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Mechanistic modeling confronts the complexity 
of molecular cell biology
Robert D. Phair
Integrative Bioinformatics, Inc., Mountain View, CA 94041

ABSTRACT  Mechanistic modeling has the potential to transform how cell biologists contend 
with the inescapable complexity of modern biology. I am a physiologist–electrical engineer–
systems biologist who has been working at the level of cell biology for the past 24 years. This 
perspective aims 1) to convey why we build models, 2) to enumerate the major approaches 
to modeling and their philosophical differences, 3) to address some recurrent concerns raised 
by experimentalists, and then 4) to imagine a future in which teams of experimentalists and 
modelers build—and subject to exhaustive experimental tests—models covering the entire 
spectrum from molecular cell biology to human pathophysiology. There is, in my view, no 
technical obstacle to this future, but it will require some plasticity in the biological research 
mind-set.

INTRODUCTION: WHY BIOLOGISTS BUILD MODELS
The word “model” means different things to different scientists—
even to different modelers. My focus here is mechanistic mathemat-
ical models whose complexity and nonlinearity is sufficient to render 
classical mathematical analysis helpless and computation essential. 
Just as it was for physics in the 17th century and engineering in the 
19th century, complexity is the inescapable reality that is driving cell 
biology toward modeling. We build models because the human 
brain struggles when 7 ± 2 processes interact (Miller, 1956). We 
build models because the universal scientific remit is accurate pre-
diction despite incomplete knowledge and because we have found 
that well-tested mechanistic models are our best defense against 
the counterintuitive behavior of complex systems (Forrester, 1971).

Unambiguous communication is another important and under-
appreciated motivation for modeling. When we read prose descrip-
tions of a working model toward the end of a scientific paper, it is 
unlikely we perceive exactly the idea the author intended. Diagrams 
are better than prose. Diagrams are, I think, the natural common 
language linking modelers and experimentalists, but diagrams are 
most effective when drawn using a standard notation (Kitano et al., 
2005). Otherwise, a diagram can become as imprecise as prose. 

When diagrams are drawn using a standard notation, such as 
Systems Biology Graphical Notation (SBGN; Le Novère et al., 2009), 
each symbol represents a quantifiable phenomenon, and the cor-
responding differential equations can be constructed automatically. 
The next step is choosing appropriate rate laws for the biochemical 
reactions, transport processes, and binding interactions represented 
in the diagram. For example, an enzyme-catalyzed process might 
have a rapid-equilibrium, reversible Michaelis-Menten rate law in-
corporating the Haldane relationship to enforce the appropriate 
thermodynamic constraint. This rate law can incorporate inhibitors 
and activators and even posttranslational modifications of the en-
zyme (if Vmax is written as kcatE and E is the solution of its own dif-
ferential equation). Other processes will be characterized by binding 
constants or rate constants. The power of modeling arises from its 
ability to take all these into account simultaneously and make test-
able predictions.

Precise communication is so important to modelers and systems 
biologists that there are already curated international repositories of 
biological models (Le Novère et al., 2006; Lloyd et al., 2008; Yu 
et al., 2011), nascent standards for encoding biological models 
(Lloyd et al., 2004; Hucka et al., 2010), and even early efforts to 
standardize graphical notation for model diagrams (Le Novère et al., 
2009; Wimalaratne et al., 2009).

APPROACH: HOW BIOLOGISTS USE MODELS
Modelers distinguish between models of data and models of mecha-
nism. Statistical models, like correlation and multiple regression and 
cluster analysis, as well as any effort to fit data directly to functions, 
like polynomials or Fourier series or sums of exponentials, are models 
of data. Bruce Alberts often reminds us, Data is not understanding. 
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Another oft-heard concern is that we “don’t want a lot of 
parameters whose values we don’t know.” Indeed, if your vision is 
something like the elegance of the ideal gas law, which has but one 
constant whose value is known to eight significant figures, you might 
well conclude that a pathway model with 100 or even just 
20 parameters is an example of overfitting, a term that originated in 
statistics and describes a statistical model that is actually fitting the 
noise as well as the underlying relationship. The term has evolved to 
encompass any model that is thought to be too complex or to have 
too many parameters.

The criticism of overfitting usually reflects a modeling philosophy 
that derives from physics or from the natural human desire for sim-
plicity. Simplicity and complexity are two distinct approaches to 
modeling; one is not better than the other. Nevertheless, physical 
law may be too high a standard for a field like cell biology, in which 
relative measurements (compared with control) are still far more 
common than absolute measurements with SI units, and absolute 
measurements of the same quantity can vary by a factor of five 
among laboratories. Modelers with backgrounds in physics see the 
goals of modeling differently from those with backgrounds in engi-
neering. A physicist aims at something approaching a physical law; 
an engineer aims at a circuit diagram.

When a model is conceived as a working hypothesis (Popper, 
1965; Phair, 1997; Phair and Misteli, 2001; Beard and Kushmerick, 
2009) and is likely to be refuted by some future experiment, 
parameter identifiability (estimating numerical values with precision) 
is not a necessary goal. To me, a more practical modeling goal is 
discovering whether or not a proposed mechanism is actually ca-
pable of accounting for the data from many different experiments.

Another version of the “excessive parameters” objection was at-
tributed to John von Neumann by Enrico Fermi: “With four 
parameters I can fit an elephant and with five I can make him wiggle 
his trunk.” This dismissive epigram has entered the lore of biology 
and is often heard in the form, “With a complex model you can fit 
anything.” Fermi and von Neumann were certifiably smart, but with 
five parameters one can describe at most two Krebs cycle reactions. 
A von Neumann elephant could neither oxidize pyruvate completely 
nor wiggle its trunk.

Modelers who work with the full complexity revealed by modern 
experimental cell biology have a very different experience. They do 
not find that a complex model can fit anything. The constraints im-
posed by hypothesizing a model with a specific mechanistic struc-
ture make it exceedingly difficult to discover even one set of 
parameter values that simultaneously accounts for any substantial 
number of different experiments (Alvarez-Vasquez et al., 2004; Chen 
et al., 2004; Wu et al., 2007; Patterson et al., 2008; Melnick et al., 
2009). For this reason, better computational tools for searching 
high-dimensional parameter spaces represent an active and essen-
tial research area (Oguz et al., 2013).

CONCLUDING REMARKS: HOW MODELING CONNECTS 
CELL BIOLOGY TO HUMAN HEALTH
When I was a first-year assistant professor of physiology at Johns 
Hopkins, my lab was just one floor above Tom Pollard’s. When I 
asked what distinguishes cell biology from other disciplines he said, 
“Cell biology is the study of the fundamental processes that every 
cell uses.” Physiology, often conceived as dealing with organ sys-
tems, might equally well be seen as the study of what one cell does 
that others do not. To get from cell biology to physiology, we need 
increased focus on cell types. We need complete quantitative mod-
els of each cell type. Each of these models will leverage all of cell 
biology, but physiological models frequently entail multiple cell 

Likewise, models of data are not understanding; it remains notori-
ously difficult to extract cause and effect from statistical models. 
Mechanistic models, on the other hand, almost always comprise 
dynamic systems of ordinary or partial differential equations. Why 
is that?

Mechanistic models purport to represent causality. Time 
derivatives represent changes in biological variables. These changes 
can be seen as effects of the processes on the other side of the dif-
ferential equation. In turn, the processes (binding, transport, and bio-
chemistry are the three main process types) are written as functions 
of those same biological variables whose derivatives were specified. 
In this way, the inclusion of causal and feedback loops is automatic. 
Before the advent of the uncertainty principle, this view of the math-
ematics of causation was standard fare in college physics. Engineer-
ing and, later, biological modelers, largely immune to causeless 
quantum mechanics, rescued the paradigm and put it back to work.

Hence there is an underappreciated demarcation between sta-
tistical systems biology and mechanistic systems biology. Indeed, 
their worldviews are so distinct that these two branches of systems 
biology rarely meet or work together. This is unfortunate, because 
statistical surprises generate novel hypotheses that deserve incisive 
mechanistic tests.

Biological modeling is not monolithic. Some modelers feel that 
all the parameters should be measured experimentally before mod-
eling begins. They are comfortable assuming that these in vitro 
measurements will apply in cells and recognize that a change in 
model structure may require new in vitro measurements. Others in-
sist on a “minimal” model—one that has only as many parameters 
as can be resolved from the current data set and neither leverages 
nor is biased by previous work in the same field. Minimal models 
are small. They are tractable in the sense that we can “understand” 
them. But large models are inevitable, in my view, if biology aims to 
help the National Institutes of Health (NIH) achieve what the citizens 
expect.

Other groups aim at a “validated” model—one that has passed 
a second independent test. Still others see validation as inherently 
temporary. They view models as hypotheses that can sometimes be 
corroborated by experimental testing and are actually just as useful 
(perhaps more useful) when ruled out by such a test (Phair and 
Misteli, 2001; Anderson and Papachristodoulou, 2009).

A few paragraphs cannot do justice to the full family of modeling 
philosophies. But no matter which approach one chooses, experi-
ence suggests that the most effective strategy consists of teams of 
experimentalists and modelers working together closely (Phair, 
2012). This is because we need both specialist depth and breadth of 
specialties to move successfully from reductionist to synthetic inte-
grative work. Especially at the stage of model formulation, teams 
prevent key ideas (both physical and biological) from falling through 
the cracks.

It feels important for cell biology to encourage all modeling ap-
proaches. We want scientific progress to serve as the selection 
pressure. There is strength in diversity.

CONCERNS AND RESPONSES
Not everyone is convinced. Some biologists worry that it is too 
soon to model because we don’t know all the parts yet. In 1865 
Claude Bernard (Bernard, 1957) may have been the first great bi-
ologist to voice this concern, but modeling thrives on the un-
known and does not require that we know all the parts. Modeling 
is quantitative hypothesis testing; it is classical scientific method 
combined with computation to help us to manage the enormous 
complexity of cell biology.
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types encoding what is unique about enterocytes, hepatocytes, and 
skeletal, cardiac, and smooth myocytes, adipocytes, neurons, renal 
tubular epithelial cells, endocrine and exocrine cells, stem cells, 
sensory cells, immune cells, endothelial cells, and osteoblasts or 
erythrocytes. There are more than 200 cell types in the human body. 
Perhaps cell type should be a required keyword for every poster at 
a meeting. Perhaps we can recruit the cell physiologists of the world 
to join us.

Modeling connects cell biology to the mission of the NIH by 
covering the essential biomedical spectrum from molecular cell 
biology to pathophysiology. This spectrum is essential in the 
sense that pharmaceuticals and biologics work at the level of 
molecules, while disease manifests at the level of physiology. 
This spectrum is the domain that systems biologists call multi-
scale modeling. It covers concentration scales from fM to mM, 
time scales from milliseconds to years, and length scales from 
nanometers to meters—factors of ∼1010 each. We (Chasson and 
Phair, 2001) and many others (Slepchenko et al., 2003; see also 
http://sbml.org/SBML_Software_Guide/SBML_Software_Matrix) 
have built software tools that aim to support modeling of physiol-
ogy, building from molecular cell biology upward. We are cur-
rently focused on the cell biology of hepatocytes and the meta-
bolic consequences of obesity for plasma lipoprotein metabolism, 
cholesterol trafficking, and mitochondrial energy metabolism. 
The challenges are enormous, but new ideas from engineering, 
physics, computer science, and mathematics appear seemingly 
every day. It is, as has been said about the whole of systems 
biology, “a good field for those seeking risk and adventure” 
(Kirschner, 2005, p. 504).

The year 2015 will be the sesquicentennial of Bernard’s assertion 
that it is too soon to apply quantitative modeling to biology. But he 
also predicted the time would come. Successful combinations of 
modeling and experiment are now so common in the research lit-
erature that even Bernard would surely agree the time is now.
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