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Abstract

Differential diagnosis of focal pancreatic masses is based on endoscopic ultrasound (EUS)

guided fine needle aspiration biopsy (EUS-FNA/FNB). Several imaging techniques (i.e.

gray-scale, color Doppler, contrast-enhancement and elastography) are used for differential

diagnosis. However, diagnosis remains highly operator dependent. To address this prob-

lem, machine learning algorithms (MLA) can generate an automatic computer-aided diagno-

sis (CAD) by analyzing a large number of clinical images in real-time. We aimed to develop

a MLA to characterize focal pancreatic masses during the EUS procedure. The study

included 65 patients with focal pancreatic masses, with 20 EUS images selected from each

patient (grayscale, color Doppler, arterial and venous phase contrast-enhancement and

elastography). Images were classified based on cytopathology exam as: chronic pseudotu-

moral pancreatitis (CPP), neuroendocrine tumor (PNET) and ductal adenocarcinoma

(PDAC). The MLA is based on a deep learning method which combines convolutional

(CNN) and long short-term memory (LSTM) neural networks. 2688 images were used for

training and 672 images for testing the deep learning models. The CNN was developed to

identify the discriminative features of images, while a LSTM neural network was used to

extract the dependencies between images. The model predicted the clinical diagnosis with

an area under curve index of 0.98 and an overall accuracy of 98.26%. The negative (NPV)

and positive (PPV) predictive values and the corresponding 95% confidential intervals (CI)

are 96.7%, [94.5, 98.9] and 98.1%, [96.81, 99.4] for PDAC, 96.5%, [94.1, 98.8], and 99.7%,

[99.3, 100] for CPP, and 98.9%, [97.5, 100] and 98.3%, [97.1, 99.4] for PNET. Following
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further validation on a independent test cohort, this method could become an efficient CAD

tool to differentiate focal pancreatic masses in real-time.

Introduction

The diagnosis of pancreatic cancer has a grim prognosis, with a 5-year survival rate less than

10%, so there is an urgent need for better early detection and treatment options [1]. Pancreatic

cancer incidence and mortality rates have increased significantly over the last decades [2], in

part because pancreatic cancer is difficult to diagnose until the disease has reached an advanced

stage. Its accurate diagnosis relies on modern imaging such as endoscopic ultrasound (EUS),

endoscopic retrograde cholangiopancreaticography (ERCP) or multi-detector CT angiography

performed using a dual-phase pancreatic protocol. Accumulated evidence has revealed that

EUS, contrast-enhanced EUS (CE-EUS) and EUS elastography play an important role the dif-

ferential diagnosis of pancreatic solid lesions and clinical evaluation of pancreatic cancer [3].

The important improvements of deep learning and other machine learning techniques are

expected to produce a big impact in medical images diagnosis, however these techniques are

currently underdeveloped [4]. Among the machine learning algorithms related to image fea-

ture extraction and classification, CNNs have been widely proven to be superior to traditional

algorithms. These networks provide the flexibility of extracting discriminative features from

images preserving the spatial structure and could be developed for region recognition and clas-

sification of medical images. Many studies on abdominal imaging were conducted to localize

and segment organs such as liver, kidneys, bladder, and pancreas [5–7]. The imaging modality

used was either MRI for prostate analysis or CT for other organs [4]. In these previous studies,

the combination between CNN and LSTM was used to discover the time dependencies in

images sequences for falling detection [8].

In the current study, we used two deep learning techniques, the Convolution Neural Net-

work (CNN) and Long Short-term Memory (LSTM) models to detect the focal pancreatic

masses in four EUS imaging modalities (gray-scale, color Doppler, contrast-enhancement and

elastography).

Material and methods

Patient data

Data from 65 patients with focal pancreatic masses were included in the study, with a total of

20 images selected for each patient from the movies stored on the embedded HDD of the ultra-

sound system, 5 images each of EUS: gray-scale (B-mode), low-MI contrast-enhancement

(CHI) (arterial and venous phase), high-MI color Doppler (CDI), real-time elastography

(RTE). The study protocol was approved by the Research and Ethics Committee of the Univer-

sity of Medicine and Pharmacy of Craiova and carried out in accordance with the Code of Eth-

ics of the World Medical Association (Declaration of Helsinki) for experiments involving

humans. All patients received and signed a written informed consent.

The final diagnosis has been confirmed through cytopathological analysis of EUS-FNA/

FNB samples, with a follow-up of over 12 months for the patients and categorized as follows:

chronic pseudotumoral pancreatitis (CPP), pancreatic neuroendocrine tumor (PNET) and

pancreatic ductal adenocarcinoma (PDAC).

Multiparametric EUS. The imaging equipment consisted of a linear EUS (EG 3870 UTK,

Pentax Medical Corporation) coupled with a high-end ultrasound system (Hitachi Preirus).

Each lesion was assessed using:
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• Gray-scale (B-mode);

• Contrast-enhancement (Sonovue/Lumason 4.8 mL): pre-contrast (low-MI), post-contrast

(10s and 20s) for the arterial phase, and post-contrast (30s and 40s) for the venous phase;

• Color Doppler, post-contrast (high-MI);

• Real-time elastography.

Disease patterns. EUS images of CPP were characterized by hypoechoic masses in gray-

scale; hyper-enhanced with low-MI CHI in arterial phase and venous phase; hyper-enhanced

with CDI and intermediate stiffness with RTE (Fig 1).

The PNET masses had the following features on EUS: hypoechoic mass in gray-scale;

hyper-enhanced with low-MI CHI in arterial phase and venous phase (wash-out); hyper-

enhanced with high-MI CDI and high stiffness with RTE (Fig 2).

PDAC images were characterized by the following patterns: hypoechoic mass in gray-scale;

hypo-enhanced with low-MI CHI in the arterial and venous phase; hypo-enhanced with high-

MI CDI and high stiffness with RTE (Fig 3).

CNN and LSTM model development

We developed a pancreatic diagnosis prediction method which combines CNN with LSTM to

automatically analyze the sequential and multistate pancreatic images. A CNN-LSTM was

designed for sequence diagnosis problems with spatial inputs, like pancreatic images and vid-

eos. Our CNN-LSTM model could effectively encode spatio-temporal information and extract

high-level representations. CNN assume that all inputs and outputs are independent of each

Fig 1. EUS imaging of a pseudotumoral chronic pancreatitis in (A) gray scale. (B) elastography. (C) color Doppler.

(D) contrast enhancement–arterial phase. (E) contrast enhancement–venous phase.

https://doi.org/10.1371/journal.pone.0251701.g001

Fig 2. EUS imaging of a neuroendocrine tumor in (A) gray scale. (B) elastography. (C) color Doppler. (D) contrast

enhancement–arterial phase. (E) contrast enhancement–venous phase.

https://doi.org/10.1371/journal.pone.0251701.g002
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other, while the basic assumption of LSTM is that there is an interaction between the input

sequences [9]. Subsequently, the extracted dependencies of the data features were used to

improve the recognition accuracy. Each image modality was integrated through its dedicated

module and the extracted descriptors were then concatenated to perform the final classifica-

tion. The integration of information from the four modalities (gray-scale, color Doppler, con-

trast-enhancement and elastography) ensured that complementary features for diagnosis

learning are extracted. The model was developed in three steps:

1. We used the CNN model to extract the spatial features of images from four types of pancre-

atic imaging modalities: gray scale, contrast harmonic sequential images taken at 0, 10, 20,

30, 40 seconds, color Doppler, and respectively real-time elastography imaging.

2. We applied the LSTM network to extract the temporal information of the sequential images

of the contrast harmonic imaging taken at 0, 10, 20, 30, 40 seconds.

3. We used a concatenation layer to integrate the feature vectors. After merging the features, a

fully connected layer (FC3) and a softmax function were used for the pancreatic diagnosis

prediction.

For each type of imaging modality, we have developed a CNN with 4 convolutional layers

with a feature map of size (3 x 3), 3 max-pooling layers with a pooling window of size (2 x 2), 2

dropout layers and 2 fully connected (dense) layers. The final dense layer has 3 outputs and a

softmax activation. The convolutional layers filter the images by detecting patterns at different

locations in the image. A pooling layers follows a convolution layer to down-sample the fea-

tures from the previous convolution layer, such that every feature map contained in a pooling

layer is connected with a feature map in the convolution layer. LSTM network models are a

type of recurrent neural network that are able to learn and remember over long sequences of

input data; it detects and locates patterns inside images sequences and extracts the temporal

information [9].

The parameters of the model are listed in S1 Table (see S1 File). The model architecture is

shown in Fig 4. A detailed architecture of the proposed CNN_LSTM model is shown in S1 Fig

(see S1 File).

Model regularization. We have applied different techniques in order to reduce the over-

fitting. Rectified linear unit [10] was applied for non-linear activation function. The dropout

method [11] was used to randomly deactivate a fraction of the units or connections in the net-

work on each training iteration in order to help the network to be capable of better generaliza-

tion and to avoid overfitting of training data. The data augmentation technique generated

more training data from existing images by augmenting the samples via a number of random

Fig 3. EUS imaging of a pancreatic ductal adenocarcinoma in (A) gray scale. (B) elastography. (C) color Doppler. (D)

contrast enhancement–arterial phase. (E) contrast enhancement–venous phase.

https://doi.org/10.1371/journal.pone.0251701.g003
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transformations. The goal was to obtain different images for training our model so that it did

not use the same image twice.

Image dataset set-up. The initial set of 1300 images was augmented as described below

resulting in a final dataset of 3360 images. Of the total set of 3360 focal pancreatic masses

images, 2688 images were used for training and 672 images for testing (Table 1).

The initial large size of the pancreatic mass images (1024 x 768px) contained the clinical

region of interest in the middle and adjacent tissue on every side. Therefore, by selecting up to

four 500x500px sub-areas from the original image which contained the area of interest and

some of the adjacent tissue, we could increase the image data set while maintaining relevant

clinical data in each sub-areas. More precisely, the transformations we applied to the image

dataset were:

• Automatic cropping of the image border which contained information about equipment

and patient’s identification.

• Manual selection of either one (PDAC) or between 2–4 (PNET and CPP diagnosis classes)

500x500px images from each initial one of the 1300 1024x768px original images. For the

PNET and CPP diagnosis classes, the 500x500px images were selected such that each

included the region of interest and a variable area of adjacent tissue on the right, top or bot-

tom of the region of interest.

• The final dataset of 3360 500x500px images was obtained by performing several additional

automatic transformations which are practiced routinely in CNN studies: width_shift and

height_shift to randomly translate pictures vertically or horizontally, shear_range to ran-

domly apply shearing transformations, and zoom_range to randomly zoom in images [12].

Table 1. The distribution of the images and patients for training/validation and testing datasets.

Image Datasets PDAC (class 0) Images/Patients CPP (class 1) Images/Patients PNET (class 2) Images/Patients Total Images/Patients

Training/ Validation 992/30 896/20 800/15 2688/65

Testing 248/30 224/20 200/15 672/65

Total 1240/30 1120/20 1000/15 3360/65

PDAC: pancreatic ductal adenocarcinoma; CPP: chronic pseudotumoral pancreatitis; PNET: pancreatic neuroendocrine tumor.

https://doi.org/10.1371/journal.pone.0251701.t001

Fig 4. The architecture of the CNN-LSTM model.

https://doi.org/10.1371/journal.pone.0251701.g004
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The CNN datasets were developed using the train-validation-test pattern (Table 1). The val-

idation and testing datasets are the same, but different from the training dataset. For each

patient we randomly selected four images from each imaging modality for training dataset and

one for the testing dataset. Therefore 80% of images were chosen randomly for validation/

training and 20% for testing. The testing dataset was used to monitor progress during epochs,

and possibly early stopping but not for gradient descent.

The network was trained using the RMSProp optimization algorithm [12] on a single NVI-

DIA Quadro K4200 GPU for 50 epochs. Intel(R) Xeon(R) CPU E5-1620 v3 @ 3.50GHz, 32 GB

RAM architecture was used to run the experiments. Keras with Google TensorFlow backend

was used to implement the CNN and LSTM model in this study, together with other scientific

computing libraries as numpy and scikit-learn [12–14].

Evaluation metrics. To analyze the performance of our CNN-LSTM method, we used the

following medical diagnosis metrics: specificity (Sp) (1), sensitivity (Se) (2), negative predictive

value (NPV) (3), positive predictive value (PPV) (4), the test accuracy (5), the area under curve

(AUC) and precision recall curves. In addition, we computed the 95% confidence intervals

(CI) for NPV and PPV [15].

Sp ¼
jtrue negativej

jtrue negativej þ jfalse positivej
ð1Þ

Se ¼
jtrue positivej

jtrue positivej þ jfalse negativej
ð2Þ

NPV ¼
jtrue negativej

jtrue negativej þ jfalse negativej
ð3Þ

PPV ¼
jtrue positivej

jtrue positivej þ jfalse positivej
ð4Þ

Accuracy ¼
jcorrectly classified casesj

jtest casesj
ð5Þ

Another important diagnostic tool we used for the analysis of probabilistic prediction of

multi-class classification was the receiver operating characteristic (ROC) curves. The ROC

Curves summarize the trade-off between the true positive rate and false positive rate for a pre-

dictive model using different probability thresholds. This means that the top left corner of the

plot is the ideal point with a false positive rate of zero, and a true positive rate of one. We com-

puted the micro and macro averaging to evaluate the overall performance across all classes. In

micro averaging, we computed the performance from the individual true positives, true nega-

tives, false positives, and false negatives of each diagnosis class. In macro averaging we com-

puted the average performance of each diagnosis classes.

We used the Precision-Recall as another metrics of the model’s prediction [16]. Precision is

a measure of the ability of the CNN-LSTM model to identify only the relevant diagnosis, while

recall is a measure of the ability of the model to find all the relevant cases within the dataset.

Results and discussion

The algorithm was trained for 50 epochs (iterations over the whole training and testing data-

sets). The results of the convolution operation are obtained from the 128x128px versions of

the 500x500px images. This is an established method for balancing the algorithm’s ability to
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analyze relevant anatomical features in every image, and the computational burden (GPU

memory and running speed) [17]. The algorithm returns the loss and accuracy on the training

and testing datasets for each epoch and a final classification error rate and accuracy. The final

test accuracy was 98.26%. The training dataset curves closely tracked the testing dataset curves

(Figs 5 and 6).

The overall sensitivity of the model for the diagnosis of focal pancreatic masses was 98.60%

%, with a specificity of 97.40%. As shown in Table 2, a balance exists between sensitivity and

specificity which is extremely important in diagnosis decision. The CNN-LSTM model

achieved an overall accuracy of 97.61% for the diagnosis of PDAC, with a sensitivity of 98.11%

(with [0.968,0.994] 95% CI) and a specificity of 96.77% (with [0.945,0.989] 95% CI). The NPV

for the PDAC diagnosis was 96.7% and the corresponding 95%CI was [94.5%, 98.9%]. The

PPV of the PDAC diagnosis was 98.1% and the corresponding 95% CI was [96.8%, 99.4%]. All

Fig 5. The comparison between the accuracy of the training and the testing datasets.

https://doi.org/10.1371/journal.pone.0251701.g005

Fig 6. The comparison between the loss of the training and validation datasets.

https://doi.org/10.1371/journal.pone.0251701.g006
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metrics computed for CNN-LSTM model and the corresponding 95% CIs are summarized in

Table 2.

The ROC curves of the CNN-LSTM method are illustrated in Fig 7. The rate of false posi-

tive is near to zero while the rate of true positive is between 0.9 and 1. The precision-recall

curves of the CNN-LSTM model can be observed in Fig 8. The precision-recall curve of our

model shows the trade-off between precision and recall for different threshold. The high area

under the curve represents both high recall and high precision, so we obtained a high precision

meaning a low false positive rate, and high recall meaning a low false negative rate.

In the current pilot study, we propose a novel diagnosis classification method CNN-LSTM

to characterize the focal pancreatic masses during the EUS procedure: the mixture between the

CNN in order to better utilize spatial and configuration information of 2D images and the

LSTM for the analysis of the contrast harmonic images to take into consideration the depen-

dency relationships between the successive frames and extract sequential dynamic information

which improved the accuracy of the overall result.

Table 2. Evaluation metrics for each diagnosis class.

Diagnosis Accuracy 95% CI (%) AUC 95% CI (%) Sp 95% CI (%) Se 95% CI (%) NPV 95% CI (%) PPV 95% CI (%)

PDAC 97.61 [96.4, 98.7] 0.97 [0.967, 0.992] 96.7 [94.5, 98.9] 98.11 [9.68, 99.4] 96.7 [94.5, 98.9] 98.1 [96.81, 99.4]

CPP 98.66 [97.7, 99.5] 0.99 [0.98,0.999] 99.55 [98.6, 100] 98.21 [96.9, 99.4] 96.5 [94.1, 98.8] 99.7 [99.3, 100]

PNET 98.51 [97.5, 99.4] 0.98 [0.966,0.993] 95.9 [93.2, 98.7] 99.5 [98.9,100] 98.9 [97.5, 100] 98.3 [97.1, 99.4]

Mean 98.26 0.98 97.4 98.6 97.4 98.7

CI: confidence interval; AUC: area under the curve; Sp: specificity; Se: sensitivity; NPV: negative predictive value; PPV: positive predictive value; PDAC: pancreatic

ductal adenocarcinoma; CPP: chronic pseudotumoral pancreatitis; PNET: pancreatic neuroendocrine tumor.

https://doi.org/10.1371/journal.pone.0251701.t002

Fig 7. The ROC curves computed for CNN-LSTM method.

https://doi.org/10.1371/journal.pone.0251701.g007
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Other machine learning methods were developed before to assist endoscopists in the EUS

evaluation of pancreatic lesions with similar results as our method. In a study by Zhu et al.

[18], the support vector machine (SVM) predictive model was used to classify the EUS images

for the differential diagnosis of PDAC and CP. The reported average accuracy, sensitivity,

specificity, were 94.2%, 96.25%, 93.38, 92.21% and 96.68%, respectively. Das et al. [19] devel-

oped a neural network that identifies areas of pancreatic adenocarcinoma (PC) on EUS

images. The trained ANN model based on eleven parameters extracted from EUS images was

very accurate in classifying PDAC, with an AUC of 0.93. In a study by Ozkan et al. [20], an

ANN model was proposed to classify malignant and non-malignant EUS images from patients

with the age as under 40, between 40 and 60, and over 60. The obtained results were: accuracy:

92%, 88.5%, and 91.7%, respectively; sensitivity: 87.5%, 85.7%, and 93.3%, respectively; and

specificity: 94.1%, 91.7%, and 88.9%, respectively. When all the age groups were used together,

the following values were obtained: accuracy: 87.5%, sensitivity: 83.3%, and specificity: 93.3%.

According to their results, better diagnostic performances were obtained when age ranges

were separately examined.

The important improvements of deep learning over other machine learning techniques had

a big impact in medical image diagnosis. Kuwahara et al. [21] evaluated the diagnosis of malig-

nancy in intraductal papillary mucinous neoplasms of the pancreas using deep learning methods,

with promising results. The AUC was 0.98, while the sensitivity, specificity, and accuracy were

95.7%, 92.6%, and 94.0%, respectively. Kurita et al. [22] investigated the diagnostic ability of carci-

noembryonic antigen (CEA), cytology, and artificial intelligence (AI) by deep learning in differen-

tiating malignant from benign cystic lesions. AUC for the diagnostic ability of malignant cystic

lesions were 0.719 for CEA, 0.739 for cytology and 0.966 for AI. Accordingly, AI may improve the

diagnostic ability in differentiating malignant from benign pancreatic cystic lesions.

Fig 8. The precision/recall curves computed for CNN-LSTM method.

https://doi.org/10.1371/journal.pone.0251701.g008

PLOS ONE Computer diagnosis of pancreatic masses with endoscopic ultrasound and hybrid neural network model

PLOS ONE | https://doi.org/10.1371/journal.pone.0251701 June 28, 2021 9 / 12

https://doi.org/10.1371/journal.pone.0251701.g008
https://doi.org/10.1371/journal.pone.0251701


In our study we used CNNs to extract the visual features of focal pancreatic masses because

they can be adapted to their intrinsic structure, while the recurrent neural networks (RNNs),

particularly LSTM was used to exploit the temporal information contained in EUS temporal

images. The combination of CNNs and RNNs generated a model with an overall high accuracy

of 98.26%. Although this represents an acceptable accuracy rate in the field, the algorithm will

be further tested and improved on a larger patient database during future studies to address

the current limited sample size and the lack of an independent test cohort.

Conclusions

In the current pilot study, we have used an endoscopic ultrasound imaging data set to train the

CNN-LSTM algorithm to generate the automatic, real-time diagnosis. A CNN model was

developed in order to differentiate the visual features of chronic pseudotumoral pancreatitis,

neuroendocrine tumor and ductal adenocarcinoma images. Furthermore, a LSTM network

model was developed to capture the dynamics of the physical features over time. As a clinical

decision supporting system, deep learning models could improve the differential diagnostic

ability of pancreatic masses. Based on these promising preliminary results and further testing

on a larger dataset, our method could become an important tool for the computer-aided diag-

nosis of focal pancreatic masses.
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