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How recent advances in molecular tests could impact the diagnosis of pneumonia
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ABSTRACT
Molecular diagnostic tests have been the single major development in pneumonia diagnostics over
recent years. Nucleic acid detection tests (NATs) have greatly improved the ability to detect respiratory
viruses and bacterial pathogens that do not normally colonize the respiratory tract. In contrast, NATs do
not yet have an established role for diagnosing pneumonia caused by bacteria that commonly colonize
the nasopharynx due to difficulties discriminating between pathogens and coincidental carriage strains.
New approaches are needed to distinguish infection from colonization, such as through use of
quantitative methods and identification of discriminating cut-off levels. The recent realization that
the lung microbiome exists has provided new insights into the pathogenesis of pneumonia involving
the interaction between multiple microorganisms. New developments in molecular diagnostics must
account for this new paradigm.
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Pneumonia continues to provide a huge global burden of
disease [1]. Although the incidence of pneumonia increases
with increasing age, it is not widely appreciated that pneumo-
nia is also the world’s biggest killer of young children [2].

A wide variety of microorganisms are listed as pneumonia
pathogens [3], and identification of pneumonia etiology is
useful for both patient management and surveillance pur-
poses. However, despite increased recognition of the burden
of disease and advances in effective vaccines against major
pneumonia pathogens, we continue to struggle in our efforts
to identify the pathogens that cause pneumonia in individual
patients [4]. Indeed, historically, we have been unable to
define a causative pathogen in a significant proportion of
pneumonia episodes, even with the best methods.
Determining the microbial etiology of pneumonia in children
has been a particular challenge [5]. The implications of poor
pneumonia diagnostics extend to the population level as well;
assessment of interventions, such as vaccines, is hindered by
suboptimal measures of disease impact that often rely on
accurate surveillance data [6].

Why is it so difficult to determine the microbial etiology of
pneumonia? The inability to obtain good quality specimens
from the lower respiratory tract is one fundamental problem
with pneumonia diagnostics. Whereas, it is relatively easy to
get specimens from the site of infection with diseases such as
meningitis, gastroenteritis, and endocarditis, obtaining repre-
sentative and uncontaminated specimens from the lungs in
pneumonia is a challenge. Sputum and bronchoscopic speci-
mens may be contaminated by normal respiratory flora, and
transthoracic lung aspirates are rarely performed despite a
good safety profile [7]. Instead, we are currently reliant on
testing more distant clinical specimens, particularly from the
upper respiratory tract, blood, or urine. In general, testing
these specimens has suboptimal sensitivity and/or specificity

for determining the microbial etiology of pneumonia with
confidence. A second important issue hindering our ability to
determine pneumonia etiology is the fact that some major
pneumonia pathogens, such as Streptococcus pneumoniae,
Haemophilus influenzae, and Staphylococcus aureus, may also
asymptomatically colonize the upper respiratory tract as part
of normal oropharyngeal flora. Consequently, the detection of
these microorganisms is insufficient by itself in order to attri-
bute pneumonia causation.

This perspective reviews the current use of molecular diag-
nostics for determining the microbial etiology of pneumonia
and future prospects for this purpose. The focus is on recent
advances and their clinical applications rather than detailed
description of specific technologies.

Current pneumonia diagnostics

Presently, we are still reliant on traditional diagnostic tools
that have been used for decades to determine the microbial
etiology of pneumonia. Current guidelines for the manage-
ment of community-acquired pneumonia in adults typically
recommend that microbiologic testing should be largely
restricted to patients with more severe disease, and give
guidance about the judicious use of blood cultures, sputum
microscopy and culture, urinary antigen tests, and serology [8–
10]. Guidelines for the management of community-acquired
pneumonia in children are even more restrictive, again recom-
mending that tests should mainly be used on patients with
severe disease, with a focus on blood cultures and detection
of respiratory viruses [11,12]. Common to these guidelines is a
cautious approach to the use of molecular diagnostics,
although this may change with ongoing reviews. This caution
is driven partly by the perceived and real lack of commercial
and standardized assays and partly by lack of good data on
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diagnostic accuracy. There is also a lingering perception that
molecular diagnostics are expensive tests and that use should
be restricted on this basis. Cost is not the barrier it used to be,
and the relative price of molecular diagnostics has actually
fallen over recent years. Indeed, many molecular assays are
now comparable in cost to conventional culture-based
methods.

Molecular diagnostics for pneumonia

Molecular methods have been a particularly welcome addition
to the pneumonia diagnostic toolbox. Collectively, they repre-
sent the single biggest recent advance in the field. While not
exactly new (polymerase chain reaction (PCR) assays for
respiratory pathogens have been around for over 20 years),
the widespread adoption of nucleic acid detection tests (NATs)
by diagnostic laboratories has been relatively slow. This con-
trasts to NATs for other infectious diseases, which have been
more quickly embraced by laboratories and clinicians [13]. A
major reason for the slow uptake and acceptance of respira-
tory NATs has been the lack of commercial assays. This situa-
tion is changing rapidly, undoubtedly spurred on by recent
outbreaks of global concern, such as pandemic influenza,
Middle East respiratory syndrome (MERS), and Ebola [14–16].
Indeed, the increased availability of commercial assays is the
major change in the area since I first started reviewing the role
of molecular diagnostics in pneumonia over 10 years ago
[17,18].

To date, molecular tests for pneumonia have mainly
focused on detection of specific known pathogens by NATs.
NATs have several advantages over other existing diagnostic
tools. They potentially detect low levels of all-known pneumo-
nia pathogens in clinical specimens, do not depend on the
viability of the target microbe, and can provide results within a
clinically relevant time frame. They are also probably less
affected by previous antimicrobial therapy than are culture-
based diagnostic methods. There are now a wide variety of
user-friendly platforms that have enabled NATs to be
deployed in laboratories outside of specialist tertiary referral
centers. Although NATs have mainly focused on detecting the
presence of a particular microorganism, they may also provide
additional information, such as data on antimicrobial resis-
tance and strain typing.

The NATs that are most widely used in diagnostic labora-
tories are those that detect potential pneumonia pathogens
that are not part of the normal flora, namely respiratory
viruses and selected non-colonizing bacteria. For these
microbes, simply detecting their presence in a respiratory
sample has been regarded as sufficient evidence to assign
causation. In contrast, NATs for other bacteria, including
some of the most important pneumonia pathogens, have
struggled for a defined role outside research laboratories.
NATs for detection of the following respiratory pathogens
now have established roles.

Respiratory viruses

NATs have revolutionized the diagnosis of viral respiratory
tract infections [19,20]. With high sensitivity and specificity,

rapid turnaround time, and availability as commercial assays,
NATs are now the testing method of choice for respiratory
viruses. Respiratory viruses commonly detected by NATs, often
in large multiplex panels, include influenza A and B viruses,
respiratory syncytial virus, parainfluenza viruses, human
metapneumovirus, human rhinoviruses, enteroviruses, adeno-
viruses, human bocavirus, and several coronaviruses (OC43,
229E, NL63, and HKU1). NATs are also established diagnostic
tools for detection of severe acute respiratory syndrome-
coronavirus and MERS-coronavirus [16,20].

In the context of pneumonia, the detection of a respiratory
virus in an upper respiratory specimen by a NAT has been
regarded as sufficient to assign causation in both children and
adults [21]. However, this assumption is not always reliable.
There is still debate about the exact role (if any) of some
viruses in the pathogenesis of pneumonia, including human
rhinoviruses and human bocavirus [22]. This has led some to
question the wisdom of using large multiplex NAT panels as
first-line tests for respiratory pathogens given potential pro-
blems with interpretation of positive results [23]. In addition,
when control groups are used in pneumonia etiology studies,
respiratory viruses are often detected in a similar proportion of
both subjects with and without pneumonia, especially in chil-
dren [24,25]. These findings vary by specific virus, with influ-
enza A and B viruses, respiratory syncytial virus, and human
metapneumovirus being typically detected in a significantly
higher proportion of cases with pneumonia than controls.

Legionella species

Environmental bacteria of the genus Legionella are the cause
of Legionnaires’ disease, a pneumonia that requires specific
antimicrobial treatment and is often associated with outbreaks
[26]. Of the many Legionella species that can cause human
infection, Legionella pneumophila is the most common cause
globally, with infection usually acquired from water sources.
Other species predominate in some geographic locations,
particularly Legionella longbeachae which is an inhabitant of
soil and compost. There is no human-to-human spread of
Legionnaires’ disease, and human infection follows environ-
mental exposure to the causative microorganism.

Legionella spp. are fastidious organisms and the traditional
reliance on culture, serology, and urinary antigen tests has led
to underdiagnosis of Legionnaires’ disease globally [27].
Indeed, the almost sole reliance on the urinary antigen test,
which can only detect L. pneumophila serogroup 1, in some
parts of the world has created a ‘blind spot’ for Legionnaires’
disease caused by other species and serogroups [27]. NATs
have long been used to detect Legionella infection [27] and
are well-suited for this purpose. Legionella are not regarded as
human colonizers [28], and the detection of any amount of
legionellae in a clinical specimen is regarded as diagnostic for
infection, assuming contamination has not occurred during
the testing process. Furthermore, all species and serogroups
can be detected. Legionella DNA has been detected in both
upper and lower respiratory samples, urine, and blood from
patients with Legionnaires’ disease [29–34], although sputum
and other lower respiratory samples are regarded as the speci-
mens of choice [31]. Recently, the systematic use of PCR [31]
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and collection of induced sputum from patients unable to
expectorate [35] have uncovered a hidden burden of
Legionnaires’ disease and have demonstrated the diagnostic
utility of NATs for this disease. Arguably, NATs are now the test
of choice for Legionnaires’ disease.

Being an environmental organism, there has been concern
about Legionella contamination during testing, highlighted by
the occasional documented contamination of nucleic acid
extraction kits [36]. This problem can be overcome by strict
adherence to good laboratory practice.

Mycoplasma pneumoniae

Mycoplasma pneumoniae is associated with a variety of both
upper and lower respiratory tract infections and is an impor-
tant cause of pneumonia, frequently occurring in outbreaks.
NATs are now widely regarded as the methods of choice for
detection of M. pneumoniae infections [37,38], and
a M. pneumoniae target has been incorporated alongside
viral targets in many large respiratory multiplex panels. In
practice, NATs have also been useful for M. pneumoniae out-
break identification and management [39]. Both upper and
lower respiratory tract specimens are suitable for testing by
NATs, and a positive result in the context of pneumonia is
regarded as being diagnostic, as asymptomatic carriage
of M. pneumoniae is uncommon [40].

Chlamydophila pneumoniae

Chlamydophila pneumoniae is a relatively common cause of
community-acquired pneumonia in some geographic regions,
but is not typically associated with severe disease [41,42].
NATs have long been used for diagnostic purposes and,
indeed, C. pneumoniae NATs were the focus of some of the
earliest efforts to standardize NATs for respiratory pathogens
[43]. Perhaps because of the association with milder disease,
C. pneumoniae targets have not been a priority for incorpora-
tion into multiplex respiratory panels.

Pneumocystis jirovecii

Colonization with Pneumocystis jirovecii is common among the
general population and is associated with pneumonia in
immunocompromised individuals. NATs have advantages
over traditional microscopy-based diagnostic tools, detecting
P. jirovecii in induced sputum, bronchoscopic, or oropharyn-
geal specimens with high sensitivity [44]. Indeed, it was PCR-
based methods that provided some of the early evidence of
the existence of P. jirovecii colonization [45]. The use of quan-
titative methods has been necessary in order to discriminate
between colonization and disease; thus, at least partially over-
coming the problem of false-positive results. Although promis-
ing, the cut-off values remain to be standardized for
quantitative NATs and may vary with patient population [46].

Mycobacterium tuberculosis

Microscopy and culture of lower respiratory samples remain
the standard diagnostic tools for tuberculosis. Despite

improvements in culture-based methods, the slow turnaround
time for laboratory diagnosis and global concern about dis-
ease burden and multidrug resistance has provided the
impetus for the development of rapid testing methods [47].
Considerable effort has been put into the development of
NATs for Mycobacterium tuberculosis, and several commercial
assays are now widely available [48]. Interestingly, tuberculosis
is unusual among infectious diseases in that NATs are less
sensitive than culture, a possible consequence of difficulty
with DNA extraction. Sensitivities are typically 92–100% for
smear-positive specimens and 40–93% for smear-negative
specimens [48]. Importantly, small, user-friendly platforms
(such as the Xpert MTB/RIF assay) have been developed to
an extent that they have been successfully deployed in many
resource-poor locations where rapid diagnostics for tubercu-
losis are most needed [47,49]. This is a real success story and
highlights what can be achieved with molecular diagnostics
outside major laboratories.

Bordetella pertussis

NATs are now established tests for the detection of the cau-
sative agents of pertussis [50–52]. While Bordetella pertussis is
the major cause of pertussis in humans and can be compli-
cated by pneumonia [53,54], Bordetella bronchiseptica,
Bordetella holmesii, and Bordetella parapertussis have all been
occasionally associated with (often milder) pertussis-like ill-
nesses [50]. NATs are the most sensitive methods for the
detection of B. pertussis and, with rapid turnaround times,
have been invaluable tools in outbreak management [55,56].
The main limitation of B. pertussis NATs is specificity, particu-
larly the ability of the most widely used (IS481-based) assays
to also detect B. holmesii, which is generally considered a false
positive result [50]. The use of dual target assays has been
advocated to overcome this potential problem [52].

Current limitations of molecular diagnostics

What are the limitations of molecular diagnostic tests for
pneumonia and what needs to be addressed in order to
progress with development? Common to all pneumonia diag-
nostic testing, the inability to obtain good quality specimens
from the lower respiratory tract is a major problem that will
only be overcome through new innovative and safe methods
of specimen collection and a greater understanding of the
relationships between changes in the lung and in more distant
specimens in pneumonia.

A second-major limitation of NATs is their inability to dis-
tinguish pathogens from innocent bystanders. In essence, we
need two pieces of information. First, is a particular microor-
ganism present in the clinical specimen? Second, if the micro-
organism is present, is it causing this episode of pneumonia?
To date, diagnostic efforts have focused almost exclusively on
the first question and have ignored the second, which is
usually much more difficult to answer unless the microorgan-
ism is never present as a colonizer (e.g. Legionella spp.). The
efforts to use NATs as a diagnostic for pneumococcal pneu-
monia illustrate some of the key issues.
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S. pneumoniae is regarded as the most common cause of
pneumonia in all age groups and yet, molecular tests do not
have an established diagnostic role [57]. S. pneumoniae is also
a common nasopharyngeal colonizer, with carriage prevalence
exceeding 50% among children in some regions of the world
[58]. Earlier pneumococcal PCR assays, such as those targeting
the pneumolysin gene, had problems of poor specificity due
to detection of other, closely related streptococci [59],
although false-positive results are less likely with some of the
currently more widely used targets (e.g. autolysin gene) [60].
S. pneumoniae is frequently detected by NATs in both upper
and lower respiratory specimens from patients with pneumo-
nia [59], but the clinical implications of a positive result are
uncertain given the relative high prevalence of pneumococcal
carriage. Testing of blood for S. pneumoniae by PCR has been
promoted as an alternative approach that can potentially
avoid issues of contamination. Among Italian children, blood
PCR showed promise as a diagnostic for invasive pneumococ-
cal disease [61–64] with high specificity [65]. However, in other
populations, positive results have been reported in control
participants who do not have suspected pneumococcal dis-
ease [66], raising concerns about the broader utility of this
approach. In particular, false-positive results are relatively
common in children from developing countries where pneu-
mococcal carriage is common [67]. Consequently, a positive
pneumococcal NAT result alone is usually not enough to
diagnose pneumococcal pneumonia. The possible exception
is the use of NATs to detect S. pneumoniae in pleural fluid
[68,69].

Another important limitation with current NATs is their
focus, by nature, on specific known or suspected pneumonia
pathogens. Implicit with this focus is the assumption that we
know the full range of key potential pathogens that cause
pneumonia. This may well be correct, but there is increasing
interest in the use of modern techniques, such as next gen-
eration sequencing, which provide the opportunity for disco-
vering new or unexpected pathogens [70,71]. The broader
approach of these technologies may provide novel insights
into pneumonia etiology, but have yet to show added advan-
tage as a routine diagnostic tool [72]. No major new pneumo-
nia pathogens have been uncovered over recent years.

A key reason for the slow adoption of respiratory NATs by
diagnostic laboratories is the lack of commercial assays that
have been approved by regulatory bodies. The impact has
probably been felt more in the USA given the strict require-
ments of the US FDA. The level and importance of regula-
tion have been debated [73,74], and it is clear that a balance
is needed between appropriate regulation of new diagnos-
tics, while avoiding unnecessary barriers to the deployment
of useful tests. The use of molecular tests for Legionnaires’
disease is a good example of how assay regulation has had
an impact on diagnostic strategies. Despite NATs being the
diagnostic test of choice for Legionnaires’ disease, the short-
age of FDA-approved assays has severely limited the use of
these tests in the USA, resulting in the continued use of
suboptimal diagnostics and underdiagnosis of this disease
[27]. Moreover, the absence of a prominent role in diagnos-
tic algorithms has possibly led to an incorrect perception
that the performance of NATs is inadequate. Hopefully,

increased experience with these tests will reverse this
perception.

New insights into pneumonia pathogenesis

A major recent revelation in respiratory medicine has been
recognition of the lung microbiome [75]. Until recently, the
lungs in health were regarded as sterile. The use of modern
culture-independent techniques has not supported this con-
cept, consistently finding evidence of bacteria in the lower
airways [75]. This important realization has challenged our
traditional paradigm of pneumonia pathogenesis. The tradi-
tion view that pneumonia is caused by a single invasive
pathogen in a normally sterile site is likely wrong. Increasing
recognition that bacteria and viruses frequently interact in the
causative pathway to pneumonia [76,77] adds additional com-
plexity, as does the frequent finding of polymicrobial infec-
tions [78]. Under the new paradigm, dominant species emerge
from the lung ecosystem in pneumonia through uncertain
mechanisms, and the bacterial versus viral pneumonia con-
cept is too simplistic. Consequently, we probably need to use
more sophisticated approaches to pneumonia diagnosis than
assays that simply target single specific putative pathogens.

We have a lot to learn and are only just beginning to
understand changes in the microbiome during acute infec-
tions [75,79,80]. Analysis of the lung microbiome may provide
insights into pneumonia etiology and reveal novel markers for
pneumonia prognosis and for treatment guidance [81].
Molecular diagnostic techniques clearly have a central role in
these metagenomic analyses [82,83], providing another
opportunity for next generation sequencing technology.

Future directions

Any future developments in pneumonia diagnostics must be
cognizant of new knowledge about the lung microbiome and
about changes in the lungs during the pathway to pneumo-
nia. There is likely to be less focus on just the detection of
specific known pathogens, with more interest in the search for
markers of change in the lung microbial ecology in the dis-
eased state. The potential application of metagenomics in the
diagnostic laboratory is still uncertain and will dependent on
the emergence of improved sequencing technology and
bioinformatics software. Whole genome sequencing of bacter-
ial isolates is already being increasingly used for strain char-
acterization and epidemiological analyses [84].

For detection of specific pathogens, existing molecular
tests can detect very low microbial loads with high analytical
specificity. It is unlikely that further test developments will
lead to significantly improved performance than we have
now. Indeed, the interpretation of low-level positive results
from NATs already provides a dilemma for diagnostic labora-
tories. Instead, the focus of developers should be on making
test platforms that are more user-friendly and that allow
shorter turnaround times.

We also need to place greater attention on the meaningful
interpretation of positive results in order to determine which
microorganisms are actually causing individual episodes of
pneumonia. One approach to help distinguish infection from
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contamination or colonization is to quantify microbial load by
molecular methods. The situation is analogous to culture-
based methods, whereby organisms isolated in greater quan-
tities from certain cultures are regarded as more likely to be
clinically significant. This approach depends on the determina-
tion of cut-off microbial load levels that will provide sufficient
diagnostic accuracy to distinguish infection from colonization/
contamination. However, given the lack of suitable compara-
tor ‘gold’ standards, these cut-off values are very difficult to
identify in a scientific manner. They may also vary for different
microorganisms.

Quantitative multiplex PCR has been used to determine the
etiology of community-acquired pneumonia in adults using cut-
offs developed for interpretation of culture results from lower
respiratory tract specimens [85,86]. Not surprisingly, the addition
of PCR targets for common bacterial pneumonia pathogens,
such as S. pneumoniae, resulted in an etiological diagnosis
beingmade in a high proportion of cases. However, these cutoffs
have been determined by expert opinion and, although gener-
ally intuitive, might be quite misleading. Despite the challenges
in doing so, we needmore objective assessment of cut-off values
using good scientific and epidemiologic principles.

Quantitative approaches have also been applied to nasophar-
yngeal specimens. Among HIV-infected adults in South Africa,
quantitative PCR testing of nasopharyngeal samples distin-
guished between pneumococcal pneumonia and asymptomatic
pneumococcal colonization with reasonable diagnostic accuracy
[87,88]. Data from other populations are needed in order to
assess whether this method can be used in clinical practice.
Microbial load in pneumonia can also be a prognostic marker.
For example, pneumococcal density in the nasopharynx [89] and
blood [90,91] are associated with disease severity in adults.

We can probably also be more innovative with statistical
methods to help interpret molecular test results. Statistical
modeling techniques can be used to help overcome the lim-
itations of diagnostic testing for pneumonia, particularly the
lack of good comparator standards. Latent class analysis has
been used to determine the prevalence of pneumonia caused
by specific pathogens in epidemiologic studies [92,93] and for
the assessment of diagnostic tests in tuberculosis [94,95].
Possibly the most sophisticated use of statistical modeling
techniques in the context of pneumonia etiology is currently
being undertaken as part of the Pneumonia Etiology Research
for Child Health (PERCH) study [96]. PERCH is a large 7-country
case-control study focused on the causes of severe pneumonia
in young children from developing countries, the findings of
which will be published in 2016. In this study, partially latent
class models have been designed for estimating the popula-
tion etiology distribution and the individual etiology probabil-
ities for specific pneumonia pathogens, with a major focus on
molecular diagnostic test results [97]. The findings of PERCH
are awaited with great anticipation, as this approach has never
before been so extensively applied to the etiology of an
infectious disease.

We have entered a new age in pneumonia diagnostics that
needs to look beyond the targeting of a limited number of
potential pathogens. New knowledge about the lung

microbiome and pneumonia pathogenesis, together with emer-
ging developments in sequencing technology, provide oppor-
tunities for novel diagnostic tools to help better guide the
management of pneumonia.

Expert commentary

Molecular tests are now mainstream diagnostics for many
respiratory infections, although we still have much to learn
about using them more effectively to assist with the manage-
ment of pneumonia. Those involved in molecular diagnostic
test development for pneumonia need to look beyond the
simple detection of specific known pathogens and also pro-
vide means to accurately interpret the clinical significance of a
positive result. It is not good enough to simply assess a new
test by measuring analytical sensitivity and making compar-
isons to the performance of other similar assays. Diagnostic
tests must be evaluated properly following good epidemiolo-
gical principles. New developments in molecular diagnostics
must also be cognizant of emerging information about the
lung microbiome, which will likely provide opportunities for
the discovery of novel markers to help guide pneumonia
management.

Five-year view

The recent expansion in the number and variety of commer-
cial NATs is likely to continue, leading to greater uptake by
diagnostic laboratories and greater incorporation into diag-
nostic test algorithms and guidelines for the management of
pneumonia. The provision of even more user-friendly plat-
forms will enable deployment of these tests in laboratories
that have not traditionally used molecular diagnostics. Further
efforts are needed to evaluate the clinical application of micro-
bial load measurement for the purpose of distinguishing
pathogens from colonizing microorganisms and as a prognos-
tic marker.

It is still unclear about how new knowledge about the lung
microbiome will affect the development of pneumonia diag-
nostics, but the impact may be profound. While it will be some
time before next generation sequencing becomes a standard
tool in diagnostic laboratories, this technology may provide
valuable insights into the lung microbial ecology in health and
disease and a greater understanding of the pathogenesis of
pneumonia. With this comes a shift away from the targeting of
a limited number of putative pneumonia pathogens toward
the identification of signal patterns characteristic of different
etiologies and stages of pneumonia. The hope is that these
signals will have sufficient diagnostic accuracy to help guide
pneumonia management.
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Key Issues

● Identifying the microbial etiology of pneumonia is challenging, largely due to difficulty in obtaining uncontaminated specimens from the site of infection
and in discriminating between colonizing microorganisms and true pathogens.

● Molecular tests, particularly NATs, have been the major advance in pneumonia diagnostics over recent years.
● Although uptake has been relatively slow, NATs now have established roles (often as the diagnostic of choice) for the detection of respiratory viruses and

several non-colonizing bacteria (e.g. Legionella species). In contrast, NATs have yet to have an established role for several important bacterial pneumonia
pathogens (e.g. S. pneumoniae) that also are asymptomatic colonizers of the upper respiratory tract.

● Further developments in molecular tests need to focus on methods to help interpret the significance of positive results. The use of quantitative NATs and
microbial load cutoffs has shown promise as one means to discriminate between colonizing and pathogenic microorganisms.

● The recent revelation that the lung microbiome exists and new knowledge about the interaction between bacteria and viruses has changed the
traditional view of pneumonia pathogenesis. New diagnostics need to account for this new paradigm and be less focused on just detecting specific
known pathogens.
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