referral and
treatment.9–12

Despite these important concepts, there is a lack of under-
standing of the burden of DR, and thus lack of guidance, priority
and resources allocated to tackle this in many countries.13

Epidemiological studies show substantial variation in the pre-
valence of DR (e.g., 40% in the U.S., 31% in Africa, and 17.6% in
India),3,14 and some studies have not been able to confirm the
importance of risk factor such as hypertension as a modifiable risk
factor.15

In many countries, epidemiological studies are critical to
document the burden of DR,16 and to identify the specific role
of modifiable risk factors.3,8,17,18 The assessment of DR in such

studies, however, has typically relied on an accurate evaluation of
retinal photographic images. Such an assessment requires
significant resources, including trained manpower, time, and
infrastructure. As a result, many countries and regions do not have
accurate epidemiological data on DR to establish local strategies
and guidelines.19

Deep learning system (DLS) an artificial intelligence (AI)-based
machine learning technology.20,21 It has revolutionized the
computer vision field and achieved substantial jumps in
diagnostic performance for image recognition, speech recogni-
tion, and natural language processing.20 In the technical world, DL
has been heavily used in autonomous vehicles,22 gaming23,24, and
numerous smartphone applications. In medicine, this technique
has shown promising diagnostic performance, across specialties
including ophthalmology (e.g. detection of diabetic retinopathy
[DR], glaucoma, and age-related macular degeneration from
fundus photographs and optical coherence tomographs),25–30

radiology (e.g. detection of tuberculosis from chest X rays,
intracranial hemorrhage from computed tomography of the
brain),31–34 and dermatology (e.g. detection of malignant mela-
noma from skin photographs)35.
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For DR, it has shown promising diagnostic performance using
retinal images,21,26,27,30,36,37 when compared to trained human
assessors including ophthalmologists. The performance of DLS is
comparable to humans in differentiating referable vs non-
referable DR.26,27,36 An unanswered question is whether associa-
tions between DR (detected by DLS) and risk factors are also
similar. Such information will lead to greater acceptance of DLS as
a plausible, cost-effective alternative tool compared to traditional
human assessment for DR, leading to significant resource savings
in epidemiological and clinical studies, including clinical trials.
The objective of this study was to evaluate the ability of the DLS

to determine the prevalence and risk factors for DR using a multi-
ethnic, multi-site dataset of retinal images from epidemiological
and clinical studies of people with diabetes. We compared the
performance of the DLS in estimating the prevalence and
cardiovascular risk factors of any DR, referable DR and VTDR, as
compared to the human assessors. In addition, we estimated the
time taken to evaluate the assessment of these outcomes
between the two methods.

RESULTS
Study population
A total of 18,912 patients (93,293 images) with diabetes were
analyzed in this study (Supplementary Figure 1). The participants’
demographics, systemic risk factors, and DR severity levels for the
eight datasets are shown in Table 1. The mean values (standard
deviation) for age, BMI, diabetes duration, SBP, DBP, HbA1c, total
cholesterol, and triglycerides of the 8 cohorts of patients were 62.0
(10.8) years, 27.4 (5.3) kg/m2, 9.0 (7.9) years, 134.7 (19.2) mmHg,
73.8 (10.6) mmHg, 7.4% (1.7) and 5.0 (1.7) mmol/L and 2.1 (2.5)
mmol/L, respectively.

Diagnostic performance
For the combined pooled dataset, the AUCs of DLS, with reference
to the human assessors’ grading, was 0.863 (95%CI: 0.854, 0.871)
for any DR, 0.963 (95% CI: 0.956, 0.969) for referable DR, and 0.950
(95% CI: 0.940, 0.959) for VTDR. The overall prevalence of any DR,
referable DR, and VTDR was 15.9, 6.5, and 4.1%, respectively, for
human assessors vs 16.1, 6.4, and 3.7% for DLS (Fig. 1).
To analyze 93,293 images, the total time taken for a DLS vs

human assessor were 10.4 h vs 1554.8 h (Table 2), with the specific
details shown in Supplementary Table 1. For the images ‘deemed’
ungradable by the DLS, the additional time required for manual
grading was added onto the total time taken. A total of 7391
images ‘deemed’ ungradable by the DLS underwent a secondary
manual grading by human assessors, requiring additional 123.2 h
(19.0 man-days), totaling up to 125.4 h (21.1 man-day).
Table 3 shows the relationship of risk factors for the DR

outcomes evaluated by DLS vs human assessors. Longer duration
of diabetes, increased HbA1c and SBP were significantly
associated with any DR, referable DR and VTDR (p < 0.001) for
both DLS and human assessors. Supplementary Table 2 shows the
analysis for individual dataset. Combining all datasets, the
systemic risk factors were comparable between DLS and human
assessors to discriminate any DR (0.738 vs 0.743, p= 0.69),
referable DR (0.795 vs 0.782, p= 0.40), and VTDR (0.810 vs 0.813,
p= 0.85; Supplementary Figure 2), with the specific AUC of each
dataset shown in Supplementary Figure 3.
Using forest plot meta-analysis, both grading methods identi-

fied similar risk factors, including younger age, longer diabetes
duration, increased HbA1c and systolic blood pressure, for any DR
(Fig. 2), referable DR (Fig. 3), and VTDR (Fig. 4). In contrast, gender,
total cholesterol, and triglycerides were not associated with DR
assessed using both methods.

DISCUSSION
AI using deep learning techniques may potentially revolutionize
how medical images are analyzed.25,38 The challenge of AI
technology is acceptance by physicians, researchers, and policy
makers in terms of robustness and validity of outcomes measured
by AI. Besides the obvious potential of using AI in direct clinical care,
another immediate application of AI is in research settings, such as
in evaluating outcomes in epidemiological studies and clinical trials.
The objective of our study was to evaluate the ability of an AI-

based DLS to assess retinal images for DR in population-based
epidemiological and hospital-based clinical studies of people with
diabetes. We compared results between the DLS and humans in
the two key outcomes traditionally measured in such studies (i.e.,
prevalence and risk factors). We demonstrated comparable
outcomes in detecting DR prevalence and risk factor associations
between a DLS which was 360 times faster than human assessors.
Both the DLS and humans identified a similar prevalence (burden)
of DR in the population assessed and longer duration of diabetes,
higher HbA1c and higher SBP as risk factors associated with DR.
The discriminative ability of these risk factors for DR were
comparable between DLS and human assessors. Our study shows
while AI technology may need to overcome substantial hurdles,
including medico-legal challenges, for application in clinical
care,39,40 AI technology is an acceptable research tool for assessing
outcomes (in this case DR) in population-based and clinical
studies, and is particularly suitable for application in countries
without the resources to do full-scale research studies.
Our study showed that DLS is a faster grading tool than human

assessors, with immediate availability of the outcome. A particular
example is SiMES, which is a population-based study conducted in
Singapore.41 We have previously documented the prevalence and
risk factors for this cohort, reporting prevalence of any DR to be
25.5%,42 risk factors of longer diabetes duration, higher HbA1c
and systolic blood pressure and; protective factors of older age
and higher total cholesterol level.41 Using the DLS would have
resulted in identical findings (Supplementary Table 2). We
estimated that in SiMES, the trained human assessor spent
~2–5min per image, but with DLS, it requires only 0.4 sec.
In total, given that they have a 6.5-man-day (5 days a week), a

human assessor would require 553.8 man-days (>2 years) to
complete 93,293 retinal images, without factoring the annual/
medical leaves and public holidays. In Singapore, the cost for a
human assessor, on average, is budgeted to grade about 9800
patients/year. In other words, a human assessor would require
about 2 years to grade ~18,000 patients (100,000 retinal images).
For DLS, it correspondingly took about 10 h. Even then, for those
images deemed ungradable by DLS (~7.9%), these images will
need to be graded secondarily by human assessors and hence,
additional time (43.5 man-days) was included in our study. On
average, the difference between a DLS (with manual grading) vs a
human assessor is ~1 month vs 2 years.
Of the risk factors, HbA1c, duration of diabetes and SBP were the

most common risk factors associated with increasing DR severity (p
< 0.001) on the forest plot. These risk factors were consistent with
published data from cross-sectional and longitudinal diabetic
cohorts.43–45 Thus, our study shows the robustness of the DLS as
an alternative tool for DR grading and could be utilized to analyze
thousands or millions of retinal images over a short period of time.
For countries, research institutions, community and hospital health
care systems worldwide with limited manpower or financial
resources, DLS could potentially save significant time and cost
Our study was limited by the DR grading determined based on

mostly 2-field retinal photographs instead of the classic standard
7-field stereoscopic Early Treatment DR Study (ETDRS) field,
though 7-field photography would take longer and has higher
financial implications. In addition, we also did not have the
information on the types of diabetes (e.g. Type 1 vs type 2) of the
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patients. Future studies could evaluate the generalizability of the
DLS for diabetic cohorts with different retinal cameras, settings,
and imaging modalities such as ultra-wide retinal photography in
detection of DR. It will be important to explore the use of multi-
modal machine learning approach in combining the clinical data
and retinal images to risk stratify patients with diabetes.
AI-based DLS is a potential alternative assessment tool to

determine the epidemiology of DR in research settings, and results
in robust, comparable prevalence and systemic risk factors for DR.
This technology could potentially transform the conduct of large-
scale population-based epidemiological studies, including clinical
trials.

METHODS
Study approval
This study was approved by the Centralized Institutional Review Board
(IRB) of SingHealth, Singapore (protocol number SHF/FG648S/2015) and

conducted in accordance with the Declaration of Helsinki. Given the
retrospective analysis using de-identified images, informed consent was
exempted by IRB.

Development and validation of DLS
The clinical, technical details and diagnostic performance of the DLS have
been described previously.26 In brief, the DLS was trained using 76,370
retinal images (2-field: optic disc- and macula-centered images), consisting
of 88.3% no DR, 6.4% mild non-proliferative DR (NPDR), 3.8% moderate
NPDR, and 1.5% VTDR (severe NPDR and proliferative DR). The DR severity
level was classified using the International Clinical Diabetic Retinopathy
Severity Scale (ICDRSS).46 Any DR was defined as mild NPDR (i.e., only
microaneurysms) or worse; referable DR as moderate NPDR (i.e., mild NPDR
with scattered retinal hemorrhages and hard exudates) or worse; and VTDR
as severe NPDR and PDR. If more than one-third of the photo was
obscured, it was considered as “ungradable”. All retinal images used to
develop the DLS were obtained from diabetes patients attending
Singapore National DR Screening Program (SiDRP) from 2010 to 2013.47

16.1%

6.4%

3.7%

15.9%

6.5%

4.1%

ANY DR REFERABLE DR VTDR

Prevalence of Any DR, Referable DR and VTDR

DLS Human Assessors

P=0.59

P=0.46

P=0.07

Fig. 1 The prevalence of any diabetic retinopathy (DR), referable DR, and vision-threatening DR (VTDR) detected by a deep learning system
and human assessors

Table 2. The total number and time taken of retinal images analyzed by a deep learning system (DLS) and a human assessor

Overall combined dataseta

Patients’ demographics and vascular risk factors Images (patients)

Total number of images (patients) 93,293 (18,912)

Total number of images (deemed gradable by DLS) 85,902 (17,316)

Ungradable retinal images (patients) 7391 (1596)

Grading methods DLS (0.4 s/image) Human assessors

Time taken to analyze all images (hours) 51.8 3600.1

Time taken to analyze all images (man-days)b 2.16 553.9

Additional time taken for secondary manual grading for DLS ungradable images (hours) 123.2 N/A

Additional time taken for secondary manual grading for DLS ungradable images (man-days)b 19.0 N/A

Total time taken (man-days) 21.1 553.9

Total time taken (weeks) 4.2 110.7

aOverall combined dataset consists of Singapore Integrated Diabetic Retinopathy Screening Program (SiDRP) between 2014 and 2015 (SiDRP 14-15), Singapore
Malay Eye Study (SIMES), Singapore Indian Eye Study (SINDI), Singapore Chinese Eye Study (SCES), Beijing Eye Study (BES), African American Eye Study
(AFEDS), Chinese University of Hong Kong (CUHK), and Diabetes Management Project Melbourne (DMP Melb). Each image requires 0.4 sec to be analyzed by
DLS
b1 man-day is equivalent to 6.5 h/day; 5 working days are included in a working week for human. These tables did not include the annual/sick leave or public
holidays. The man-day calculation is not applicable to DLS as it can run 24 h a day
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We have previously validated the DLS,26 using 11 separate datasets, with
excellent performance, with area under the receiver operating curve (AUC)
in detecting referable DR ranging from 0.889 to 0.983.

Study populations
For this current study, we used 8 multi-ethnic datasets to determine the
prevalence and risk factors of DR, including 6 population-based studies:
SiDRP with participants from 2014–15,47 Singapore Malay Eye Study
(SIMES),42 Singapore Indian Eye Study (SINDI),42 Singapore Chinese Eye
Study (SCES),47 Beijing Eye Study (BES),48 and African American Eye Disease
Study (AFEDS),49 and two hospital-based studies: Chinese University of
Hong Kong (CUHK),50 and Diabetes Management Project (DMP),
Melbourne.51 These 8 datasets had risk factors for DR evaluated using
similar definitions and methods. We did not include the other 3 datasets
(Guangdong, Mexico and University of Hong Kong) due to the absence of
systemic information. We standardized the diagnosis of diabetes as a self-
reported history of diabetes, current use of diabetic medications, fasting
glucose of ≥7mmol/L, and/or a non-fasting glucose of 11.1 mmol/L or
higher at the time of examination.
Details of the different populations have been described previously. SiDRP

was started in 2010 as national DR screening program that covers all public
primary eye care hospitals in Singapore via a tele-ophthalmology plat-
form.26,47 SiMES, SINDI, and SCES were population-based studies that
included participants of three major ethnic groups in Singapore, aged
40–80 years, recruited over an 8-year period: SiMES (Malays, 2004–2006),
SINDI (Indians, 2007–2009), and SCES (Chinese, 2009–2011).42 The BES was a
population-based study in China that involved participants aged 40 years
and beyond.48 Among these population-based studies, we only included
those with diabetes in the analyses. AFEDS is a population-based study of
African American aged 40 years and older residing in the city of Inglewood,
California. Given that the study was still in active recruitment phase, we only
included participants with diabetes recruited up till mid-2017 for this analysis.
We included two clinic-based studies among patients with diabetes: the
CUHK study was a clinic-based cohort for patients with diabetes, recruited in
2016 from a tertiary eye clinic in Hong Kong,50 and the DMP is a clinical-
based cohort of patients with diabetes in an eye hospital in Melbourne,
Australia.51

Retinal images and DR classification
During DLS training, the input to the neural network was a retinal image,
and the individual DR severity levels (0, 1, 2, 3, and 4 for no DR, mild NPDR,
moderate NPDR, severe NPDR, and PDR respectively, using ICDRSS
classification) were represented by output nodes. The weights of the
DLS were adjusted with stochastic gradient descent, to train a classification
model for DR. During validation, the DLS model predicted a raw
confidence score for each severity level output node, for each image.
These node scores were finally linearly weighted to produce a single
image-level DR score. An ensemble of two separate models – one trained
with the original image, and one with its contest-equalized version – was
used. DLS hyperparameters and score thresholds were selected using a set
of held-out images.
During validation, for each eye of each patient, the ensembled DR scores

of all valid retinal images were averaged to produce an eye-level DR score,
for each DR severity level. The predicted DR grade was then obtained by
applying the previously-specified score thresholds. For each patient, the
grade of the eye with the most severe DR as predicted was used to assess
the relationship with systemic risk factors. If one of the two eyes was
ungradable, the grade of the other was taken. If both eyes were
ungradable, then the patient was classified as ungradable and excluded
from the DLS analysis. Based on the training set, we pre-set the optimal
operating threshold for any DR, referable DR and VTDR. Ungradable
images and eyes with previous retinal laser were not included as part of
the analyses.

Retinal photography protocol, classification, and grading of retinal
images
All participants in the 8 datasets underwent 2-field (optic disc- and macula-
centered) retinal photography. SiDRP, AFEDS, DMP, and CUHK cohorts
were imaged using Topcon retinal camera (Tokyo, Japan) while SiMES,
SINDI, SCES, and BES used a Canon retinal camera (Tokyo, Japan).42,47–51

For SiDRP, SiMES, SiNDI, SCES, AFEDS, and DMP Melbourne, the images
were assessed by the human assessors who were non-
ophthalmologists.42,47,49–51 The human assessors for BES were a board-Ta
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certified ophthalmologist and a retinal specialist while CUHK patients were
examined by 2 retinal specialists.48

Assessment of systemic risk factors
All datasets consisted of comprehensive patients’ demographics and
systemic risk factors (e.g. age, gender, ethnicity, duration of diabetes,
HbA1c, systolic and diastolic blood pressure [SBP and DBP], body mass
index (BMI), total cholesterol, and triglyceride levels).

Assessment of time taken for image analysis
The grading time of each retinal image was obtained from the individual
study center. The SiDRP, AFEDS, and DMP images were graded at the
Singapore Eye Research Institute (SERI) and the SiMES, SINDI, and SCES
photos at the Blue Mountain Eye Study reading center in Sydney, Australia.
Beijing and Hong Kong cohorts were graded by the ophthalmologist and
retinal specialists respectively. The average time taken per image for SiDRP
assessors was 2 minutes; CUHK: 5 min; and the remaining (SIMES, SINDI,
SCES, BES, AFEDS, and DMP Melbourne) were 3 min. The total estimated

Fig. 2 The forest plot of systemic risk factors for any diabetic retinopathy generated by deep learning versus human assessors. These risk
factors include age, duration of diabetes, HbA1c, systolic and diastolic blood pressure, body mass index, cholesterol, and triglyceride

Fig. 3 The forest plot of systemic risk factors for referable diabetic retinopathy generated by deep learning versus human assessors. These risk
factors include age, duration of diabetes, HbA1c, systolic and diastolic blood pressure, body mass index, cholesterol, and triglyceride

Fig. 4 The forest plot of systemic risk factors for vision-threatening diabetic retinopathy generated by deep learning versus human assessors.
These risk factors include age, duration of diabetes, HbA1c, systolic and diastolic blood pressure, body mass index, cholesterol, and
triglyceride
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time taken for human assessor (man-days)= total time taken per image
(minutes) × number of retinal images/24/6.5. One man-day is equivalent to
6.5 h/day. For DLS, we recorded the time taken to pre-process and analyze
the retinal images using a graphic processing unit (GPU) for 8 datasets.
Each retinal image required 0.4 seconds.

Statistical analysis
First, we calculated the overall area AUC of DLS and level of agreement of
DLS in detection of 3 outcomes: any DR, referable DR and VTDR, with
reference to human assessors. Level of agreement was assessed using
Kappa coefficient: 0–0.2: slight agreement; 0.2–0.4: fair; 0.4–0.6: moderate;
0.6–0.8: good and; 0.8–1.0: excellent. Second, we analyzed the prevalence
for any DR, referable DR and VTDR and time taken between the DLS and
human assessors. Third, we performed a pooled analysis and used random-
effect multivariate logistic regressions across 8 individual datasets on the
risk factors for DLS and human-assessed DR outcomes. Then, the strength
of the relationship with risk factors, assessed by odds ratios (OR) estimated
from the meta-analysis, were compared between DLS and human
assessors for statistical difference using Student’s t-tests and forest plots.52

Fourth, we calculated the AUC of the overall model to evaluate the
discriminative ability of the combined risk factors for any DR, referable DR
and VTDR as determined by DLS and human assessors. All data were
expressed as mean (with standard deviation), number (with %) or
standardized ORs (with 95% confidence intervals (CI)) with a p-value
<0.05 considered to be statistically significant. All statistical analysis was
performed using R Statistical Software (version 3.4.3; R Foundation for
Statistical Computing, Vienna, Austria). With expected referable DR
prevalence, DLS sensitivity and specificity of 5, 90, and 90%, respectively,
the sample size required will be 7683 patients with desired precision of
0.03, 95% confidence interval.
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