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A B S T R A C T

The current existing classifiers for distinguishing malignant from benign pulmonary nodules is 
limited by effectiveness or clinical practicality. In our study, we aimed to develop and validate a 
gene classifier for lung cancer diagnosis. To identify the genes involved in this process, we used 
the weighted gene co-expression network analysis to analyze gene expression datasets from Gene 
Expression Omnibus (GEO). We identified the three most relevant modules associated with ma
lignant nodules and performed functional enrichment analysis on them. The results indicated 
significant involvement in metabolic, immune-related, cell cycle, and viral-related processes. All 
three modules showed enrichment in metabolic reprogramming pathways. Based on these genes, 
we intersected genes from the three modules with metabolic reprogramming-related genes and 
further intersected with differentially expressed genes to get 78 genes. After machine learning 
algorithms and manual selection, we finally got a nine-gene classifier consisting of SEC24D, 
RPSA, PSME3, PSMD8, PSMB7, NCOA1, MED12, LPCAT1, and AKR1C3. Our developed and 
validated classifier-based model demonstrated good discrimination, with an area under the curve 
(AUC) of 0.763 in the development cohort, 0.744 in the internal validation cohort, and 0.718 in 
the external validation cohort, and outperformed previous clinical models. Moreover, the addi
tion of nodule size improved the predictive capability of the classifier. We further verify the 
expression of the gene in the classifier using TCGA lung cancer samples and found eight of the 
genes showed significant differential expression in lung adenocarcinoma while all nine genes 
showed significant differential expression in lung squamous carcinoma. Our findings underscore 
the significance of metabolic reprogramming pathways in patients with malignant pulmonary 
nodules, and our gene classifier can assist clinicians in differentiating benign from malignant 
pulmonary nodules in clinical settings.
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1. Introduction

Until 2020, lung cancer held the highest global prevalence among cancer types, a position now surpassed by breast cancer. Despite 
this shift, lung cancer remains the leading cause of cancer-related deaths, with an estimated death toll of almost 1.8 million [1]. This 
can be attributed to the subtle or nonspecific early symptoms of the disease, which often lead to a diagnosis at an incurable stage [2]. 
Early diagnosis is critical for improving outcomes in lung cancer patients, prompting a variety of research efforts aimed at addressing 
this important concern.

Low-dose CT (LDCT) scan is a well-established approach for patients at a high risk of lung cancer. It has demonstrated promising 
efficacy in detecting susceptible nodules that might indicate lung cancer. LDCT screening trials have demonstrated a reduction in 
mortality [3,4], leading to its current recommendation by guidelines in most countries for high-risk individuals [5–7]. In some areas, it 
is even offered as an optional annual physical examination component for employees. However, as CT scans have become more 
common, the prevalence of pulmonary nodules has also risen, causing a high incidence of indeterminate nodules and resulting anxiety. 
Only 2.1–5.5 % of cases with lung nodules are malignant [7,8], making it challenging to distinguish malignant from benign nodules. In 
most cases, differential diagnosis often entails repeated CT follow-ups or invasive examinations, which are largely dependent on expert 
judgment by clinicians and can sometimes yield inconclusive results, especially for moderate-risk nodules. Thus, there is a need for 
non-invasive or minimally invasive, easy-to-use, and accurate methods to help clinicians differentiate between malignant and benign 
nodules.

Carcinogenesis is a multistep process involving dynamic changes in gene expression. These changes can affect cellular behavior and 
reveal disease features, making them potential biomarkers. Peripheral blood samples are widely used for transcriptome profiling in 
order to identify valuable diagnostic and prognostic markers [9]. This approach is minimally invasive and advantageous when 
disease-relevant tissues are inaccessible [10,11]. In this study, we analyzed gene expression datasets from blood samples of patients 
with pulmonary nodules. We applied weighted gene co-expression network analysis (WGCNA) to identify modules associated with 
malignant nodules and explored the genetic mechanisms of lung carcinogenesis. We also developed a gene classifier related to 
metabolic reprogramming using machine-learning algorithms. We showed that the classifier-based model exhibited good accuracy and 
calibration.

2. Materials and methods

2.1. Participants

In this study, we aimed to investigate the genetic mechanisms underlying lung carcinogenesis and develop a classifier to 

Fig. 1. Study flow.
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differentiate between malignant and benign nodules. To this end, our study included patients with a positive pulmonary nodule (of no 
more than 30 mm on a CT scan) without metastasis or lymph node invasion (stage I of the AJCC classification). The flowchart of this 
study is shown in Fig. 1.

To identify appropriate gene expression datasets, we searched the Gene Expression Omnibus (GEO) database (https://www.ncbi. 
nlm.nih.gov/geo/) using the keywords “lung cancer” and “blood”. We included datasets that met the following criteria: (1) involving 
human patients with nodules as study participants; (2) diagnosing malignant nodules through pathology; (3) using expression profiles 
based on whole blood; and (4) sampling blood before lung resection surgery. Based on the inclusion criteria, two expression profiling 
datasets (GSE135304 and GSE20189) were used in this study. Table S1 summarizes the characteristics of the dataset.

GSE135304 (Platform: GPL10558) comprised 712 patients of diverse races (Caucasian, African American, and others) from 
America, providing whole-blood gene expression data from individuals with malignant (MN), benign (BN) nodules, and those without 
nodules (NN). From this dataset, cases were filtered based on specific criteria: 1) blood sampled after lung resection surgery (n = 90); 
2) nodules larger than 30 mm on CT scan, or nodules with metastasis or lymph node invasion (n = 145). A total of 477 cases were 
selected (termed GSE135304_subset_all), including 216 cases of malignant nodules, 173 cases of benign nodules, and 88 cases without 
nodules.

GSE20189 (Platform: GPL571) included 162 Caucasians from Italy, and after similar filtering, 106 were chosen for external 
validation (termed GSE20189_subset). The validation group comprised 26 patients with stage I lung adenocarcinoma (LUAD) and 80 
non-cancer controls, predominantly composed of older individuals who were current smokers.

2.2. WGCNA and functional enrichment analysis

WGCNA is a computational algorithm that identifies gene co-expression patterns. It groups genes with similar expression patterns 
across samples and conditions into modules containing functionally related genes [12].

In this study, we performed WGCNA on GSE135304_subset_all to identify genes associated with lung cancer, which were then 
subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses to understand the 
molecular mechanisms of lung carcinogenesis. WGCNA was conducted using the WGCNA package [12] in R, based on the top 5000 
genes ordered by the Median Absolute Deviation. We set the scale-free R-squared cutoff to 0.8, cut height to 0.25, and the minimum 
module size to 30. We ranked the modules with a significant (P < 0.05) correlation with malignant nodules based on the absolute value 
of the correlation coefficient.

GO biological process and KEGG enrichment analyses were conducted using the clusterProfiler package [13] in R based on the top 
three relevant gene modules obtained from WGCNA. A p-value <0.05 and q-value <0.05 were considered statistically significant.

2.3. Differentially expressed genes and metabolic reprogramming-related genes

Patients in the GSE135304_subset_all dataset were divided into two groups based on the presence of malignant nodules: a benign 
nodule group and malignant nodule group (termed GSE135304_subset). Differentially expressed genes (DEGs) between the two groups 
were identified using the limma package [14] in R, with a cutoff of the sum of two times the standard deviation and the mean absolute 
logFC value.

Metabolic reprogramming-related genes were obtained from the supplementary study of Peng et al. [15], who curated gene sets of 
seven metabolic super-pathways based on Reactome annotations [16], including genes of amino acid metabolism, carbohydrate 
metabolism, energy integration, lipid metabolism, nucleotide metabolism, tricarboxylic acid cycle, and vitamin and cofactor 
metabolism.

2.4. Development and validation of the classifier

To identify the most relevant genes associated with malignant nodules, we employed machine learning algorithms, such as least 
absolute shrinkage and selection operator (LASSO) regression and recursive feature elimination with cross-validation (RFE). These 
algorithms were based on genes from the top three relevant modules identified using WGCNA. LASSO regression was performed using 
the glmnet package [17] in R, with the lambda set according to 4-fold cross-validation. RFE was conducted using the caret package 
[18] in R, with a random forest classifier used to perform feature selection, similarly employing 4-fold cross-validation.

To prevent data overfitting, we obtained the intersection of the genes identified by the two aforementioned machine learning 
algorithms. We further integrated stepwise logistic regression and manual selection to obtain a classifier. The rms package was used to 
develop a nomogram model based on this classifier. The discrimination and calibration of the model were assessed using the area under 
the receiver operating characteristic curve (AUC) and calibration curve, respectively. Additionally, we evaluated the practicality of the 
model using decision curve analysis (DCA) using the rmda package [19] in R.

2.5. Gene expression profile of genes in lung cancer tissues

To investigate the gene expression profile in lung cancer tissues, LUAD and lung squamous cell carcinoma (LUSC) samples were 
obtained from TCGA-LUAD and TCGA-LUSC, respectively. We acquired gene expression and phenotype data from the Genomic Data 
Commons Data Portal (https://portal.gdc.cancer.gov/) and utilized FPKM for comparison between normal and tumor samples.
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2.6. Statistical analysis

Continuous variables in this study were reported as either mean ± standard deviation or median (interquartile range), depending 
on whether they followed a normal distribution. The R language and the corresponding packages mentioned above were used for 
statistical analysis and visualization. We considered a p-value less than 0.05 as statistically significant.

3. Results

3.1. Clinical features of patients

Two expression profiling datasets (GSE135304 and GSE20189) were used. After filtering, as described previously, subsets con
taining the population of interest were obtained. The patients of GSE135304_subset were mostly smokers or former smokers (95 %), 
had a mean age of 66 ± 9 years, and were predominantly female (58 %) and Caucasian (83 %). The median nodule size was 12 mm 
(IQR 8–17 mm). These patients were divided into two sub-cohorts in an 8:2 ratio using the “createDataPartition” function from the 
caret package for classifier development (train cohort) or internal validation (test cohort). The demographic data were balanced 
between the two sub-cohorts (Table 1). The GSE20189_subset comprised 26 cases of stage I lung cancer and 80 controls, primarily 
consisting of smokers, intended for external validation.

3.2. WGCNA analysis and functional enrichment analysis

With the soft threshold equal to 6 (β = 6) as per the soft-threshold power network topology analysis (Fig. 2A), weighted gene co- 
expression networks were constructed based on GSE135304_subset dataset, and 21 modules were generated (Fig. 2B). The lavender, 
green, and cyan modules were identified as the three most relevant modules that correlated with malignant nodules (Fig. 2C). 
Consequently, we extracted the genes belonging to these three modules for functional enrichment analysis. GO biological process 
enrichment analysis showed that 42, 78, and 27 terms were enriched in the lavender, green, and cyan modules, respectively, sug
gesting that the correlated genes were mainly related to metabolism, immune-related processes, cell cycle and viral-related processes 
(Table S2A).

KEGG pathway analysis showed similar results, with 13, 19, and seven enriched terms in the lavender, green, and cyan modules, 
respectively. These included metabolism-related pathways, pathways of neurodegenerative diseases, viral carcinogenesis, and 
signaling pathways regulating the pluripotency of stem cells (Table S2B). The significant GO terms and KEGG pathway analyses were 
sorted in ascending order of q-values, and the top 10 terms are shown in Fig. 2D & E.

3.3. Gene selection and classifier development

Given that metabolism-related terms were enriched in all three modules, and considering metabolic reprogramming is a hallmark 
feature of tumors occurring early in tumorigenesis, we sought to develop a gene classifier focused on metabolism to assist in diagnosing 
malignant nodules.

The genes in the three modules were extracted, merged, intersected with metabolic reprogramming-related genes, and further 
intersected with the 812 DEGs based on the GSE135304_subset (Fig. 3A). Finally, 78 genes were selected (Fig. 3B). These genes were 
then subjected to LASSO regression and RFE to identify the most relevant variables. As a result, sets of 21 (Fig. 3C and D) and 35 genes 
(Fig. 3E) were chosen. The two gene sets intersected (Fig. 3F) to generate a 14-gene set. Logistic stepwise regression and manual 
selection were performed to obtain a nine-gene classifier consisting of SEC24D, RPSA, PSME3, PSMD8, PSMB7, NCOA1, MED12, 
LPCAT1, and AKR1C3.

Table 1 
Patient characteristics.

Variable Overall N = 389 BN N = 216 MN N = 173 Train cohort N = 312 Test cohort N = 77

Group
BN 216/389 (56 %) – – 173/312 (55 %) 43/77 (56 %)
MN 173/389 (44 %) – – 139/312 (45 %) 34/77 (44 %)

Smoking 369/389 (95 %) 208/216 (96 %) 161/173 (93 %) 294/312 (94 %) 75/77 (97 %)
Gender

Female 226/389 (58 %) 114/216 (53 %) 112/173 (65 %) 181/312 (58 %) 45/77 (58 %)
Male 163/389 (42 %) 102/216 (47 %) 61/173 (35 %) 131/312 (42 %) 32/77 (42 %)

Age 66 (9) 64 (9) 68 (9) 65 (9) 67 (9)
Race

African American 48/389 (12 %) 23/216 (11 %) 25/173 (14 %) 38/312 (12 %) 10/77 (13 %)
Caucasian 324/389 (83 %) 182/216 (84 %) 142/173 (82 %) 257/312 (82 %) 67/77 (87 %)
Other 17/389 (4.4 %) 11/216 (5.1 %) 6/173 (3.5 %) 17/312 (5.4 %) 0/77 (0 %)

Nodule Size (mm) 13 (7) 9 (5, 12) 17 (13, 20) 13 (7) 13 (6)

Abbreviation: BN, benign nodule; MN, malignant nodule. Data were expressed by n/N (%) or Mean (SD).
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Fig. 2. WGCNA and enrich analysis. 
(A) Network topology analysis identified a suitable soft-threshold power of 6. (B) Cluster dendrogram of WGCNA depicting 21 modules labeled by 
distinct colors. (C) Correlation between modules and pulmonary malignant nodules. (D) Top 10 GO terms associated with the three most relevant 
modules related to malignant nodules. (E) Top 10 KEGG pathways associated with the three most relevant modules related to malignant nodules.
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3.4. Nomogram model development and validation

We developed a model using a classifier and evaluated its diagnostic performance. A nomogram model was developed and vali
dated internally (Fig. S1). It exhibited good discrimination with an AUC of 0.763 in the training cohort and 0.744 in the test cohort 
(Fig. 4A). As illustrated in Fig. 4B & C, the Hosmer–Lemeshow goodness-of-fit test indicated that the predicted values of the model 
were not significantly different from the observed values. The DCA diagram showed that there was a net benefit greater than 0 between 
the risk thresholds of 0.01–0.78, indicating that the model had good clinical practicability (Fig. 4D).

Subgroup analyses were performed to investigate whether the model efficacy differed across subgroups of the study population. 
Stratification by nodule size revealed that the AUC of the nomogram for nodules measuring 0–10 mm, 10–20 mm, and 20–30 mm were 
0.72, 0.714, and 0.675, respectively (Fig. 4E). We also divided the population into Caucasian and non-Caucasian subgroups to 
determine whether the efficacy of the model was influenced by race. The discrimination of the model in Caucasians (AUC: 0.75) was 
similar but marginally lower than that in non-Caucasians (AUC: 0.79) (Fig. 4F).

To confirm the reliability of our classifier, we performed validation using an additional dataset (GSE20189_subset). The results 
demonstrated that our classifier-based model had a comparable discriminatory ability, as indicated by an AUC value of 0.718 (Fig. 4A). 
Moreover, the calibration curve depicted in Fig. S2 shows good agreement between the predicted and observed values, indicating that 
the model was well-calibrated.

3.5. Addition of clinical variables increased the efficacy of the classifier

Certain predictors such as nodule size and age have been widely acknowledged as valuable for differentiating between benign and 
malignant nodules in clinical practice. Incorporating such predictors into a classifier can potentially enhance performance. Thus, we 
developed refined models that integrated the classifier with nodule size or age. Compared to the previous model, both models yielded a 
noticeable improvement in the AUC (Fig. 5A, Fig. S3A), especially the model that incorporating nodule size, achieving values of 0.891 
and 0.815 in the development and validation cohorts, respectively. This surpassed the model based solely on nodule size, which 
achieved 0.864 and 0.793 in the development and validation cohorts, respectively (Fig. S4). Moreover, calibration curves demon
strated a good concordance between the model’s predictions and actual observations (Figs. S3B and S3C).

Fig. 3. The feature selection. 
(A) Volcano plot of differential expression genes (DEGs) identified by limma, with red dots indicating significant DEGs. (B) Venn diagram of the 
overlap between DEGs, malignant nodules (MN) related genes and metabolic reprogramming related genes, resulting in 78 genes. (C)LASSO co
efficient profiles of the 78 genes. (D) Cross-validation for tuning parameter selection in the LASSO model. (E) Recursive feature elimination with 
random forest (RFE-RF) of the 78 genes. (F) Venn diagram of the overlap between LASSO and RFE-RF selected genes, resulting in 14 genes.
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Fig. 4. Development and validation of the classifier based model. 
(A) ROC curves for the classifier in the train, test, and external cohorts, with corresponding AUC values of 0.763, 0.744, and 0.718, respectively. (B) 
Calibration plots demonstrating agreement between predicted and observed probabilities in the train cohort. (C) Calibration plots demonstrating 
agreement between predicted and observed probabilities in the test cohort. (D) Decision curve analysis indicating a net benefit across risk thresholds 
of 0.01–0.78 for the classifier. (E) Subgroup analysis: ROC curve for the classifier stratified by nodule sizes. (F) Subgroup analysis: ROC curve for the 
classifier stratified by race.

Fig. 5. Classifier refinement and comparison. 
(A) ROC curve of the refined classifier (with added nodule size) in the train and test cohorts, with AUC values of 0.891 and 0.815, respectively. (B) 
Comparison of the performance metrics of the original and refined models.
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3.6. Model based on the classifier outperformed previous clinical models

We compared the performance of our classifier-based model with several previously published clinical models, such as the Mayo 
Clinic model [20], Brock model [21], and Veteran’s Affairs lung cancer risk clinical (VA) model [22]. According to Kossenkov et al. 
[23], the AUC of the three models for patients with nodules measuring 6–20 mm in the dataset were 0.717, 0.749, and 0.714, 
respectively. We evaluated the performance of our classifier-based model for these patients and obtained an AUC value of 0.72, which 
outperformed the Mayo Clinic and VA models but was slightly lower than that of the Brock model. However, when we integrated the 
nodule size classifier into our model, we obtained a comprehensive model with an AUC of 0.78, outperforming all three clinical models 
(Fig. 5B).

3.7. Validation of classifier gene expression in lung cancer tissues

We further analyzed the gene expression of the classifier in TCGA database to investigate its potential role in lung cancer. Among 
the nine genes comprising the classifier, seven genes—AKR1C3, MED12, PSMB7, PSMD8, PSME3, RPSA, SEC24D—showed upregu
lation in both lung adenocarcinoma and lung squamous carcinoma, while LPCAT1 and NCOA1 exhibited downregulation. This 
consistent pattern of expression was observed in both the subset of stage I patients (Fig. 6A) and the entire dataset (Fig. 6B). Notably, 
four genes—LPCAT1, MED12, PSME3, SEC24D—displayed distinct expression profiles between peripheral blood mononuclear cells 
(PBMC) and TCGA lung tissues. Despite this, eight out of nine genes showed significant differential expression in lung adenocarcinoma 
(all P < 0.05, except LPCAT1), and all nine genes were significantly differentially expressed in lung squamous carcinoma (all P < 0.05). 
These findings underscore the potential pivotal role of these genes in the initiation and progression of lung tumorigenesis.

Fig. 6. Validation of classifier in lung cancer tissues. 
Gene expression profile in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) samples. (A) stage I samples exclusively, (B) all 
samples. 
Abbreviation: NS, not significant; *, P < 0.05.
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4. Discussion

Tumor metabolic reprogramming encompasses a series of metabolic changes in tumor cells, such as aerobic glycolysis, which 
enables rapid proliferation and growth, even in microenvironments with limited oxygen and nutrition. This phenomenon has been 
considered as one of the hallmarks of tumors [24,25]. In this study, we utilized available datasets from the GEO database and filtered 
suitable cases to analyze the gene expression patterns of PBMC in patients with malignant lung nodules to elucidate the underlying 
mechanisms of early lung cancer. WGCNA and functional enrichment analyses revealed that the genes in the module most relevant to 
malignant lung nodule-related genes were mainly involved in metabolism-related processes, immune-related terms or pathways, and 
the cell cycle. The metabolism-related terms and pathways were significantly more frequent. Subsequently, a classifier containing nine 
metabolism-related genes was developed, and the model based on this classifier demonstrated good discrimination and calibration. 
Collectively, we developed a classifier based on metabolic reprogramming genes to distinguish malignant nodules, which could 
potentially benefit clinical practice.

Numerous models have been developed to aid the differential diagnosis of benign and malignant nodules. The classic and influ
ential example of a traditional model is the Mayo model developed by Swensen et al. [20] in 1997 based on 419 patients from the Mayo 
Clinic in the United States. This is the first model to accurately predict the probability of malignancy in pulmonary nodules, and its 
features are readily accessible in clinical practice. Consequently, the Mayo model has been frequently implemented in clinical settings. 
Subsequently, the Brock [21] and VA [26] models were introduced, and excellent accuracy was demonstrated. In addition to tradi
tional models that rely on clinical and imaging characteristics, gene expression models have become more prevalent in recent years 
with the advent of precision medicine. For example, Fortunato et al. [27] explored the role of immunosuppressive systemic immunity 
in lung carcinogenesis and created a molecular blood-based immune signature classifier to aid in the early detection of lung cancer. 
However, the model was based on PBMC from a small sample size, and although another study demonstrated high accuracy in using 
PBMC as a diagnostic biomarker [26], it requires rapid centrifugation of the blood within hours of sampling to maintain sample 
consistency and RNA integrity, which limits its widespread use in multicenter studies and general laboratory-based clinical practice. 
Ambrosi et al. [28] also developed an eight-target signature with an AUC of 0.92 based on 20 early-stage lung cancer samples (stages 
I-III) and a control group comprising asymptomatic individuals (n = 27) and those with benign lung nodules (n = 3). However, the 
signature was not validated externally, and the mixture of populations and small sample sizes may have undermined the confidence of 
the signature. Similarly, the prediction models developed by Xing et al. [29], based on DNA methylation biomarkers and radiological 
characteristics, and the classifier developed by Lin et al. [30], which integrates plasma biomarkers and radiological characteristics, 
both demonstrate promising discrimination. However, they use mixed patient cohorts, with only 26.9 % and 26.1 % of the training 
cohort case groups at stage I, respectively. Additionally, the model developed by Xing et al. [29] was not externally validated.

In our study, we demonstrated that the metabolic reprogramming-based classifier model was more accurate than the Mayo and 
Brock models and superior to the VA model when nodule size was added as a classifier. Our model also outperformed other gene 
expression-based models. The RNA samples used in this study were whole blood RNA isolated using the PAXgene method and collected 
in PAXgene tubes. PAXgene RNA is stable for up to 5 days at 15–25 ◦C and for years at − 20 to − 70 ◦C, enabling sample collection in any 
clinical setting without requiring special equipment and transfer to a central facility for testing (as is required in other blood tests) 
[31–33]. Moreover, the classifier was developed based solely on patients with malignant pulmonary nodules before lung resection 
surgery, with those with benign nodules serving as controls. This innate advantage assists the classifiers in distinguishing between 
benign and malignant nodules. Furthermore, the classifier was externally validated and comprised only nine genes, compared to the 
classifier developed by Kossenkov et al. [23]. Moreover, the inclusion of the nodule size variable was straightforward. The small 
number of features makes incorporation into clinical practice easier and more cost-effective.

Our study demonstrated that the classifier-based model exhibited good consistency in the ethnic subgroup analyses. However, in 
the nodule size subgroup analysis, we observed a decrease in accuracy in the 20–30 mm range. This could be attributed to the varying 
sample sizes within each size stratum (162, 163, and 62 samples in the 0–10 mm, 10–20 mm, and 20–30 mm subgroups, respectively). 
Nonetheless, in larger nodules, most imaging signs of malignancy on CT scans, such as the lobulated sign, spiculated sign, vacuole sign, 
air bronchogram, pleural indentation, and vessel convergence [34], have become more frequent in this group of patients, making it less 
difficult to distinguish between benign and malignant nodules clinically. Several predictors of malignant nodules are well established, 
including larger nodule size, older age, and smoking history [35]. Our study demonstrated that integrating nodule size as a classifier 
improved discrimination and calibration. These findings offer novel insights for future studies aimed at developing and refining these 
models.

Our study had certain limitations. First, the patient data analyzed were predominantly of Caucasian ethnicity sourced from Europe 
and America, raising doubts about the generalizability of our findings to other populations. Second, although we observed an 
improvement in the efficacy of the classifier with the incorporation of clinical variables, the external validation of our model was not 
feasible because of the unavailability of the corresponding data in the external dataset. Third, the control group for the external 
validation comprised non-cancer individuals who were current smokers at high risk of lung cancer; however, they did not undergo a CT 
scan, thus leaving their pulmonary nodule status unknown.

Nonetheless, our study represents a valuable step forward in nodule classification, providing a foundation for future research to 
build upon our results.

5. Conclusion

Patients with malignant nodules exhibit alterations in energy-related metabolic pathways. Gene classifiers based on tumor 
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metabolic reprogramming can aid in the clinical identification of benign and malignant nodules.
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