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Abstract

Organohalide respiration, mediated by Dehalococcoides mccartyi, is a useful bioremediation process that transforms ground
water pollutants and known human carcinogens such as trichloroethene and vinyl chloride into benign ethenes. Successful
application of this process depends on the fundamental understanding of the respiration and metabolism of D. mccartyi.
Reductive dehalogenases, encoded by rdhA genes of these anaerobic bacteria, exclusively catalyze organohalide respiration
and drive metabolism. To better elucidate D. mccartyi metabolism and physiology, we analyzed available transcriptomic
data for a pure isolate (Dehalococcoides mccartyi strain 195) and a mixed microbial consortium (KB-1) using the previously
developed pan-genome-scale reconstructed metabolic network of D. mccartyi. The transcriptomic data, together with
available proteomic data helped confirm transcription and expression of the majority genes in D. mccartyi genomes. A
composite genome of two highly similar D. mccartyi strains (KB-1 Dhc) from the KB-1 metagenome sequence was
constructed, and operon prediction was conducted for this composite genome and other single genomes. This operon
analysis, together with the quality threshold clustering analysis of transcriptomic data helped generate experimentally
testable hypotheses regarding the function of a number of hypothetical proteins and the poorly understood mechanism of
energy conservation in D. mccartyi. We also identified functionally enriched important clusters (13 for strain 195 and 11 for
KB-1 Dhc) of co-expressed metabolic genes using information from the reconstructed metabolic network. This analysis
highlighted some metabolic genes and processes, including lipid metabolism, energy metabolism, and transport that
potentially play important roles in organohalide respiration. Overall, this study shows the importance of an organism’s
metabolic reconstruction in analyzing various ‘‘omics’’ data to obtain improved understanding of the metabolism and
physiology of the organism.

Citation: Islam MA, Waller AS, Hug LA, Provart NJ, Edwards EA, et al. (2014) New Insights into Dehalococcoides mccartyi Metabolism from a Reconstructed
Metabolic Network-Based Systems-Level Analysis of D. mccartyi Transcriptomes. PLoS ONE 9(4): e94808. doi:10.1371/journal.pone.0094808

Editor: Cynthia Gibas, University of North Carolina at Charlotte, United States of America

Received November 27, 2013; Accepted March 19, 2014; Published April 14, 2014

Copyright: � 2014 Islam et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was funded by the University of Toronto, the Natural Sciences and Engineering Research Council of Canada (NSERC), the Government of
Canada through Genome Canada and the Ontario Genomics Institute (2009-OGI-ABC-1405) and the United States Department of Defense Strategic Environmental
Research and Development Program (SERDP). MAI was funded by the Ontario Graduate Scholarship (OGS), the SERDP and Genome Canada funds to EAE and the
departmental faculty start-up funds to RM. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: krishna.mahadevan@utoronto.ca

Introduction

Obligate anaerobes such as Dehalococcoides mccartyi support

growth and metabolism by conserving energy from an unusual

respiratory metabolic process termed organohalide respiration [1–

3]. The hallmark of this important biological process lies in the

detoxification of halogenated xenobiotics such as trichloroethene

and vinyl chloride — known human carcinogens and groundwater

pollutants — as well as tetrachloroethene, chlorobenzenes,

dioxins, and polychlorinated biphenyls [4–7]. However, optimized

use of this natural and effective bioremediation process is

hampered due to the lack of detailed knowledge about D. mccartyi

metabolism, both in pure cultures and in mixed microbial

communities they normally inhabit. Although some of the genes

and enzymes involved in organohalide respiration are identified

and characterized [8–11], mechanism of the respiratory chain and

its components, as well as functional annotations of ,50% D.

mccartyi genes is yet to be determined [12,13]. Due to the

associated difficulty in expressing genes heterologously and the

lack of a genetic system in D. mccartyi [14], experimental studies on

characterization and manipulation of genes and enzymes of these

organisms are challenging. Hence, most studies to date have

primarily focused on the identification and characterization of

reductive dehalogenase homologous (rdh) genes, and their respec-

tive enzyme’s cofactors and substrate ranges [8,10,15–18].

Recently, a number of isotope labeling studies concerning D.

mccartyi metabolism have discussed the genes and enzymes of some

key metabolic processes, including the TCA-cycle, and amino acid

transport and metabolism [19–21]. In addition, sequencing of

multiple D. mccartyi genomes [12,13,22] enabled the construction
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of a detailed pan-genome-scale constraint-based model of metab-

olism, which revealed their energy-starved nature, as well as

depicted the overall metabolic landscape of D. mccartyi [23]. Also, a

number of proteomic studies [24–26] have provided important

information on some metabolic genes and processes, including

nitrogen fixation and carbon metabolism of D. mccartyi. Apart from

these metabolic studies, data from systems-wide high-throughput

experimental studies such as whole genome microarrays are

available for D. mccartyi strain 195 (formerly, Dehalococcoides

ethenogenes strain 195) [27–29]. A shotgun metagenome microarray

study on KB-1 — a D. mccartyi-containing dechlorinating mixed

microbial community — has been published recently [30,31].

While these studies obtained expression data for all genes, each

study focused on analyzing the expression of specific genes

involved in, for instance, reductive dechlorination and energy

conservation, in cobalamin (vitamin B12) biosynthesis pathway, or

phage related genes. None of these studies focused on the analysis

of overall D. mccartyi metabolism using genome-wide transcrip-

tomic data. Also, no integrated analysis of the available

transcriptomic and proteomic data with the pan-genome-scale

metabolic network of these bacteria [23] has been conducted yet.

Such a systemic analysis of ‘‘omics’’ data can be useful to glean a

more comprehensive understanding of the unusual metabolism of

D. mccartyi, as well as to verify the presence of sequenced genes in

their genomes as most genes have only weak bioinformatic

evidence.

Here, we analyzed the published transcriptomic data for a pure

culture, Dehalococcoides mccartyi strain 195 (from here on, strain 195)

[27,28] and a mixed culture, KB-1 [30,31] using the previously

developed pan-genome-scale D. mccartyi metabolic network [23] as

a guide. A composite genome of two highly similar D. mccartyi

strains in KB-1 (from here on, KB-1 Dhc) was constructed from the

publicly available KB-1 metagenome sequences (genome.jgi-

psf.org/aqukb/aqukb.download.ftp.html) and subsequently used

for analyzing D. mccartyi-specific transcriptomic data from the KB-

1 community arrays [30,31]. This metabolic network-guided study

of transcriptomic data, together with available proteomic data

analyzed and confirmed the transcription and expression of the

majority genes in strain 195 and KB-1 Dhc genomes. In addition,

we specifically examined and visualized the expression of some

metabolic genes and hypothetical proteins, as well as their putative

annotations proposed during the metabolic modeling study [23].

Then, operon analysis for the KB-1 Dhc genome and other single

strain-genomes of D. mccartyi, including strains 195, CBDB1, and

GT was conducted. The transcriptomic data were further

analyzed with the quality threshold (QT) clustering algorithm

and functional enrichment analysis, which provided interesting

insight on the poorly understood mechanism of energy conserva-

tion in these bacteria. Moreover, these bioinformatic analyses of

transcriptomic data, along with operon analysis helped suggest

putative functions for at least five hypothetical proteins of strain

195. Thus, our metabolic reconstruction-based meta-analysis

provides a guide for selecting and screening some of the

hypothetical proteins in D. mccartyi genomes, which can aid future

targeted proteomic work to increase our knowledge on the

physiology and biochemistry of these useful bacteria.

Results and Discussion

Analyzing the differences between strain 195 and KB-1
Dhc transcriptomic data with principal component
analysis

Principal component analysis (PCA) is a useful statistical method

to identify underlying trends of a high-dimensional data set such as

transcriptomic data from microarray experiments by reducing its

dimensionality and extracting important information [32–34].

PCA was performed for strain 195 and KB-1 Dhc array data to

analyze their dimensionality and variability (Figure 1). In total,

published data from 27 strain 195 samples under 9 conditions

(Figure 1A) and 33 KB-1 Dhc samples under 7 conditions were

analyzed by PCA (Figure 1B) [27,28,30,31]. Strain 195 samples

(Figure 1A) were collected from parallel triplicate cultures during

sequential dechlorination of trichloroethene (TCE) at 5 time

points: Early Exponential (EE), Late Exponential (LE), Transition

(TR), Early Stationary (ES), and Late Stationary (LS), in high and

low vitamin B12 concentrations (HighB12 and LowB12), and in

two different growth media with higher nutrient contents

(ANASmedium and ANASspent) [27,28]. ANAS is an enrichment

culture of a D. mccartyi-containing methanogenic mixed microbial

community [35,36], and array experiments were conducted with

strain 195 in the ANAS mineral medium (ANASmedium), as well

as in the filter sterilized supernatant of the ANAS culture

(ANASspent) [28]. The PCA-plot (Figure 1A) shows good

agreement between triplicate samples for the corresponding

conditions, indicating that the biological replicates behaved

consistently in the array experiments.

The samples used for extracting RNA to interrogate KB-1 Dhc

arrays were comparisons of mainly two growth conditions: one

with and one without a chlorinated electron acceptor [30,31];

specifically, KB-1 cultures grown with trichloroethene and

methanol (TCEM) were compared to cultures grown with

methanol (M) only. Other conditions tested included cis-1,2-

dichloroethene and methanol (cDCEM), vinyl chloride and

methanol (VCM), and vinyl chloride and hydrogen (VCH). These

samples were also compared to samples that were not amended

with any substrates for 4 days (NA) and for 1 year (‘‘Starved’’)

(Figure 1B). Although methanol is supplied to KB-1 as the electron

donor, it is fermented to H2 which is the direct electron donor for

D. mccartyi strains in KB-1 [31,37]. RNA for the cDCEM and

starved conditions was arrayed only once while multiple biological

replicates for other conditions were analyzed (TCEM: 3 samples,

VCM: 10 samples, VCH: 2 samples, M: 11 samples, and NA: 5

samples). PCA showed high dimensionality in KB-1 Dhc array data

(Figure 1B), which primarily stemmed from the type of array

technology (shotgun ‘‘spotted’’ DNA array) and the experimental

approach used (sample collection for only one time point 4 hours

after substrate addition), as well as the inherent variability of

working with a mixed microbial culture.

Improved identification and confirmation of D. mccartyi
genes with transcriptomic and proteomic data

Of the total 1560 putative genes in strain 195 genome [13], only

3 were experimentally characterized: DET0079 (tceA) [17],

DET0318 (pceA) [18], and DET1363 (mgsD) [38]. However, the

1162 putative genes of KB-1 Dhc draft genome have only

bioinformatic evidence. Due to the lack of biochemical evidence

for the majority genes in D. mccartyi genomes, available high-

throughput experimental data such as proteomic [24,25,39] and

transcriptomic [27,28,30] data can be used to identify and support

the existence of these putative genes, if not their functions.

Previous proteomic studies [24,25,39] identified only 718 strain

195 and 106 KB-1 Dhc genes (Tables S1 and S2 in File S1).

However, the transcriptomic data for both organisms, analyzed in

this study, showed that 925 strain 195 genes and 257 KB-1 Dhc

genes were transcribed or ‘‘on’’ (see Materials and methods for

how gene transcription cut-off values were chosen to determine

‘‘on’’ and ‘‘off’’) in all samples. Among these genes, 624 and 19 of

strain 195 and KB-1 Dhc, having proteomic evidence, were

Transcriptomic Analysis of D. mccartyi Metabolism
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Figure 1. Principal component analysis (PCA) of array data for strain 195 and KB-1 Dhc samples. (A) Array data for pure culture strain 195
included triplicate biological replicates that were clustered together for each experimental condition by PCA. All samples were used for subsequent
data analysis. (B) D. mccartyi-specific array data for biological replicates of KB-1 mixed culture demonstrated variability owing to array type,
experimental design, and complex interactions of organisms in the community. Subsequent data analyses, therefore, were conducted with the
expression values of all 33 biological replicates. ‘‘EE’’ = early exponential phase, ‘‘LE’’ = late exponential phase, ‘‘TR’’ = transition phase, ‘‘ES’’ = early
stationary phase, ‘‘LS’’ = late stationary phase, ‘‘HighB12’’ = higher concentration of vitamin B12 in the medium, ‘‘LowB12’’ = lower concentration of
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actually expressed in all samples (Tables S1 and S2 in File S1). In

addition, only 229 and 34 genes from strain 195 and KB-1 Dhc

were found to be ‘‘off’’ or not transcribed in all samples, and the

remaining genes (406 strain 195 and 871 KB-1 Dhc) were

transcribed in at least one sample (Tables S1 and S2 in File S1).

Thus, the majority (,60%) of strain 195 genes were transcribed in

all samples, while the majority (,75%) of KB-1 Dhc genes were

transcribed in some samples but not all. Further analysis of the

proteomic and transcriptomic evidence for hypothetical proteins

and metabolic genes were discussed in the following sections.

Confirming the expression of D. mccartyi hypothetical
proteins from transcriptomic and proteomic data

Hypothetical proteins and genes with unknown functions

constitute ,33% (523) of strain 195 and ,22% of KB-1 Dhc

(264) genomes, the latter being a draft genome. Analysis of

transcriptomic and proteomic data for these genes revealed

transcription of 243 strain 195 (Table 1 and Table S3 in File

S1) and 56 KB-1 Dhc (Table 1 and Table S5 in File S1)

hypothetical proteins in all samples. Due to having proteomic

evidence, 96 and 1 of these hypothetical proteins of strain 195 and

KB-1 Dhc were (Table 1 and Tables S3 and S5 in File S1) actually

expressed. The majority of KB-1 Dhc hypothetical proteins (208),

including 4 with proteomic evidence (Table 1 and Table S6 in File

S1), were transcribed or ‘‘on’’ in some samples but not all, while

strain 195 had 164 such genes (Table 1 and Table S4 in File S1).

Thus, 78% of strain 195 and 98% of KB-1 Dhc hypothetical

proteins were transcribed in at least one sample, and this result is

relatively high in comparison to 33% and 30% expressed

hypothetical proteins in Shewanella oneidensis [40] and Geobacter

sulfurreducens [41], identified in similar transcriptomic studies.

Among all hypothetical proteins, only 116 strain 195 (Table S4 in

File S1) and 6 KB-1 Dhc (Table S6 in File S1) were found to be

‘‘off’’ in all samples, and none of these genes was identified in

previous proteomic studies.

Confirming the expression of D. mccartyi metabolic
genes from transcriptomic and proteomic data

Metabolic genes from the transcriptomic data were identified by

mapping them to the manually curated pan-genome-scale

metabolic model for D. mccartyi [23] (see Materials and methods,

and Figures S1 and S2 in File S2). This analysis led to the

identification of 467 and 429 metabolic genes for strain 195 and

KB-1 Dhc, respectively (Tables S7 and S8 in File S1). Of the 467

putative metabolic genes, 314 were transcribed or ‘‘on’’ in all

strain 195 samples, 93 were ‘‘on’’ in at least one sample, and 60

were ‘‘off’’ or not transcribed in any sample (Table 1). Also, the

majority (58% or 300) of these metabolic genes were detected in

previous proteomic studies (Table 1 and Table S7 in File S1)

[24,25] and hence considered expressed. In contrast, only 64

metabolic genes of KB-1 Dhc, having proteomic evidence, were

actually expressed (Table S8 in File S1) [25,39]. Nonetheless, 101

KB-1 Dhc metabolic genes were transcribed in all samples, 317

were ‘‘on’’ in at least one sample, and only 11 were ‘‘off’’ in all

samples (Table S8 in File S1). In total, the presence of 407 strain

195 and 418 KB-1 Dhc metabolic genes were supported by

transcriptomic data. Most importantly, 13 strain 195 (Figure 2)

and 11 KB-1 Dhc (Figure 3) metabolic genes, which were originally

annotated as hypothetical proteins and reannotated during the

metabolic modeling study [23], were transcribed in at least one

sample. Being detected in proteomic or transcriptomic studies,

these hypothetical proteins are good candidates for future

biochemical experiments to prove their proposed gene functions.

Further analysis of the transcriptomic data for metabolic genes

identified the presence of more rdhA genes — involved in the

energy conserving reductive dechlorination reaction — for KB-1

Dhc (20 rdhAs) than for strain 195 (17 rdhAs) (Figure 4, and Tables

S9 and S10 in File S1), and 7 of those were homologous to strain

195 rdhA genes (Figure 4A). Among the strain 195 rdhA genes, only

2 (DET1559 and DET0079, tceA) out of 17 were transcribed in all

samples (Figures 4A and 4B); tceA was transcribed because TCE

was used as the electron acceptor in all samples, but the expression

vitamin B12 in the medium, ‘‘ANASspent’’ = ANAS supernatant added medium, ‘‘ANASmedium’’ = growth medium of ANAS cultures, ‘‘TCEM’’ =
trichloroethene and methanol, ‘‘cDCEM’’ = cis 1,2-dichloroethene and methanol, ‘‘VCM’’ = vinyl chloride and methanol, ‘‘VCH’’ = vinyl chloride and
hydrogen, ‘‘M’’ = methanol only, ‘‘NA’’ = not amended.
doi:10.1371/journal.pone.0094808.g001

Table 1. Transcriptomic and proteomic evidence available for hypothetical proteins and metabolic genes of strain 195 and KB-1
Dhc

Category Strain 195 KB-1 Dhc

Data for hypothetical proteins

Highly transcribed in all samples without proteomic evidence 147 55

Highly transcribed in all samples with proteomic evidence (i.e., expressed) 96 1

Highly transcribed in some samples without proteomic evidence 150 198

Highly transcribed in some samples with proteomic evidence (i.e., expressed) 14 4

Not transcribed in any sample (‘‘off’’) 116 6

Data for metabolic genes

Highly transcribed in all samples without proteomic evidence 48 85

Highly transcribed in all samples with proteomic evidence (i.e., expressed) 266 16

Highly transcribed in some samples without proteomic evidence 59 269

Highly transcribed in some samples with proteomic evidence (i.e., expressed) 34 48

Not transcribed in any sample (‘‘off’’) 60 11

doi:10.1371/journal.pone.0094808.t001
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of DET1559 seemed to be constitutive as noted previously

[8,25,26]. Also notable is DET1545 which, similar to previous

studies [42,43], was transcribed even in the stationary phase when

the substrate concentration was low (Figure 4A). The KB-1 rdhA

genes included homologs of the characterized pceA [18] and vcrA

genes [10,31,44]; however, probes for homologs of other

characterized rdhAs (bvcA [15] and tceA [17]) were not present in

KB-1 Dhc shotgun arrays. A recent proteomic study [39] of KB-1

identified 5 rdhAs, including vcrA (KB1_1502), bvcA (KB1_6), tceA

(KB1_1037), RdhA5 (KB1_0072), and RdhA1 (KB1_0054). In

total, 6 out of 17 KB-1 rdhAs were transcribed in all samples, while

only one rdhA gene (KB1_1570) was ‘‘off’’ in all samples

(Figures 4A and 4B). Most importantly, a total of 12 KB-1 rdhAs

were transcribed even in the starved condition (Figures 4A and

4B), indicating that the genes were not strictly regulated to the

presence of chlorinated substrates. This notion is further evident

from the rdhA expression profiles (Figures 4A and 4B), which do

not show any major difference between the samples with

chlorinated solvents and those without. All the M and NA samples

showed almost similar expression patterns.

Analysis of the draft composite genome of KB-1 Dhc
Identification of sequences belonging to D. mccartyi strains within

the assembled KB-1 metagenome sequence resulted in an initial

draft genome containing 209 contigs. After PCR-based directed

sequencing and fosmid clone sequencing, the final draft of the KB-

1 Dhc genome consists of 32 contigs (Table S11 in File S1). Of

these, 29 are relatively short in length (2,700–37,000 bp). The

longest complete contig represents 1.31 Mb of a ,1.4 Mb genome

and encompasses the complete core region of sequenced D. mccartyi

genomes. One 60 kb contig represents an alternative to the high

plasticity region #1 (HPR1) of a D. mccartyi genome [22] with end

regions that perfectly overlap the HPR1 flanking regions in the

main genome scaffold. The two possible HPR1 regions are

complete, while the structure of the HPR2 region(s) remains

largely undefined. The complete draft scaffold has a GC content of

47.2% and is 1.76 Mb long; this is larger than the previously

published D. mccartyi genomes ranging from 1.34–1.47 Mb

[12,13,22,45]. It is likely that not all of these smaller contigs

belong to the same genome, and the presence of strain variation is

contributing to the difficulty in closing the HPR2 region as that is

the prime candidate region for genomic rearrangements in D.

mccartyi [22]. The core genome region, thus, represents a chimeric

assembly of two (or more) D. mccartyi strains within the KB-1

community. In this case, the level of strain variation was not

sufficient to disrupt the assembly algorithms and is impossible to

segregate without independent sequence data from at least one of

the strains. Open reading frame calling and annotation resulted in

Figure 2. Proteomic and transcriptomic evidence for the hypothetical proteins of strain 195 reannotated in the D. mccartyi
metabolic model. Transcriptomic evidence for the reannotated hypothetical proteins is presented as heat maps while proteomic evidence is
obtained from literature [24,25]. Proposed functions and the metabolic pathways in which the hypothetical proteins were involved in the metabolic
model are also shown in the table.
doi:10.1371/journal.pone.0094808.g002
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a total of 1615 predicted genes (Table S12 in File S1), which were

used to identify the KB-1 shotgun array sequences belonging to D.

mccartyi from the total KB-1 community arrays. Included in the

1615 genes were 32 rdhA genes, a complement in line with the

known gene complements of previously sequenced genomes

(ranging from 11–36 rdhA per genome) [12,13,22,45].

Prediction of operon structures for D. mccartyi genomes
We predicted the operon structures of strain 195 genome and

the draft composite genome of KB-1 Dhc with a published operon

prediction algorithm [46]. This algorithm was chosen because of

its improved prediction capability for a newly sequenced genome

and ease of implementation as it does not require any experimen-

tal data [46]. Since operons are sets of multiple co-transcribed

genes forming a single mRNA sequence [47], they encode proteins

of similar metabolic or regulatory functions; hence, this informa-

tion, together with co-expressed gene clusters, can be used to infer

functions for hypothetical proteins and proteins with unknown

functions [48–50]. Of the total 1589 and 1615 genes in the

genome of strain 195 and in the contigs from KB-1 Dhc, 1251

(79%) and 984 (61%) were identified to be part of an operon (i.e.,

operonic) comprising 348 and 318 multigene operon pairs,

respectively (Table S13 in File S1). Due to the low number

(61%) of predicted operonic genes in KB-1 Dhc, we tested the

prediction capability of the algorithm by applying it to two other

publicly accessible and complete D. mccartyi genomes — strains

CBDB1 and GT — that share high nucleotide similarity and gene

synteny with KB-1 Dhc [51]. Strain CBDB1 contains 79% (1150 of

1457) operonic genes consisted of 333 multigene operon pairs,

while strain GT has 295 such operon pairs comprising 78% (1119

of 1432) of genes in the genome (Table S13 in File S1). Our

operon predictions for strains 195 and CBDB1 (79% for each) are

comparable to the publicly available results for those genomes

(71% and 76%) in the DOOR database [52] (Table S13 in File

S1). Operon prediction result for the composite genome of KB-1

Dhc was lower because only a draft genome assembled from the

KB-1 metagenome is available, and contig breaks can disrupt

operons (see Materials and methods).

Clustering and functional enrichment analyses of
transcriptomic data

In addition to confirming the expression of sequenced genes in

strain 195 and KB-1 Dhc genomes, we also analyzed the

transcriptomic data for both organisms with the quality threshold

(QT) clustering algorithm [53] to identify clusters of co-expressed

or co-transcribed genes [49]. QT clustering is an unsupervised

algorithm that ensures the quality of formed gene clusters by

applying such quality thresholds as minimum cluster diameter and

Figure 3. Proteomic and transcriptomic evidence for the hypothetical proteins of KB-1 Dhc reannotated in the D. mccartyi metabolic
model. Transcriptomic evidence for the reannotated hypothetical proteins is presented as heat maps while proteomic evidence is obtained from
literature [25,39]. Proposed functions and the metabolic pathways in which the hypothetical proteins were involved in the metabolic model are also
shown in the table.
doi:10.1371/journal.pone.0094808.g003

Transcriptomic Analysis of D. mccartyi Metabolism
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cluster size [53]. Using very stringent cut-offs of the algorithm (see

Materials and methods), we obtained 30 QT clusters of 7–31 genes

for strain 195 and 26 QT clusters of 7–35 genes for KB-1 Dhc

(Tables S14 and S15 in File S1). In the D. mccartyi metabolic model

[23], all metabolic genes were categorized in seven model

subsystems (i.e., functional categories) based on their involvement

in different metabolic pathways [23]. This information was used to

identify and categorize metabolic genes belonging to each QT

cluster (see Materials and methods, and Figures S1 and S2 in File

S2). Also, hypothetical proteins and genes without any particular

annotations were categorized as ‘‘unknown function’’, while genes

involved in regulation, DNA repair, replication, and recombina-

tion were classified as ‘‘non-metabolic function’’ in the QT

clusters. Subsequently, functional enrichment analysis [54–56]

(Figure 5) was performed for all QT clusters, and enrichment p-

values were calculated using the hypergeometric distribution

method [54]. We obtained 13 and 11 functionally enriched i.e.,

overrepresented (p,0.05) QT clusters for strain 195 (Figure 6A)

and KB-1 Dhc (Figure 6B), respectively.

Functional enrichment analysis [54–56] was performed to

obtain better insight into the contents of each co-expressed

QT cluster. Although each gene cluster contains important

information, functionally enriched clusters emphasize the presence

of genes from a certain functional category is statistically

significant, and potentially all genes in the cluster may be related

to similar functions, or involved in similar metabolic pathways (see

Tables S14 and S15 in File S1 for a list of all QT clusters and

genes). These clusters are, therefore, useful in predicting and

analyzing the functions of hypothetical proteins within them. Of

the 13 and 11 functionally enriched clusters of strain 195 and KB-

1 Dhc, some are enriched for more than one functional category

(Figures 5A and 5B). This multiple enrichment situation indicates

that genes belonging to the enriched categories are probably

functionally related, or may be regulated by common regulators.

Also, the clusters enriched for energy metabolism genes, such as

hydrogenases, reductive dehalogenases, and proton translocating

NADH-dehydrogenases are important for organohalide respiring

D. mccartyi. Thus, further analysis of two such QT clusters of strain

195 (Figure 6) is described in the following sections, and

summarized in Table 2 and Table S16 in File S1.

Figure 4. Expression of reductive dehalogenase homologous (rdhA) genes. Absolute intensities of (A) homologous and (B) non-
homologous rdhA genes of strain 195 and KB-1 Dhc are illustrated as heat maps. For strain 195 data, the characterized genes, tceA and pceA [17,18],
and DET1559 were highly expressed as previously reported [42,43]. DET1545 and its homolog in KB-1 Dhc, KB1_0072, were expressed at highest levels
in late stationary or unamended conditions (to see this more clearly, refer to absolute values of intensities provided in Tables S9 and S10 in File S1).
For KB-1 Dhc rdhA genes, identifiers in parenthesis are provided for cross-referencing as they were used in other studies [26,31,42]. Although vcrA and
pceA homologs were found, bvcA and tceA homologs were not identified as probes in the KB-1 Dhc shotgun arrays. Note that 12 out of 20 rdhAs from
KB-1 Dhc were found to be ‘‘on’’ even in the ‘‘Starved’’ condition.
doi:10.1371/journal.pone.0094808.g004
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Predicting functions for hypothetical proteins from the
analysis of strain 195 QT cluster 2

Cluster 2 of strain 195 comprises 25 genes and is overrepre-

sented by genes from central carbon metabolism, nucleotide

metabolism, and of unknown function (Figure 5A). The absolute

gene-expression profile (Figure 6A) shows that genes in this cluster

have similar expression patterns with higher expression in

‘‘HighB12’’ and ‘‘ANASspent’’ conditions. However, the relative

gene-expression profile (Figure 6B) indicates the genes were most

highly and lowly transcribed in ‘‘ANASspent’’ and ‘‘LS’’

conditions, respectively. Since genes in this cluster are mostly

growth related, as suggested by the enrichment of genes from

central carbon metabolism and nucleotide metabolism categories,

higher gene-transcription in those samples likely indicates a faster

growth of strain 195. Also, the filter sterilized supernatant of

ANAS culture (i.e., ANASspent) added growth medium probably

had the highest nutrient content [28,35] as compared to the rest of

the conditions; hence, higher transcription of genes in the

‘‘ANASspent’’ condition (Figure 6B) was likely due to the

favourable growth of strain 195. The lowest concentration of

substrate and nutrient in the ‘‘LS’’ condition resulted in slow

growth of strain 195 [27] and was possibly responsible for the

lowest gene-transcription in this condition (Figure 6B). In the

metabolic modeling study [23], the central metabolic genes

(DET0509 and DET0742) of this cluster were suggested to be

involved in glycolysis/gluconeogenesis and sugar metabolism to

produce precursors for cell membrane biogenesis [57–59].

DET0509 (hypothetical protein) was annotated as a putative

bifunctional phosphoglucose isomerase (EC: 5.3.1.8)/phospho-

mannose isomerase (EC: 5.3.1.9) during extensive curation of the

D. mccartyi metabolic model [23] (Table 2 and Table S16 in File

S1). Thus, its inclusion in a central carbon metabolism gene-

enriched cluster further supports its proposed annotation. Simi-

larly, two other operonic hypothetical proteins, DET0591 and

DET0592 (Figure 6B and Table 2), of this cluster are probably

involved in sugar or carbohydrate metabolism because they

clustered closer to the central metabolic genes (DET0509 and

DET0742) during hierarchical clustering (Figure 6B). Moreover,

two other genes (DET0590: glyceraldehyde-3-phosphate dehydro-

genase and DET0593: enolase) of this operon [58] are also

involved in sugar metabolism [57]. In fact, DET0592 is 58%

identical at the amino acid level to the biochemically characterized

maltose-6-phosphate glucosidase (EC: 3.2.1.122) of Fusobacterium

mortiferum [60] in SWISSPROT [61] and PDB [62]; hence, it was

Figure 5. Functional enrichment analysis of QT clusters for (A) strain 195 and (B) KB-1 Dhc array data. Genes in each QT cluster were
categorized according to the subsystems or functional categories of D. mccartyi metabolic model. Next, enrichment p-values were calculated using
hypergeometric distribution for each QT cluster to identify which clusters were enriched with genes from a particular subsystem. This analysis
identified 13 and 11 clusters of co-expressed genes for strain 195 and KB-1 Dhc, which were significantly overrepresented by genes from specific
functional categories. Such functionally enriched clusters are shaded in red (p#0.05) while black (No gene) indicates the absence of a gene from the
corresponding subsystems, and green represents non-significant p-values (p.0.05) for the clusters.
doi:10.1371/journal.pone.0094808.g005
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annotated as putative maltose-6-phosphate glucosidase involved in

carbohydrate metabolism [57] (Table 2 and Table S16 in File S1).

The cluster also includes three putative lipid metabolism genes

that are members of the same operon: DET0369, DET0371, and

DET0372 (Figure 6B and Table 2). DET0369 (EC: 1.17.7.1) and

DET0371 (EC:1.1.1.267) involve in isoprenoid biosynthesis using

the non-mevalonate pathway [57,63–65], while DET0372 (phos-

phatidate cytidylyltransferase, EC: 2.7.7.41) takes part in glycer-

ophospholipid metabolism [57,58], the main structural compo-

nents of biological cell membranes [59] (Figure 6B and Table 2).

Two operonic transporter genes (DET0417 and DET0418) were

proposed to be putative L-glutamine transporters during the

metabolic modeling study [23]; however, clustering of DET0418

closer to DET0518 (Figure 6B) suggests that both are probably

methionine transporters. This is because the proposed annotation

of DET0518 was a putative methylthioribose-1-phosphate isom-

erase (EC: 5.3.1.23), involved in methionine metabolism [57,58],

in the modeling study [23]. Intriguingly, the close hierarchical

clustering of a putative methionine transporter (DET0418) with a

gene involved in glycerophospholipid metabolism (DET0372)

(Figure 6B and Table 2) suggests a potential relationship between

amino acid transport and lipid metabolism during strain 195’s

growth because both are growth related. A recent isotope labelling

study [21], indeed, showed that strain 195 incorporated methio-

nine from the external medium during growth and dechlorination.

Thus, QT clustering analysis of transcriptomic data, along with

functional enrichment analysis and operon predictions, helped

annotate hypothetical proteins, or propose new annotations for

previously annotated genes of strain 195.

Insight into D. mccartyi electron transport chain from the
analysis of strain 195 QT cluster 6

Another important QT cluster of strain 195, overrepresented by

genes involved in energy metabolism (Figure 5A), is cluster 6

comprising 15 genes. Absolute (Figure 6C) and relative (Figure 6D)

gene expression profiles of this cluster showed high and low

transcription of genes in’’ LS’’ and ‘‘ANASspent’’ conditions,

respectively — a scenario opposite to the previously described QT

cluster 2. This difference in relative gene expression profiles

suggests that strain 195 needs to generate energy by reductive

dechlorination to maintain cellular integrity [66–68] even though

the cells are not growing in the ‘‘LS’’ condition. It also supports the

notion of growth-decoupled reductive dechlorination by this

bacterium [7,13]. Genes in this cluster are mainly involved in

energy metabolism, specifically genes present in the respiratory

Figure 6. Analysis of two functionally enriched strain 195 QT clusters. Two functionally enriched and interesting QT clusters (clusters 2 and
6) of strain 195 transcriptomic data were further analyzed by the hierarchical clustering algorithm as represented by the dendrograms in (B) and (D).
Absolute gene expression intensities of the clusters are plotted in (A) and (C), while relative or normalized gene expression intensities (see Materials
and methods) are presented as heat maps in (B) and (D). The height of the dendrograms represents the similarity of gene transcription patterns and is
measured by the Spearman’s rank correlation coefficient (SCC). Genes whose names are in green or orange are part of an operon, but orange further
indicates that multiple genes from the same operon are present in the cluster.
doi:10.1371/journal.pone.0094808.g006
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chain of strain 195, including two rdhA and two rdhB genes

(DET0318, pceA, DET0319, DET1558, and DET1559) (Table 2

and Figure 6D). Interestingly, DET0318 — a biochemically

characterized tetrachloroethene (PCE) rdhA (pceA) gene [18] —

was not transcribed in ‘‘ANASspent’’ and ‘‘ANASmedium’’

conditions though it was the most highly transcribed gene during

the growth of strain 195 in its own medium (Figure 6C). ANAS

cultures were not reported to degrade PCE [16,35], and the

supernatant, as well as the growth medium of ANAS might

contain nutrients that possibly inhibited the pceA gene expression.

The cluster also contains a putative flavodoxin gene (DET1501)

that is 33% identical at the amino acid level with the biochemically

characterized flavodoxin from Desulfovibrio vulgaris strain Hilden-

borough [69] in SWISSPROT and PDB (Table 2 and Figure 6D).

Flavodoxins are small electron transfer proteins containing a single

flavin mononucleotide (FMN) molecule that usually participates in

low potential redox reactions [70,71]. Thus, the presence of a

putative flavodoxin (DET1501) with rdh genes in a co-expressed

and energy metabolism gene-enriched QT cluster indicates its

potential involvement in the reductive dechlorination process, as

well as in the respiratory chain of strain 195 (Figure 6D, Table 2,

and Table S16 in File S1). This hypothesis is further corroborated

by the fact that a low potential electron donor is required to

continue reductive dechlorination by D. mccartyi [1,11,72].

Recently, a flavin mediated ‘‘electron bifurcation’’ mechanism

has been reported for anaerobic microorganisms [73,74], in which

an endergonic reaction is driven by the energy from a

simultaneously occurring exergonic reaction. The mechanism of

D. mccartyi electron transport chain (ETC) is still unknown;

however, probable involvement of a flavodoxin, together with

reductive dehalogenases in the ETC suggests the possibility of

electron bifurcation during the reductive dechlorination process.

Surprisingly, no flavodoxin gene was found in D. mccartyi strain VS

which warrants further investigation. Also, the inclusion of

DET0320 and DET1500 — two putative transcriptional regula-

tors due to their homology (46% amino acid sequence identity

with E. coli K12) in SWISSPROT, IMG, PDB, and EBI

InterProScan [75] databases — in this cluster suggests their likely

involvement in regulating energy conservation processes and

reductive dehalogenation, as has been suggested previously [12,13]

(Table 2 and Table S16 in File S1). Clustering of similar energy

metabolism genes was also observed for KB-1 Dhc transcriptomic

data (Table S16 in File S1).

Although gene expression microarrays are genome-wide high

throughput experimental studies cataloguing the global transcrip-

tional changes of an organism, they cannot provide deterministic

information such as the activity of genes and enzymes, or their

involvement in specific metabolic processes. Hence, this informa-

tion alone lacks the capability of unraveling and depicting the

activity of metabolic genes, as well as the metabolism of an

organism. However, if transcriptomic data can be analyzed

together with detailed metabolic information such as a pan-

genome-scale metabolic reconstruction as discussed in this study,

they can provide useful insights about the function of metabolic

genes, as well as hypothetical proteins. Such integrated analysis

can also be instrumental in shedding light on poorly understood

physiological processes of difficult to culture organisms like D.

mccartyi. That being said, the transcriptomic experiments and data

analyzed in this study were not designed specifically to capture the

changes in expression pattern of metabolic genes; for instance, D.

mccartyi were either growing or not-growing in all experimental

conditions, and no specific metabolic perturbations such as the

lack of an essential nutrient or vitamin were imposed on them

during their growth. Moreover, absolute expression intensities,

rather than differential gene-expression analysis, of array data

were used in this study due to the variability of array design

methods and array data sources. Hence, future microarray

experiments designed to perturb and catalogue metabolic changes

in D. mccartyi will be useful for advancing our fundamental

understanding about the physiology and metabolism of these

environmentally important yet difficult to culture microbes.

Conclusions

Due to the lack of a genetic system and associated challenges of

growing pure isolates of D. mccartyi in defined mineral media,

detailed biochemical studies concerning their physiology and

metabolism are limited. This study analyzed and visualized

curated transcriptomic data for strain 195 and D. mccartyi strains

in KB-1 (KB-1 Dhc) from various experiments while leveraging our

previously developed D. mccartyi metabolic network and model.

Using the transcriptomic data, as well as the proteomic data from

previous studies, we confirmed the presence of the majority of

hypothetical proteins and metabolic genes in strain 195 and KB-1

Dhc genomes. We identified a number of high quality clusters for

both data sets that provided improved understanding of the genes

(such as flavodoxin and rdhs) involved in the yet unknown

mechanism of the energy conserving respiratory chain of these

organisms. Clustering and functional enrichment analyses of the

transcriptomic data highlighted that lipid metabolism, more

specifically, cell membrane biogenesis and the function of

transporters were very important for D. mccartyi. Operon analysis,

as well as the quality threshold clustering of transcriptomic data,

provided additional confidence in prior reannotations, or new

function predictions for a number of hypothetical proteins. Since

hypothetical proteins constitute a major portion of any sequenced

genome, predicting function is a significant challenge, and all

relevant clues are welcome. Also, predicted annotations for the

hypothetical proteins can serve as a guide in designing future

biochemical experiments for functional characterization of these

genes. The techniques and analysis tools implemented in this study

can be used for solving such problems in other systems. Finally,

this study clearly shows that the integrated analysis of high-

throughput transcriptomic data with the pan-genome-scale

reconstructed metabolic network of D. mccartyi can advance our

knowledge on the fundamental characteristics of the physiology

and metabolism of these specialized anaerobes. This enhanced

knowledge of metabolism, in turn, will be beneficial for the

optimal use of these bacteria in elucidating global halogen cycles

and developing effective strategies for the bioremediation of

chlorinated pollutant contaminated sites around the world.

Materials and Methods

The draft composite genome of D. mccartyi strains in KB-
1 (KB-1 Dhc)

The completed KB-1 metagenome (publically available in JGI-

IMG and at genome.jgi-psf.org/aqukb/aqukb.download.ftp.html)

was compared to five publicly available sequenced D. mccartyi

genomes (strains 195, VS, BAV1, CBDB1, and GT) using

‘‘nucmer’’ program from the MUMmer package [76]. The contigs

with identified homology to these reference genomes were parsed

out and utilized for the initial attempts at D. mccartyi genome

closure. Once RITA [77] classifications (http://kiwi.cs.dal.ca/

Software/RITA) were available for the KB-1 contigs and

singletons, additional D. mccartyi sequences were added to the

draft genome. The initial D. mccartyi contigs were mapped to strain

CBDB1 reference genome using Mauve version 2.3.0 [78]. The
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Mauve alignment was used to determine an initial expected order

and orientation of D. mccartyi contigs in KB-1. A preliminary round

of primers was designed for gap closure using Projector 2’s [79]

web interface (http://bioinformatics.biol.rug.nl/websoftware/

projector2/projector2_start.php). PCR amplifications to close

gaps in D. mccartyi scaffold contained 0.5 mM of each primer,

16 NEB Taq polymerase reaction buffer, 0.25 mM dNTPs, and

1–2 U Taq polymerase (NEB). Reactions were conducted at an

annealing temperature of 54uC, an extension time commensurate

with the predicted gap size (30 s – 4 min), and a total of 35 cycles

of amplification. Template DNA for the reactions was either

0.1 mL of KB-1 genomic DNA from the original metagenome

DNA sample, or a small aliquot of a fosmid library of frozen clone

stock.

After PCR-based gap closing methods had been exhausted, all

metagenome reads were mapped to the D. mccartyi scaffold using

Geneious read mapping tool [80]. Fosmids whose mate pair reads

were located on different contigs were identified, picked from the

frozen library plate stocks, and inoculated into 5 mL overnight LB

media cultures with 50 mg/mL chloramphenicol. An induction

culture containing 0.3 mL of the overnight culture, 1.2 mL of LB,

50 mg/mL of chloramphenicol, and 1.5 mL of Epicenter Copy

Control Induction Solution was grown with shaking for 5 hours.

Induced cultures were centrifuged for 15 min at 80006g, and

fosmids extracted using the Qiagen plasmid midi-prep kit with the

modified protocol for large insert or fosmid vectors. The purified

fosmid DNA samples were pooled if they spanned the same gap on

the genome, and the resulting 8 samples were barcoded and

sequenced on a Roche 454 machine. Barcoded samples were

assembled using Newbler (Roche), and the assembled contigs were

combined with the existing D. mccartyi scaffold using minimus

(http://amos.sourceforge.net).

Identification of D. mccartyi genes from the KB-1
community shotgun microarray data

Pre-processed and normalized transcriptomic data for the KB-1

community were collected from a shotgun microarray study of

33 KB-1 samples [30,31] and used for principal component

analysis. Details of array construction methods, experimental

conditions, and array data normalization techniques were

described elsewhere [30,31]. Although the KB-1 mixed microbial

community mainly comprises dechlorinators, methanogens, aceto-

gens, and fermenters [31,37,81,82], D. mccartyi are the dominant

members that detoxify toxic chlorinated solvents [31,37,81,82]. In

addition, only D. mccartyi-specific array data can be integrated with

the pan-genome-scale metabolic reconstruction and model [23];

hence, only those genes and the corresponding array data were

analyzed in this study. The data were extracted from KB-1 arrays

and nucleotide sequences following a simple workflow (Figure S1

in File S2). First, all array sequences were aligned against the non-

redundant nucleotide database (‘‘nt’’) from NCBI (http://www.

ncbi.nlm.nih.gov/nuccore) with BLAST (blastn) [83] for identify-

ing their species level identity. Sequences that matched to a

database D. mccartyi genome as the best hit with .85% identity at

the nucleotide level were chosen as D. mccartyi genes. Next, all

array sequences were compared to the NCBI non-redundant

protein database (‘‘nr’’) (http://www.ncbi.nlm.nih.gov/protein)

with BLAST (blastx) [83] for identifying their annotations. Since

D. mccartyi genomes are very similar [12,13,23,51], only sequences

that matched to the database D. mccartyi genes with .95% identity

at the amino acid level were retained for subsequent analyses.

Finally, KB-1 array nucleotide sequences were compared to the

draft composite genome of KB-1 Dhc as constructed from the KB-

1 metagenome [44,84]. Afterwards, results from all three analyses

were compared, and only consensus array sequences and

corresponding intensity data were selected as the KB-1 Dhc array

data (Figure S1 in File S2). Out of a total of 26,186 sequences from

the KB-1 community shotgun arrays, 1,162 consensus sequences

were identified as D. mccartyi. Subsequently, the data were analyzed

with QT clustering algorithm [53], followed by mapping to the D.

mccartyi metabolic network [23] for conducting functional enrich-

ment analysis of the clusters [54–56] (Figure S1 in File S2).

Processing of D. mccartyi strain 195 microarray data
Pre-processed and normalized transcriptomic data for D.

mccartyi strain 195 was obtained from published literature [27,28]

and NCBI GEO database (http://www.ncbi.nlm.nih.gov/geo/).

In total, microarray data for 9 experimental conditions and 27

samples were analyzed, where each condition comprised 3 parallel

biological replicates. Of the total 1,579 array sequences, 1,560

non-duplicate sequences and corresponding array data from 27

samples were further analyzed following a workflow (Figure S2 in

File S2). After PCA, array data for all samples were mapped to the

D. mccartyi metabolic network for identifying metabolic genes

followed by clustering of genes with the QT clustering algorithm

[53]. Then functional enrichment analysis was performed through

calculation of enrichment p-values for metabolic genes in each

cluster with hypergeometric distribution method (Figure S2 in File

S2).

Operon predictions for D. mccartyi genomes
Operon predictions for both KB-1 Dhc and strain 195 were

performed using the procedure described in Bergman et al. [46].

As per the procedure, we randomly chose 27 diverse bacterial

genomes (Table S17 in File S1) from different branches of the

bacterial phylogeny for constructing the barcode. The barcode

was generated by identifying homologs of strain 195 and KB-1 Dhc

from the chosen bacterial genomes. Subsequently, intergenic

distance for each gene was calculated from the positional

information of genes in the genome. Intergenic distance and

strand location, as well as the barcode information was then used

for calculating posterior probabilities of genes to be considered as

operonic or not operonic. If the probability value of a gene was

$0.5, it was assigned as an operonic gene; otherwise, genes were

not considered to be operonic for lower probability values (Table

S13 in File S1). A similar procedure was followed for identifying

operon structures of strains CBDB1 and GT (Table S13 in File

S1).

Microarray data analysis and visualization
QT clustering analysis and heat map visualization of transcrip-

tomic data were conducted with MeV: MultiExperiment Viewer

[85] — an open-source software for analyzing and visualizing

microarray gene-expression data. First, the array data were

mapped to the reconstructed D. mccartyi metabolic network for

identifying metabolic genes and classifying them according to the

network subsystems. Next, QT clustering algorithm [53] and

Spearman’s rank correlation coefficient as the distance metric [86]

were used for clustering the transcriptomic data. The number of

clusters generated by QT clustering depends on two parameters:

cluster diameter and minimum cluster size; thus, threshold for a

cluster diameter and minimum cluster size was chosen as 0.06 and

7 for obtaining very stringent QT clusters. Theses stringent cut offs

also ensured that co-expressed or co-transcribed clusters formed

were not very large and potentially be more meaningful. Using

both subsystem and clustering information, hypergeometric p-

values were calculated for each QT cluster to identify functionally

enriched i.e., overrepresented (p#0.05) clusters [54–56]. Subse-
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quently, hierarchical clustering [87] was used for further analysis

of some functionally enriched interesting QT clusters. Absolute

intensity values were used for representing if a gene was

transcribed (‘‘on’’) or not transcribed (‘‘off’’) in heat maps. The

frequency distribution of intensity values (Figures S3 and S4 in File

S2) showed that the majority of strain 195 and KB-1 Dhc genes

were transcribed above intensity values of 800 and 100,

respectively. Hence, we set the threshold intensity of 800

(,800 = ‘‘off’’, .800 = ‘‘on’’) for strain 195 data and 100

(,100 = ‘‘off’’, .100 = ‘‘on’’) for KB-1 Dhc arrays to represent as

heat maps. Relative or normalized gene expression intensities were

calculated using the formula: normalized intensity value =

[(absolute intensity value) – mean of absolute intensity values in

a row)]/[standard deviation of absolute intensity values in a row].

Because each row in the array data matrix contained data for a

gene across different conditions, normalized intensities showed the

highest and lowest transcription of any gene across all samples.

Principal component analysis (PCA) of the array data was

performed using the ‘‘princomp’’ function from the statistics

toolbox in MATLAB (The Mathworks Inc.). The function

performs PCA on the transpose of an m X n data matrix, where

the rows are representing genes and the columns are samples or

experimental conditions, and the function returns principal

component coefficients.

Supporting Information

File S1 This excel file contains 17 supplemental tables:
Table S1. Proteomic and Transcriptomic Evidence for All Genes

in Strain 195 Genome; Table S2. Proteomic and Transcriptomic

Evidence for All Genes in KB-1 Dhc Genome; Table S3. Strain

195 Hypothetical Proteins Transcribed or ‘‘On’’ ($800) in All

Samples; Table S4. Strain 195 Hypothetical Proteins Not

Transcribed or Not ‘‘On’’ (,800) in All Samples; Table S5.

KB-1 Dhc Hypothetical Proteins Transcribed or ‘‘On’’ ($100) in

All Samples; Table S6. KB-1 Dhc Hypothetical Proteins Not

Transcribed or Not ‘‘On’’ (,100) in All Samples; Table S7.

Proteomic and Transcriptomic Evidence for Strain 195 Metabolic

Genes; Table S8. Proteomic and Transcriptomic Evidence for

KB-1 Dhc Metabolic Genes; Table S9. Expression of rdhA Genes of

Strain 195; Table S10. Expression of rdhA Genes of KB-1 Dhc;

Table S11. Contig Sequences of KB-1 Dhc Draft Genome; Table

S12. Protein Sequences of KB-1 Dhc Draft Genome; Table S13.

Operon Prediction Results for Dehalococcoides mccartyi Genomes;

Table S14. Quality Threshold (QT) Clusters of Strain 195

Transcriptomic Data; Table S15. Quality Threshold (QT)

Clusters of KB-1 Dhc Transcriptomic Data; Table S16. Selection

of Genes Identified in Functionally Enriched Significant Clusters

and Associated Inferred Annotations; and Table S17. List of

Genomes Used for Operon Prediction.

(XLSX)

File S2 This PDF file contains 4 supplemental figures:
Figure S1. Workflow for Analyzing Pre-Processed KB-1 Micro-

array Data; Figure S2. Workflow for Analyzing Pre-Processed

Strain 195 Microarray Data; Figure S3. Distribution of Strain 195

Gene Expression Intensities for 27 Samples; and Figure S4.

Distribution of KB-1 Dhc Gene Expression Intensities for 33

Samples. These figures are generated for explaining some methods

and parameters used in the main text.

(PDF)
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