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Simple Summary: Pancreatic cancer is one of the most lethal cancers. Although complete surgical
resection is the only curative treatment for pancreatic cancer, a late diagnosis is common and makes
surgical treatment infeasible. Therefore, most patients receive chemotherapy to reduce the tumor
burden. Gemcitabine has been the main chemotherapy for pancreatic cancer for over a decade;
however, chemoresistance has emerged as a significant challenge to the efficacy of chemotherapy.
In this study, we applied genome-wide CRISPR/Cas9 loss-of-function screening with gemcitabine
treatment to identify DCK and CCNL1 as genes that contribute to gemcitabine resistance in pancreatic
cancer and explored the mechanism of CCNL1-related gemcitabine resistance.

Abstract: Pancreatic cancer is one of the most lethal cancers. Due to the difficulty of early diagnosis,
most patients are diagnosed with metastasis or advanced-stage cancer, limiting the possibility of
surgical treatment. Therefore, chemotherapy is applied to improve patient outcomes, and gemcitabine
has been the primary chemotherapy drug for pancreatic cancer for over a decade. However, drug
resistance poses a significant challenge to the efficacy of chemotherapy. The CRISPR/Cas9 (clustered
regularly interspaced short palindromic repeats/CRISPR-associated protein 9) gene-editing system
is a powerful tool, and researchers have developed CRISPR/Cas9 library screening as a means
to identify the genes associated with specific phenotype changes. We performed genome-wide
CRISPR/Cas9 knockout screening in the mouse pancreatic cancer cell line TB32047 with gemcitabine
treatment and identified deoxycytidine kinase (DCK) and cyclin L1 (CCNL1) as the top hits. We
knocked out DCK and CCNL1 in the TB32047 and PANC1 cell lines and confirmed that the loss
of DCK or CCNL1 enhanced gemcitabine resistance in pancreatic cells. Many researchers have
addressed the mechanism of DCK-related gemcitabine resistance; however, no study has focused
on CCNL1 and gemcitabine resistance. Therefore, we explored the mechanism of CCNL1-related
gemcitabine resistance and found that the loss of CCNL1 activates the ERK/AKT/STAT3 survival
pathway, causing cell resistance to gemcitabine treatment.

Keywords: pancreatic cancer; CRISPR-Cas9; library screening; gemcitabine resistance; DCK; CCNL1

1. Introduction

Pancreatic cancer is one of the most lethal cancers, with the lowest 5-year relative
survival rate (10%). In 2021, the United States recorded approximately 60,430 new pan-
creatic cancer diagnoses and an estimated 48,220 deaths [1]. The only curative treatment
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for pancreatic cancer is complete surgical resection [2]. However, due to the lack of spe-
cific symptoms, a late diagnosis is common and makes surgical treatment impossible [3].
Therefore, most patients receive chemotherapy to reduce the tumor burden. Gemcitabine
has been the main chemotherapy for pancreatic cancer for over a decade [4]. In recent
years, combination chemotherapy has benefitted pancreatic cancer patients more than
long-term gemcitabine treatment. Compared with gemcitabine alone, gemcitabine plus
capecitabine and gemcitabine plus nab-paclitaxel improved progression-free survival (PFS),
overall survival (OS), and response rates; gemcitabine-containing multi-drug combinations
(GEMOXEL or cisplatin/epirubicin/5FU/gemcitabine) improved OS, PFS, and quality of
life (QOL); gemcitabine plus platinum improved PFS and response rates, but not OS; and
gemcitabine plus topoisomerase inhibitors increased toxicity but did not improve survival
outcomes [5].

Although gemcitabine and other therapeutic drugs effectively treat pancreatic cancer,
chemoresistance is a critical issue that substantially impacts the efficacy of chemotherapy.
Compared with other chemotherapeutic drugs, pancreatic cancer cells are more resistant
to gemcitabine. Therefore, most studies on chemoresistance have focused on gemcitabine.
Gemcitabine resistance can be inherent or induced by drug treatment [6]. The reported
drug-resistance mechanisms include drug transporters and the activation of enzymes and
their targets. A variety of enzymes are involved in and regulate the transport, activation,
and metabolism of gemcitabine. Multiple factors regulate the formation of drug resis-
tance, such as the tumor microenvironment, the epithelial–mesenchymal transition, and
microRNAs [7].

Researchers first discovered the CRISPR/Cas9 system in bacteria and archaea in
1987 [8], before applying it to gene editing in 2013 [9,10] and developing it into a powerful
gene-editing tool [11]. Recently, researchers developed CRISPR/Cas9 library screening
in cell culture and mouse models to identify the genes associated with cell proliferation,
migration, invasion, and chemotherapy resistance [12–14].

We performed genome-wide CRISPR/Cas9 knockout screening in TB32047 cells,
a murine cell line derived from a KPC model, to identify the genes that contribute to
gemcitabine resistance. The top hits were sgRNAs for DCK and CCNL1. The inactivation
of DCK and CCNL1 significantly increased the resistance to gemcitabine treatment in
TB32047 and human-cell-line PANC1 cells. We then explored the regulatory mechanisms of
CCNL1-related gemcitabine resistance, implicating the regulation of the ERK/AKT/STAT3
survival pathway.

2. Materials and Methods
2.1. Cell Culture

We used TB32047 and PANC1 cell lines. David Tuveson, CSHL (Cold Spring Harbor
Laboratory, Cold Spring Harbor, NY, USA), kindly provided the primary mouse pancreatic
cancer cell line TB32047, and we purchased the PANC1 cell line from ATCC (Cat. # CRL-
1469, RRID: CVCL_0480, American Type Culture Collection, Manassas, VA, USA). We
incubated all cell lines in a humidified incubator containing 5% CO2 at 37 ◦C and cultured
TB32047 cells in DMEM (Dulbecco’s Modified Eagle’s Medium; Gibco, cat. # 31966-021)
with 10% fetal bovine serum (FBS; Gibco, cat. # A3160801) and PANC1 cells in RPMI
(Roswell Park Memorial Institute) medium 1640 (Gibco, cat. # 31870-025) with 10% FBS.
We harvested all cells using 0.25% trypsin-EDTA (ethylenediaminetetraacetic acid) (Sigma,
cat. # T4049-100ML). We generated the TB32047-Cas9 stable cell line by virally transducing
lentiCas9-blast (Addgene, Cambridge, MA; cat. # 52962) into the cells and selecting them
using 10 µg/mL of blasticidin (InvivoGen, cat. # ant-bl-1) for 3 days. We verified Cas9
expression by Western blot analysis.

2.2. Lentivirus Generation and Transduction

We generated lentivirus using HEK293TN cells (BioCat cat. # LV900A-1-GVO-SBI,
RRID: CVCL_UL49) in T175 flasks. Briefly, we combined 9.2 µg pMDLg/pRRE plasmid
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(Addgene plasmid # 12251; http://n2t.net/addgene:12251 (accessed on 6 June 2022).; RRID:
Addgene_12251), 4.6 µg pRSV-REV plasmid (Addgene plasmid # 12253; http://n2t.net/
addgene:12253 (accessed on 6 June 2022); RRID: Addgene_12253), 4.6 µg pMD2.G plas-
mid (Addgene plasmid # 12259; http://n2t.net/addgene:12259 (accessed on 6 June 2022);
RRID: Addgene_12259), and 13.8 µg mouse CRISPR knockout pooled library (GeCKO
v2; Addgene # 1000000053) part A or B with lipofectamine 3000 (Thermo Fisher Scientific,
cat. # L3000015) according to the manufacturer’s protocol and transfected the HEK293TN
cells with the mixture. Twenty-four hours after the transfection, we collected the virus
medium and centrifuged it at 2000 rpm for 10 min to remove cells and debris. Then, we
filtered the supernatant with a 0.45 µm pore filter, aliquoted it into cryovials, and stored
it at −80 ◦C. We transduced the TB32047-Cas9 cells with serial dilutions of the virus to
determine an MOI of ~0.3. The pMDLg/pRRE, pRSV-REV, and pMD2.G were gifts from
Didier Trono [15], and the mouse GeCKO v2 CRISPR knockout pooled library was a gift
from Feng Zhang [16].

2.3. CRISPR Screening

We seeded 1 × 107 TB32047-Cas9 cells into 2 T175 flasks. After 24 h, we transduced
the cells with lentiviral mouse GeCKO v2 library part A or B at an MOI of 0.3 in the
presence of 4 µg/mL polybrene for 24 h, then replaced the virus medium with fresh growth
medium and cultured the cells for another 2 days. We selected the transduced cells with
10 µg/mL puromycin (InvivoGen, cat. # ant-pr-1) for 3 days and continued to culture
them until we could harvest and seed enough cells for further gemcitabine treatment.
We harvested 2.5 × 107 cells for genomic DNA isolation and treated 1.1 × 107 cells with
gemcitabine at 50 nM (IC90 for TB32047 wild-type cells) for 3 days; then, we collected
the surviving cells and cultured them until we had enough to repeat the gemcitabine
treatment. After 5 rounds of gemcitabine treatment, we harvested the surviving cells
for genome DNA isolation and performed NGS on the Illumina HiSeq 2500 platform
with upwards of 5 × 107 reads for each half-library in the Deep Sequencing Facility of TU
Dresden. We counted and analyzed the fastq files using MAGeCK-VISPR software [17]. We
counted and normalized the sequencing results of both half-libraries based on the results
of NonTargetingControl-sgRNA, then combined and compared them using robust rank
aggregation (RRA). We produced and transduced the lentivirus of both lentiviral mouse
GeCKO v2 library part A and B into TB32047-Cas9 cells 3 times.

2.4. Genomic DNA Isolation and PCR Amplification

We extracted genomic DNA with NucleoSpin® Blood XL (Machery Nagel, cat. # 740950.50)
according to the manufacturer’s protocol. We performed the first-round PCR of NGS
with 26 separate 100 µL redundant reactions, each containing 5 µg DNA, 50 µL Q5® Hot
Start High-Fidelity 2X Master Mix (NEB # M0494L), and 3 µL of a 10 µM solution of each
universal illumine adapter tailed primer (P5 and P7). We structured the PCR amplification
program as follows: step 1, 98 ◦C for 30 s; step 2, 98 ◦C for 10 s; step 3, 62 ◦C for 30 s; step 4,
72 ◦C for 30 s; repeat steps 2–4 25 times; step 5, 72 ◦C for 2 min. Subsequently, we indexed
the PCR products with two indexing primers (P5 and P7) and sequenced the products as
75 bp single-end reads using NextSeq 500 (Illumina).

Briefly, we subjected purified PCR products with universal 5′ tails to a second PCR of
6–8 cycles using Phusion HF (NEB, Ipswich, MA, USA) and two indexing primers (P5 and
P7). After indexing PCR, we purified the final libraries (1× Agencourt AMPure XP Beads,
Beckman Coulter, Krefeld, Germany) and equimolarly pooled and sequenced them.

Universal illumine adapter tailed primer P5:
5′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNTCTTGTGGAAAGGA

CGAAACACCG-3′.
Universal illumine adapter tailed primer P7:
5′-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTCTACTATTCTTTCCCCTGC

ACTGT-3′.

http://n2t.net/addgene:12251
http://n2t.net/addgene:12253
http://n2t.net/addgene:12253
http://n2t.net/addgene:12259


Cancers 2022, 14, 3152 4 of 15

Index primer P5:
5′-AATGATACGGCGACCACCGAGATCTACACiiiiiiii ACACTCTTTCCCTACACGA

CGCTCTTCCGATC*T-3′.
Index primer P7:
5′-CAAGCAGAAGACGGCATACGAGATiiiiiiii GTGACTGGAGTTCAGAC-GTGTGC

TCTTCCGATCT-3′.
The CRISPR/Cas9 screening data are accessible in the ENA database under PR-

JEB51345.

2.5. CRISPR/Cas9 Gene-Editing Knockout System

We used the CRISPR/Cas9 gene-editing knockout system to knockout CCNL1 in the
TB32047 and PANC1 cell lines and DCK in the TB32047 cell line. We used pSpCas9(BB)-
2A-Puro (PX459) V2.0 (Addgene plasmid # 62988; http://n2t.net/addgene:62988 (accessed
on 6 June 2022).; RRID: Addgene_62988) as a plasmid vector. This plasmid was a gift
from Feng Zhang [18]. We synthesized sgRNAs through Eurofins. We designed the
sgRNAs based on the human and mouse CRISPR knockout pooled library (Addgene
# 1000000053, 1000000049) [16] or the online CRISPR/Cas9 target predictor (https://cctop.
cos.uni-heidelberg.de/) (accessed on 6 June 2022) [19]. We constructed plasmids according
to the protocol outlined in [18] and confirmed them by sequencing. We transfected the
cells with constructed plasmids using lipofectamine 3000 transfection reagent (Invitrogen,
cat. # L3000015, Waltham, MA, USA) for 72 h. Then, we selected the cells with 10 µg/mL
puromycin for 3 days. We seeded the puromycin-selected cells into two 96-well plates to
select single clones. We performed Western blot or RT–PCR to detect the knockout effect.

The sgRNAs used in this study were:
mm-NC-sg1—forward: 5′-CACCgACCAGGCGCGGACCGCACAT-3′, reverse: 5′-

AAACATGTGCGGTCCGCGCCTGGTC-3′.
mm-NC-sg2—forward: 5′-CACCgAGGTCGTGGACCCGCATGTA-3′, reverse: 5′-

AAACTACATGCGGGTCCACGACCTC-3′.
mm-CCNL1-sg1—forward: 5′-CACCgCTTACCAGGCAGTTTGAACC-3′, reverse: 5′-

AAACGGTTCAAACTGCCTGGTAAGC-3′.
mm-CCNL1-sg2—forward: 5′-CACCgCAATGGGGCCGAGTTGGCAA-3′, reverse: 5′-

AAACTTGCCAACTCGGCCCCATTGC-3′.
mm-DCK-sg—forward: 5′-CACCGGCTCGGATCCGGCTGAGAC-3′, reverse: 5′-AAA

CGTCTCAGCCGGATCCGAGCC-3′.
hu-NC-sg—forward: 5′-CACCgAAGGCGCGCGAATGTGGCAG-3′, reverse: 5′-AAA

CCTGCCACATTCGCGCGCCTTC-3′.
hu-CCNL1-sg1—forward: 5′-CACCgTAAGTGAAACTTCCGAGTAC-3′, reverse: 5′-

AAACGTACTCGGAAGTTTCACTTAC-3′.
hu-CCNL1-sg2—forward: 5′-CACCgCAATGGGGACGAGTTGGCAA-3′, reverse: 5′-

AAACTTGCCAACTCGTCCCCATTGC-3′.
hu-DCK-sg—forward: 5′-CACCgAGAGGTGCCTATCTTAACAC-3′, reverse: 5′-AAA

CGTGTTAAGATAGGCACCTCTC-3′.

2.6. Western Blot and Antibodies

We purchased anti-DCK antibodies from Abcam (Abcam Cat. # ab96599, RRID:
AB_10680904) and Cas9 antibodies from Santa Cruz Biotechnology (Santa Cruz Biotech-
nology Cat. # sc-517386, RRID: AB_2800509). From Cell Signaling Technology, we pur-
chased GAPDH (Cell Signaling Technology Cat. # 5174, RRID:AB_10622025); Phospho-
p44/42 MAPK (Erk1/2, Thr202/Tyr204, D13.14.4E) (Cell Signaling Technology Cat. # 4370,
RRID:AB_2315112); Phospho-Akt (Ser473) (Cell Signaling Technology Cat. # 4060, RRID:
AB_2315049); Phospho-Stat3 (Tyr705) (Cell Signaling Technology Cat. # 9145, RRID:
AB_2491009); p44/42 MAPK (Erk1/2) (Cell Signaling Technology Cat. # 4695, RRID:AB_390779);
Akt(pan) (Cell Signaling Technology Cat. # 4691, RRID:AB_915783); Stat3 (Cell Signaling
Technology Cat. # 12640, RRID:AB_2629499); anti-rabbit and anti-mouse IgG antibodies

http://n2t.net/addgene:62988
https://cctop.cos.uni-heidelberg.de/
https://cctop.cos.uni-heidelberg.de/
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(Cell Signaling Technology Cat. # 7074, RRID:AB_2099233); and HRP-linked antibodies
(Cell Signaling Technology Cat. # 7076, RRID:AB_330924). Briefly, we lysed the cells with
RIPA buffer and collected the supernatant for gel electrophoresis. We transferred the pro-
teins to a nitrocellulose membrane and detected the signals using an Amersham Imager 600
(Pittsburgh, PA, USA) with SignalFire Elite ECL Reagent (Cell Signaling Technology,12757S)
or SignalFire ECL Reagent (Cell Signaling Technology, 6883). We individually performed
all Western blot assays 3 times.

2.7. Quantitative RT–PCR

We performed RNA isolation using a NucleoSpin RNA Plus kit (Macherey-Nagel,
#740984.250) and synthesized cDNA using a High-Capacity cDNA Reverse-Transcription
Kit (Applied Biosystems, 00364942, Foster City, CA, USA). We used Power SYBR Green Mas-
ter Mix (Applied Biosystems, 4367659) to conduct the quantitative RT–PCR and analyzed
the results using the 2−∆∆Ct method. We used beta-actin as a reference. We synthesized all
primers through Eurofins Genomics (Ebersberg, Germany).

The qRT–PCR primers used in this study were:
mm-beta-actin—forward: 5′-GTGACGTTGACATCCGTAAAG-3′, reverse: 5′-GCCGG

ACTCATCGTACTCC-3′.
mm-CCNL1-qPCR—forward: 5′-GTCAAGCATCCCCATAAGATCA-3′, reverse: 5′-

AAGAAACCAATGGGGCCGAG-3′.
hu-beta-actin—forward: 5′-CACCATTGGCAATGAGCGGTTC-3′, reverse: 5′-AGGTC

TTTGCGGATGTCCACGT-3′.
hu-CCNL1-sg1-qPCR—forward: 5′-ATCGCCTGTACTCGGAAGTT-3′, reverse: 5′-

GGGGCTTGGAGTCCTTTTTC-3′.
hu-CCNL1-sg2-qPCR—forward: 5′-TGTGAACGTAATCAAACCCTGG-3′, reverse:

5′-GAGTTGGCAACGGAATCTGA-3′.

2.8. Genome Mutation Confirmation

We used NucleoSpin® Blood L (Machery Nagel, cat. # 740954.20) to isolate genome
DNA from cell lines according to the manufacturer’s protocol. We amplified PCR pro-
ductions for sequencing using Q5® Hot Start High-Fidelity 2X Master Mix and cloned
PCR fragments into pMiniT 2.0 using an NEB PCR Cloning Kit (New England Biolabs, cat.
# E1203S). We sequenced plasmid DNA through Eurofins Genomics.

The sequencing PCR primers used in this study were:
mm-seq-CCNL1-sg1—forward: 5′-ACTCTGCGGTGAAAGAACCA-3′, reverse: 5′-

AAGAGGAACTTACCAGGCAGT-3′.
mm-seq-CCNL1-sg2—forward: 5′-TGCTGTGGGGAAGTGGTTAG-3′, reverse: 5′-

CCAAAATGGCATCAGCACCA-3′.
hu-seq-CCNL1-sg1—forward: 5′-GGCCTCATTCGACAGCTACT-3′, reverse: 5′-GTGA

TACTGAGATGCGGCGT-3′.
hu-seq-CCNL1-sg2—forward: 5′-GCTTGCATCTACCTTGCAGC-3′, reverse: 5′-GCAT

GTTGGCACAAACGAGT-3′.

2.9. Chemotherapeutic Drug Resistance Assay

We seeded the cells into a Corning® 96-Well Black Polystyrene Microplate (3603) with
1 × 104 cells per well for 24 h. Then, we added chemotherapeutic drugs to the wells.
After 72 h of chemotherapeutic drug treatment, we stained the cells with DAPI (NucBlue;
Biotium, cat. # 40046), imaged them using an EVOS FL Auto 2 imaging system (Invitrogen,
AMAFD2000), and analyzed the images using HCS studio cell analysis software V2.0
(Thermo, SX000041A, Waltham, MA, USA). For TB32047 cells, the concentration assay of
5-FU ranged from 0.1 to 6.4 µM with 2-fold increments, and for PANC1 it ranged from 0.2
to 12.8 µM with 2-fold increments. For both TB32047 and PANC1 cells, the concentration
assay of gemcitabine ranged from 1.25 to 80 nM with 2-fold increments. For TB32047
cells, the concentration assay of oxaliplatin ranged from 0.329 to 240 µM with 3-fold
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increments, and for PANC1 cells it ranged from 0.027 to 20 µM with 3-fold increments. We
purchased chemotherapeutic drugs from the pharmacy of Universitätsklinikum Erlangen in
ready-made solutions: gemcitabine—40 mg/mL, Hexal AG, Holzkirchen, Freistaat Bayern,
Germany; oxaliplatin—50 mg/mL, Medac GmbH, Wedel, Niedersachsen, Germany; and
5-fluorouracil—5 mg/mL, Accord Medical Ltd., London, UK. We calculated the IC50 using
GraphPad Version 8 (GraphPad Software, La Jolla, CA, USA).

2.10. Apoptosis Assay

We performed an apoptosis assay with APC Annexin V (Cat. # 550474, BD Pharmingen,
San Diego, CA, USA) according to the manufacturer’s instructions. Briefly, we collected the
cells (in the medium and adherent to the plates), washed them with cold PBS, resuspended
them in the binding buffer, and stained them with APC Annexin V and PI for 15 min at
room temperature. Then, we analyzed them with a BD Biosciences LSRII flow computer.
We analyzed the flow cytometry results using FlowJo v10.8 software (BD Life Sciences,
Ashland, OR, USA).

2.11. Statistical Analysis

We used MAGeCK-VISPR to rank and sort sgRNAs by p-value and/or FDR and
GraphPad Version 8 and Microsoft Excel Version 2017 (Microsoft, Seattle, WA, USA) to
perform statistical analyses. We used a t-test and one-way ANOVA for cell culture exper-
iments. We considered p-values < 0.05 as statistically significant. We conducted the EC
assay using GraphPad and carried out all assays individually at least three times (n ≥ 3).

3. Results
3.1. Genome-Wide CRISPR Screening Identifies DCK and CCNL1 as Genes Involved
in Chemoresistance

We conducted positive-selection genome-wide CRISPR screening to identify the essen-
tial and/or contributory genes involved in resistance to gemcitabine, the current frontline
chemotherapeutic agent. We transduced the full GeCKO libraries into the cells, harvested a
portion of the library cells as our control samples, then treated the cells with 50 nM (approx-
imate IC90) of gemcitabine for 3 days. We collected and cultivated the surviving cells and
re-treated them with 50 nM of gemcitabine. After five rounds of gemcitabine treatment,
we harvested the genomic DNA and performed next-generation sequencing. We counted
and analyzed the fastq files using MAGeCK-VISPR software. We individually performed
library transduction and gemcitabine treatment three times. We mapped approximately
80% of the reads to the sgRNA library. As a measurement of inequality, the GINI index
differed substantially between the control groups and the treatment groups, indicating a
selection event (Figure 1A–D).

In the gene ranking list, 1094 genes had a positive p-value below 0.05. However, only
16 had a log2-fold change above 0, and three of these had a positive false-discovery rate
(FDR) below 0.05. The three most enriched genes in the CRISPR screen were DCK, CCNL1,
and Gpi1, the loss of which causes resistance to gemcitabine treatment (Figure 1E–G,
Table S1).
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counts (normalized) of DCK, CCNL1, and GPI1 in starting cells and screened cells. 

Figure 1. Genome-wide CRISPR screening in TB32047 cells revealed genes whose loss contributes
to gemcitabine resistance. (A) positive-selection screening in TB32047-Cas9 cells. We treated the
cells with 50 nM (IC90) gemcitabine for 3 days. After cell recovery, we repeated the gemcitabine
treatment 4 more times and collected genomic DNA for deep sequencing. (B) Total reads, both
mapped and unmapped. (C) Gini indices of the starting cells and screened cells. (D) Boxplot showing
the sgRNA frequency distribution of the starting cells and screened cells. (E) Comparison of robust
rank aggregation (RRA) score distribution indicated that DCK, CCNL1, and GPI1 were the top hits.
(F) Identification of top candidate genes using RRA p-value analysis. (G) Distribution of sgRNA read
counts (normalized) of DCK, CCNL1, and GPI1 in starting cells and screened cells.

3.2. Loss of DCK and CCNL1 Enhances Resistance to Gemcitabine Treatment in TB32047 and
PANC1 Cells

Next, we validated the top-ranking genes from the screening results. We generated
the DCK-knockout cell lines using the CRISPR/Cas9 gene-editing system and detected the



Cancers 2022, 14, 3152 8 of 15

DCK-knockout effect by performing Western blot analysis. The DCK-negative cells were
completely resistant to 80 nM gemcitabine (Figure S1). Compared with the wild-type (WT)
and negative control (NC) cells, the DCK-negative cells were more resistant to gemcitabine
treatment.

We also generated CCNL1-knockout cell lines using the CRISPR/Cas9 gene-editing
system. We used qRT–PCR and sequencing to detect the knockout of CCNL1
(Figures 2A,B and S2, Table 1). The gemcitabine IC50 value for TB32047, PANC1 WT,
and NC cells was around 5 nM, the value for TB32047 CCNL1-negative cells was nearly
double that for WT and NC cells, and the value for PANC1 CCNL1-negative cells was
around 20 nM (Figure 2C,D, Table 2). Without gemcitabine treatment, a flow cytometry
analysis showed no significant difference in apoptosis between WT, NC, and CCNL1-
negative cells. After 72 h of gemcitabine treatment, compared to WT and NC cells, both
early and late apoptosis was reduced in TB32047 CCNL1-negative cells, and late apoptosis
was reduced in PANC1 CCNL1-negative cells (Figure 2E,F). Compared with WT and NC
cells, CCNL1-negative cells were more resistant to gemcitabine treatment.
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(A,B) qRT–PCR results showing that CCNL1 was knocked out in TB32047-SG1-SC, TB32047-SG2-SC,
PANC1-SG1-SC, and PANC1-SG2-SC. Data are presented as means of three independent experiments.
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and PANC1 cells treated with 15 nM gemcitabine after 72 h. Data are presented as means of three
independent experiments. * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, **** p-value < 0.0001
by one-way ANOVA. CCNL1-negative cells were more resistant to gemcitabine than WT and NC
cells.

Table 1. Sequencing confirmation of mutations in TB32047 and PANC1 CCNL1-knockout single
clones.

Cells Mutation Number Mutation Size Mutation Type

TB32047-CCNL1-SG1-SC 1 2 single nucleotides 1 bp mutation
1 bp deletion

TB32047-CCNL1-SG2-SC 2
single nucleotide deletion

66 bp 6 bp replaced by 66 bp

PANC1-CCNL1-SG1-SC 2
102 bp insertion

359 bp 4 bp replaced by 359 bp

PANC1-CCNL1-SG2-SC 1 single nucleotide deletion

Table 2. IC50 values and 95% CIs (confidence intervals) of chemotherapy drugs in DCK- and CCNL1-
knockout cells.

Cells
Gemcitabine (nM) Oxaliplatin (µM) 5-Flourouracil (µM)

IC50 95% CI IC50 95% CI IC50 95% CI

TB32047-WT 7.69 7.48–7.91 3.32 3.03–3.64 0.44 0.42–0.46
TB32047-Cas9 8.21 7.95–8.48 4.42 3.92–5.00 0.46 0.45–0.48

TB32047-NC-SC 8.85 8.37–9.35 5.70 4.99–6.48 0.57 0.54–0.60
TB32047-DCK-KO-SC - - 4.54 4.28–4.82 0.29 0.28–0.31

PANC1-WT 7.75 6.52–9.18 0.55 0.50–0.61 1.17 0.96–1.46
PANC1-Cas9 9.27 8.22–10.36 0.51 0.47–0.56 1.33 1.17–1.52
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Table 2. Cont.

Cells
Gemcitabine (nM) Oxaliplatin (µM) 5-Flourouracil (µM)

IC50 95% CI IC50 95% CI IC50 95% CI

PANC1-NC 10.47 9.47–12.55 0.53 0.46–0.61 1.05 0.93–1.20
PANC1-DCK-KO - - 0.53 0.44–0.63 1.35 1.01–1.90

TB32047-WT 6.56 5.91–7.29 4.21 3.74–4.76 0.48 0.46–0.50
TB32047-NC-SC 8.42 8.08–8.90 5.88 5.01–6.89 0.54 0.52–0.57

TB32047-CCNL1-SG1-SC 13.41 12.78–14.08 2.17 1.97–2.39 0.56 0.52–0.61
TB32047-CCNL1-SG2-SC 15.53 14.62–16.51 2.30 2.05–2.56 0.50 0.46–0.54

PANC1-WT 4.70 4.00–5.66 0.60 0.53–0.67 1.12 0.93–1.38
PANC1-NC-SC 7.67 6.23–9.60 0.67 0.59–0.76 0.72 0.67–0.77

PANC1-CCNL1-SG1-SC 15.81 14.01–17.89 0.71 0.61–0.87 0.81 0.73–0.89
PANC1-CCNL1-SG2-SC 23.25 19.01–32.83 0.52 0.42–0.64 0.83 0.68–1.05

3.3. Knockout of CCNL1 Promotes the Phosphorylation of Erk, Akt, and Stat3 in TB32047 and
PANC1 Cells

We observed an upregulated phosphorylation of Erk (extracellular-signal-regulated
kinase), Akt (protein kinase B (PKB)), and Stat3 (signal transducer and activator of tran-
scription 3) in CCNL1-knockout TB32047 and PANC1 cells, whereas the expression levels
of Erk, Akt, and Stat3 did not change significantly (Figure 3).
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Figure 3. Knockout of CCNL1 promotes the phosphorylation of Erk, Akt, and Stat3. (A,B) Phospho-
rylation of Erk, Akt, and Stat3 is upregulated in CCNL1-knockout TB32047 and PANC1 cells.

3.4. DCK or CCNL1 Knockout Does Not Confer Cross-Resistance to Other Drugs

We then investigated the responses of DCK- and CCNL1-negative cells to the com-
monly used chemotherapeutic drugs 5-FU and oxaliplatin. TB32047, but not PANC1
DCK-negative cells, were slightly more sensitive to 5-FU treatment than WT and the control
cells. TB32047, but not PANC1 CCNL1-negative cells, showed an increased sensitivity to
oxaliplatin treatment. We observed no significant difference between TB32047 and PANC1
DCK-negative cells in their response to oxaliplatin treatment or between TB32047 and
PANC1 CCNL1-negative cells in their response to 5-FU treatment (Figure 4).
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Figure 4. Responses of DCK- and CCNL1-negative cells to 5-FU and oxaliplatin treatment. (A,C) 5-
FU dose–response curves for TB32047 and PANC1 DCK-negative cells. TB32047, but not PANC1
DCK-negative cells, were slightly more sensitive to 5-FU treatment than WT and control cells.
(B,D) Oxaliplatin dose–response curves for TB32047 and PANC1 DCK-negative cells. (E,G) 5-FU dose–
response curves for TB32047 and PANC1 CCNL1-negative cells. (F,H) Oxaliplatin dose–response
curves for TB32047 and PANC1 CCNL1-negative cells. TB32047, but not PANC1 CCNL1-negative
cells, showed increased sensitivity to oxaliplatin treatment compared to WT and control cells.

The gemcitabine IC50 value for TB32047 and PANC1 WT and NC cells was around
5 nM, for TB32047 CCNL1-negative cells it was nearly double that of WT and NC cells,
and for PANC1 CCNL1-negative cells it was around 20 nM. The oxaliplatin IC50 value
for TB32047 CCNL1-negative cells was half that of WT cells, and the 5-FU IC50 value for
TB32047 DCK-negative cells was 65% that of WT cells.

4. Discussion

Chemotherapy is a common treatment for improving pancreatic cancer patient out-
comes, and gemcitabine is a widely applied first-line chemotherapy drug. However, drug
resistance is a critical issue that considerably impacts the efficacy of chemotherapy. Pooled
CRISPR/Cas9 library screening is a powerful tool that facilitates the identification of new
targets for limiting drug resistance. We performed genome-wide CRISPR/Cas9 knockout
screening in the TB32047 cell line to determine the genes associated with gemcitabine
resistance and understand their mechanisms.
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We identified several genes that contribute to gemcitabine resistance. The highest-
ranking gene was DCK, which is located on chromosome 4q13.3 and codes for the protein
deoxycytidine kinase. DCK is a rate-limiting enzyme of the salvage pathway, which is in-
volved in the synthesis of deoxyribonucleotide triphosphates (dNTPs); dNTPs are essential
for DNA replication, repair, and tumor growth. Therefore, inhibiting the activity of DCK
may inhibit tumor growth [20]. However, this gene is also associated with gemcitabine
resistance [21,22]. Deoxycytidine kinase is essential to the drug’s efficacy, as it phosphory-
lates gemcitabine into gemcitabine monophosphate (dFdCMP), diphosphate (dFdCDP),
and triphosphate (dFdCTP), which are cytotoxic [23]. Therefore, the loss of DCK could
stop the phosphorylation of gemcitabine and make gemcitabine lose its cytotoxicity. As
the highest-ranking gene, DCK is the positive control for our screening and confirms its
validity. We successfully knocked out DCK in the TB32047 and PANC1 cell lines using the
CRISPR/Cas9 gene-editing system and evaluated the knockout effect by Western blot anal-
ysis. We performed an EC50 assay to detect the gemcitabine resistance in DCK-knockout
cell lines. The results were consistent with those of other studies [21,22,24]: the loss of DCK
induces significant gemcitabine resistance in cells.

CCNL1, located on chromosome 3q25.31, was the second-highest-ranking gene in
our list. It is commonly overexpressed in head and neck squamous cell carcinomas (HN-
SCC) [25] and could play a critical role in their loco-regional progression [26]. CCNL1 may
interact with cyclin-dependent kinases (CDKs), participate in pre-mRNA splicing [27], and
be inhibited by the CDK-specific inhibitor CDKN1A/p21 [28]. Few studies have considered
the role of CCNL1 in pancreatic cancer, and none have examined the connection between
CCNL1 and gemcitabine resistance. We used the CRISPR/Cas9 gene-editing system to
knockout CCNL1 in TB32047 and PANC1 cell lines. We evaluated the knockout effect
using qRT–PCR and sequencing. The EC50 and apoptosis assay results indicated that,
compared with WT and NC cells, CCNL1-negative cells were more resistant to gemcitabine
treatment, but they were not as resistant as DCK-knockout cells. The knocking-out of
CCNL1 hyperactivates survival-associated genes in the MAPK, AKT, and STAT pathways.

The MAPK pathway is essential to cell proliferation, migration, survival, and can-
cer therapy resistance [29]. Akt is a serine-threonine kinase that likely participates in
various biological functions, such as cell proliferation, survival, and apoptosis [30,31].
STAT3 is actively involved in cell growth and survival [32]. Changes to the phosphory-
lation of Erk [33–35], Akt [36–38], and STAT3 [39,40] could alter cancer cells’ sensitivity
to gemcitabine treatment. In our study, the phosphorylation of Erk, Akt, and STAT3 was
hyperactivated after we had knocked out CCNL1 in TB32047 and PANC1 cells, suggest-
ing that the loss of CCNL1 induces resistance to gemcitabine treatment by activating the
ERK/AKT/STAT3 survival pathway. However, further investigation into the regulatory
mechanisms relating to CCNL1 and the ERK/AKT/STAT3 survival pathway is necessary.

Although the loss of DCK and CCNL1 induced resistance to gemcitabine treatment, we
observed different results for the 5-FU and oxaliplatin treatments. TB32047, but not PANC1
DCK-negative cells, were slightly more sensitive to 5-FU treatment, and TB32047, but
not PANC1 CCNL1-negative cells, showed increased sensitivity to oxaliplatin treatment.
Contrary to the findings for gemcitabine, DCK- and CCNL1-negative cells showed no
increased resistance to 5-FU and oxaliplatin treatments. Pancreatic cancer patients may
benefit more from combination chemotherapy than long-term gemcitabine treatment.

5. Conclusions

We demonstrated that DCK and CCNL1 contribute to gemcitabine resistance in pan-
creatic cancer by performing genome-wide CRISPR/Cas9 knockout screening in the mouse
pancreatic cancer cell line TB32047 under gemcitabine treatment. The knockout of DCK or
CCNL1 by the CRISPR/Cas9 system promotes gemcitabine resistance in pancreatic cancer
cells. The loss of CCNL1 may activate the ERK/AKT/STAT3 survival pathway, inducing
resistance to gemcitabine treatment.



Cancers 2022, 14, 3152 13 of 15

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14133152/s1, Figure S1: Knockout of DCK increased gemc-
itabine resistance in TB32047 and PANC1 cells, Figure S2: Sequencing confirmation of mutation in
TB32047 and PANC1 CCNL1-negative cells, Figure S3: Western blot of TB32047 and PANC1 cells
transfected with DCK sgRNA or nontargeting control, Figure S4: Western blot of TB32047 and PANC1
cells transfected with CCNL1 sgRNA or nontargeting control, Table S1: TB32047 genome-wide
CRISPR/Cas9 gemcitabine screening. Table S2: Quantification of WB data. Intensity of bands as
relative light units. No.: Arbitrarily assigned number of the Western blots used for analysis.

Author Contributions: Conceptualization, H.Y. and B.L.; methodology, H.Y., B.L. and N.B.-L.; soft-
ware, H.Y. and Z.Y.; validation, H.Y., D.L. and Y.X.; formal analysis, H.Y., B.L. and D.L.; resources,
S.Z., I.K., S.P., N.B.-L., R.G. and C.P.; data curation, H.Y. and D.L.; writing—original draft preparation,
H.Y. and D.L.; writing—review and editing, H.Y., B.L., D.L, N.B.-L. and C.P.; visualization, Z.Y., P.X.
and R.G.; supervision, N.B.-L. and C.P.; project administration, C.P.; funding acquisition, C.P. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the EU (MSCA-ITN 861196, PRECODE; C.P.).

Institutional Review Board Statement: Ethical review and approval were waived for this study, as
we did not use any human materials for this study, outside of standard human cell lines. All human
data were from public domain databases.

Informed Consent Statement: Patient consent was waived as all human data were from public
domain databases.

Data Availability Statement: Raw data of the CRISPR/Cas9 screening are available in the ENA
database, PRJEB51345.

Acknowledgments: The authors are grateful for the support from the EU (MSCA-ITN 861196,
PRECODE; C. Pilarsky). C. Pilarsky thanks Ronald Belford Scott for his support. The present work
was performed in fulfillment of the requirements for obtaining the degree of Dr. med. of FAU by Hai
Yang.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [CrossRef] [PubMed]
2. Lianos, G.D.; Christodoulou, D.K.; Katsanos, K.H.; Katsios, C.; Glantzounis, G.K. Minimally Invasive Surgical Approaches for

Pancreatic Adenocarcinoma: Recent Trends. J. Gastrointest. Cancer 2017, 48, 129–134. [CrossRef] [PubMed]
3. Garcia-Sampedro, A.; Gaggia, G.; Ney, A.; Mahamed, I.; Acedo, P. The State-of-the-Art of Phase II/III Clinical Trials for Targeted

Pancreatic Cancer Therapies. J. Clin. Med. 2021, 10, 566. [CrossRef] [PubMed]
4. Jain, A.; Bhardwaj, V. Therapeutic resistance in pancreatic ductal adenocarcinoma: Current challenges and future opportunities.

World J. Gastroenterol. 2021, 27, 6527–6550. [CrossRef]
5. Chin, V.; Nagrial, A.; Sjoquist, K.; O’Connor, C.A.; Chantrill, L.; Biankin, A.V.; Scholten, R.J.; Yip, D. Chemotherapy and

radiotherapy for advanced pancreatic cancer. Cochrane Database Syst. Rev. 2018, 3, CD011044. [CrossRef]
6. Bergman, A.M.; Pinedo, H.M.; Peters, G.J. Determinants of resistance to 2′,2′-difluorodeoxycytidine (gemcitabine). Drug. Resist.

Updat. 2002, 5, 19–33. [CrossRef]
7. Zeng, S.; Pottler, M.; Lan, B.; Grutzmann, R.; Pilarsky, C.; Yang, H. Chemoresistance in Pancreatic Cancer. Int. J. Mol. Sci. 2019,

20, 4504. [CrossRef]
8. Ishino, Y.; Shinagawa, H.; Makino, K.; Amemura, M.; Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline

phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 1987, 169, 5429–5433.
[CrossRef]

9. Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; et al. Multiplex genome
engineering using CRISPR/Cas systems. Science 2013, 339, 819–823. [CrossRef]

10. Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-guided human genome
engineering via Cas9. Science 2013, 339, 823–826. [CrossRef]

11. Yang, H.; Bailey, P.; Pilarsky, C. CRISPR Cas9 in Pancreatic Cancer Research. Front. Cell Dev. Biol. 2019, 7, 239. [CrossRef]
[PubMed]

https://www.mdpi.com/article/10.3390/cancers14133152/s1
https://www.mdpi.com/article/10.3390/cancers14133152/s1
http://doi.org/10.3322/caac.21654
http://www.ncbi.nlm.nih.gov/pubmed/33433946
http://doi.org/10.1007/s12029-017-9934-9
http://www.ncbi.nlm.nih.gov/pubmed/28326457
http://doi.org/10.3390/jcm10040566
http://www.ncbi.nlm.nih.gov/pubmed/33546207
http://doi.org/10.3748/wjg.v27.i39.6527
http://doi.org/10.1002/14651858.CD011044.pub2
http://doi.org/10.1016/S1368-7646(02)00002-X
http://doi.org/10.3390/ijms20184504
http://doi.org/10.1128/jb.169.12.5429-5433.1987
http://doi.org/10.1126/science.1231143
http://doi.org/10.1126/science.1232033
http://doi.org/10.3389/fcell.2019.00239
http://www.ncbi.nlm.nih.gov/pubmed/31681770


Cancers 2022, 14, 3152 14 of 15

12. Kang, J.Y.; Park, J.W.; Hwang, Y.; Hahm, J.Y.; Park, J.; Park, K.S.; Seo, S.B. The H3K4 methyltransferase SETD1A is required for
proliferation of non-small cell lung cancer cells by promoting S-phase progression. Biochem. Biophys. Res. Commun. 2021, 561,
120–127. [CrossRef] [PubMed]

13. Cai, J.; Chen, J.; Wu, T.; Cheng, Z.; Tian, Y.; Pu, C.; Shi, W.; Suo, X.; Wu, X.; Zhang, K. Genome-scale CRISPR activation screening
identifies a role of LRP8 in Sorafenib resistance in Hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 2020, 526, 1170–1176.
[CrossRef] [PubMed]

14. Lee, J.; Choi, A.; Cho, S.Y.; Jun, Y.; Na, D.; Lee, A.; Jang, G.; Kwon, J.Y.; Kim, J.; Lee, S.; et al. Genome-scale CRISPR screening
identifies cell cycle and protein ubiquitination processes as druggable targets for erlotinib-resistant lung cancer. Mol. Oncol. 2021,
15, 487–502. [CrossRef]

15. Dull, T.; Zufferey, R.; Kelly, M.; Mandel, R.J.; Nguyen, M.; Trono, D.; Naldini, L. A third-generation lentivirus vector with a
conditional packaging system. J. Virol. 1998, 72, 8463–8471. [CrossRef]

16. Sanjana, N.E.; Shalem, O.; Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 2014, 11,
783–784. [CrossRef]

17. Li, W.; Koster, J.; Xu, H.; Chen, C.H.; Xiao, T.; Liu, J.S.; Brown, M.; Liu, X.S. Quality control, modeling, and visualization of
CRISPR screens with MAGeCK-VISPR. Genome Biol. 2015, 16, 281. [CrossRef]

18. Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat.
Protoc. 2013, 8, 2281–2308. [CrossRef]

19. Stemmer, M.; Thumberger, T.; Del Sol Keyer, M.; Wittbrodt, J.; Mateo, J.L. CCTop: An Intuitive, Flexible and Reliable CRISPR/Cas9
Target Prediction Tool. PLoS ONE 2015, 10, e0124633. [CrossRef]

20. Poddar, S.; Capparelli, E.V.; Rosser, E.W.; Gipson, R.M.; Wei, L.; Le, T.; Jung, M.E.; Radu, C.; Nikanjam, M. Development and
preclinical pharmacology of a novel dCK inhibitor, DI-87. Biochem. Pharmacol. 2020, 172, 113742. [CrossRef]

21. Nakano, T.; Saiki, Y.; Kudo, C.; Hirayama, A.; Mizuguchi, Y.; Fujiwara, S.; Soga, T.; Sunamura, M.; Matsumura, N.; Motoi, F.; et al.
Acquisition of chemoresistance to gemcitabine is induced by a loss-of-function missense mutation of DCK. Biochem. Biophys. Res.
Commun. 2015, 464, 1084–1089. [CrossRef] [PubMed]

22. Saiki, Y.; Yoshino, Y.; Fujimura, H.; Manabe, T.; Kudo, Y.; Shimada, M.; Mano, N.; Nakano, T.; Lee, Y.; Shimizu, S.; et al. DCK is
frequently inactivated in acquired gemcitabine-resistant human cancer cells. Biochem. Biophys. Res. Commun. 2012, 421, 98–104.
[CrossRef] [PubMed]

23. Mini, E.; Nobili, S.; Caciagli, B.; Landini, I.; Mazzei, T. Cellular pharmacology of gemcitabine. Ann. Oncol. 2006, 17 (Suppl. S5),
v7–v12. [CrossRef] [PubMed]

24. Ohhashi, S.; Ohuchida, K.; Mizumoto, K.; Fujita, H.; Egami, T.; Yu, J.; Toma, H.; Sadatomi, S.; Nagai, E.; Tanaka, M. Down-
regulation of deoxycytidine kinase enhances acquired resistance to gemcitabine in pancreatic cancer. Anticancer Res. 2008, 28,
2205–2212. [PubMed]

25. Redon, R.; Hussenet, T.; Bour, G.; Caulee, K.; Jost, B.; Muller, D.; Abecassis, J.; du Manoir, S. Amplicon mapping and transcriptional
analysis pinpoint cyclin L as a candidate oncogene in head and neck cancer. Cancer Res. 2002, 62, 6211–6217. [PubMed]

26. Sticht, C.; Hofele, C.; Flechtenmacher, C.; Bosch, F.X.; Freier, K.; Lichter, P.; Joos, S. Amplification of Cyclin L1 is associated with
lymph node metastases in head and neck squamous cell carcinoma (HNSCC). Br. J. Cancer 2005, 92, 770–774. [CrossRef]

27. Loyer, P.; Trembley, J.H.; Grenet, J.A.; Busson, A.; Corlu, A.; Zhao, W.; Kocak, M.; Kidd, V.J.; Lahti, J.M. Characterization of cyclin
L1 and L2 interactions with CDK11 and splicing factors: Influence of cyclin L isoforms on splice site selection. J. Biol. Chem. 2008,
283, 7721–7732. [CrossRef]

28. Dickinson, L.A.; Edgar, A.J.; Ehley, J.; Gottesfeld, J.M. Cyclin L is an RS domain protein involved in pre-mRNA splicing. J. Biol.
Chem. 2002, 277, 25465–25473. [CrossRef]

29. Burotto, M.; Chiou, V.L.; Lee, J.M.; Kohn, E.C. The MAPK pathway across different malignancies: A new perspective. Cancer 2014,
120, 3446–3456. [CrossRef]

30. Manning, B.D.; Toker, A. AKT/PKB Signaling: Navigating the Network. Cell 2017, 169, 381–405. [CrossRef]
31. Mundi, P.S.; Sachdev, J.; McCourt, C.; Kalinsky, K. AKT in cancer: New molecular insights and advances in drug development. Br.

J. Clin. Pharmacol. 2016, 82, 943–956. [CrossRef]
32. Yu, H.; Jove, R. The STATs of cancer—new molecular targets come of age. Nat. Rev. Cancer 2004, 4, 97–105. [CrossRef] [PubMed]
33. Wang, B.; Shen, C.; Li, Y.; Zhang, T.; Huang, H.; Ren, J.; Hu, Z.; Xu, J.; Xu, B. Oridonin overcomes the gemcitabine resistant

PANC-1/Gem cells by regulating GST pi and LRP/1 ERK/JNK signalling. Onco. Targets Ther. 2019, 12, 5751–5765. [CrossRef]
34. Ryu, W.J.; Han, G.; Lee, S.H.; Choi, K.Y. Suppression of Wnt/beta-catenin and RAS/ERK pathways provides a therapeutic

strategy for gemcitabine-resistant pancreatic cancer. Biochem. Biophys. Res. Commun. 2021, 549, 40–46. [CrossRef] [PubMed]
35. Su, Y.H.; Hsu, T.W.; Chen, H.A.; Su, C.M.; Huang, M.T.; Chuang, T.H.; Leo Su, J.; Hsieh, C.L.; Chiu, C.F. ERK-mediated

transcriptional activation of Dicer is involved in gemcitabine resistance of pancreatic cancer. J. Cell Physiol. 2021, 236, 4420–4434.
[CrossRef]

36. Xiong, Y.; Ju, L.; Yuan, L.; Chen, L.; Wang, G.; Xu, H.; Peng, T.; Luo, Y.; Xiao, Y.; Wang, X. KNSTRN promotes tumorigenesis and
gemcitabine resistance by activating AKT in bladder cancer. Oncogene 2021, 40, 1595–1608. [CrossRef] [PubMed]

37. Yoshikawa, N.; Saito, Y.; Manabe, H.; Nakaoka, T.; Uchida, R.; Furukawa, R.; Muramatsu, T.; Sugiyama, Y.; Kimura, M.; Saito, H.
Glucose Depletion Enhances the Stem Cell Phenotype and Gemcitabine Resistance of Cholangiocarcinoma Organoids through
AKT Phosphorylation and Reactive Oxygen Species. Cancers 2019, 11, 1993. [CrossRef]

http://doi.org/10.1016/j.bbrc.2021.05.026
http://www.ncbi.nlm.nih.gov/pubmed/34023776
http://doi.org/10.1016/j.bbrc.2020.04.040
http://www.ncbi.nlm.nih.gov/pubmed/32312520
http://doi.org/10.1002/1878-0261.12853
http://doi.org/10.1128/JVI.72.11.8463-8471.1998
http://doi.org/10.1038/nmeth.3047
http://doi.org/10.1186/s13059-015-0843-6
http://doi.org/10.1038/nprot.2013.143
http://doi.org/10.1371/journal.pone.0124633
http://doi.org/10.1016/j.bcp.2019.113742
http://doi.org/10.1016/j.bbrc.2015.07.080
http://www.ncbi.nlm.nih.gov/pubmed/26196746
http://doi.org/10.1016/j.bbrc.2012.03.122
http://www.ncbi.nlm.nih.gov/pubmed/22490663
http://doi.org/10.1093/annonc/mdj941
http://www.ncbi.nlm.nih.gov/pubmed/16807468
http://www.ncbi.nlm.nih.gov/pubmed/18751396
http://www.ncbi.nlm.nih.gov/pubmed/12414649
http://doi.org/10.1038/sj.bjc.6602400
http://doi.org/10.1074/jbc.M708188200
http://doi.org/10.1074/jbc.M202266200
http://doi.org/10.1002/cncr.28864
http://doi.org/10.1016/j.cell.2017.04.001
http://doi.org/10.1111/bcp.13021
http://doi.org/10.1038/nrc1275
http://www.ncbi.nlm.nih.gov/pubmed/14964307
http://doi.org/10.2147/OTT.S208924
http://doi.org/10.1016/j.bbrc.2021.02.076
http://www.ncbi.nlm.nih.gov/pubmed/33662667
http://doi.org/10.1002/jcp.30159
http://doi.org/10.1038/s41388-020-01634-z
http://www.ncbi.nlm.nih.gov/pubmed/33452459
http://doi.org/10.3390/cancers11121993


Cancers 2022, 14, 3152 15 of 15

38. Hu, H.; Gu, Y.; Qian, Y.; Hu, B.; Zhu, C.; Wang, G.; Li, J. DNA-PKcs is important for Akt activation and gemcitabine resistance in
PANC-1 pancreatic cancer cells. Biochem. Biophys. Res. Commun. 2014, 452, 106–111. [CrossRef]

39. Gong, J.; Munoz, A.R.; Pingali, S.; Payton-Stewart, F.; Chan, D.E.; Freeman, J.W.; Ghosh, R.; Kumar, A.P. Downregulation of
STAT3/NF-kappaB potentiates gemcitabine activity in pancreatic cancer cells. Mol. Carcinog. 2017, 56, 402–411. [CrossRef]

40. Wu, X.; Tang, W.; Marquez, R.T.; Li, K.; Highfill, C.A.; He, F.; Lian, J.; Lin, J.; Fuchs, J.R.; Ji, M.; et al. Overcoming chemo/radio-
resistance of pancreatic cancer by inhibiting STAT3 signaling. Oncotarget 2016, 7, 11708–11723. [CrossRef]

http://doi.org/10.1016/j.bbrc.2014.08.059
http://doi.org/10.1002/mc.22503
http://doi.org/10.18632/oncotarget.7336

	Introduction 
	Materials and Methods 
	Cell Culture 
	Lentivirus Generation and Transduction 
	CRISPR Screening 
	Genomic DNA Isolation and PCR Amplification 
	CRISPR/Cas9 Gene-Editing Knockout System 
	Western Blot and Antibodies 
	Quantitative RT–PCR 
	Genome Mutation Confirmation 
	Chemotherapeutic Drug Resistance Assay 
	Apoptosis Assay 
	Statistical Analysis 

	Results 
	Genome-Wide CRISPR Screening Identifies DCK and CCNL1 as Genes Involved in Chemoresistance 
	Loss of DCK and CCNL1 Enhances Resistance to Gemcitabine Treatment in TB32047 and PANC1 Cells 
	Knockout of CCNL1 Promotes the Phosphorylation of Erk, Akt, and Stat3 in TB32047 and PANC1 Cells 
	DCK or CCNL1 Knockout Does Not Confer Cross-Resistance to Other Drugs 

	Discussion 
	Conclusions 
	References

