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Background: Endometrial cancer (EC) is one of the most common gynecological
malignancies in women. Cholesterol metabolism has been confirmed to be closely
related to tumor proliferation, invasion and metastasis. However, the correlation
between cholesterol homeostasis-related genes and prognosis of EC remains unclear.

Methods: EC patients from the Cancer Genome Atlas (TCGA) database were randomly
divided into training cohort and test cohort. Transcriptome analysis, univariate survival
analysis and LASSO Cox regression analysis were adopted to construct a cholesterol
homeostasis-related gene signature from the training cohort. Subsequently, Kaplan-Meier
(KM) plot, receiver operating characteristic (ROC) curve and principal component analysis
(PCA) were utilized to verify the predictive performance of the gene signature in two
cohorts. Additionally, enrichment analysis and immune infiltration analysis were performed
on differentially expressed genes (DEGs) between two risk groups.

Results: Seven cholesterol homeostasis-related genes were selected to establish a gene
signature. KM plot, ROC curve and PCA in two cohorts demonstrated that the gene
signature was an efficient independent prognostic indicator. The enrichment analysis and
immune infiltration analysis indicated that the high-risk group generally had lower immune
infiltrating cells and immune function.

Conclusion: We constructed and validated a cholesterol homeostasis-related gene
signature to predict the prognosis of EC, which correlated to immune infiltration and
expected to help the diagnosis and precision treatment of EC.
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INTRODUCTION

With about 382,000 new cases and 90,000 deaths worldwide in 2018, endometrial cancer (EC) is one
of the most common gynecological malignancies in women, accompanied by the increasing
incidence and decreasing age of onset (Bray et al., 2018; Siegel et al., 2019). Moreover, the
prognosis of EC patients at different stages are obviously different. Patients with early-stage EC
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usually have a good prognosis, while those with advanced,
metastatic or recurrent EC usually have a poor prognosis
(Morice et al., 2016; McGunigal et al., 2017; Urick and Bell,
2019). With the rapid development of molecular biology and
sequencing technology, some single-gene biomarkers have been
unearthed to predict malignant tumors (Shang et al., 2018; Li
et al., 2020a; Du et al., 2020). However, the expression of these
single genes is often more susceptible to various factors, so their
prediction effect did not seem to meet our expectations. Thence,
screening multiple genes regulated by the same significant
pathway to establish a high-efficiency gene signature may be a
means to improve prediction performance.

Cholesterol is an essential component of mammalian
membrane structure and plays an important role in

maintaining the life activities of cells and the body (Brown
et al., 2018; Giacomini et al., 2021). It has been revealed that
cholesterol metabolism disorders are bound up with tumor
proliferation, invasion and metastasis. The body maintains its
own cholesterol homeostasis mainly through the biosynthesis of
endogenous cholesterol and the uptake of exogenous cholesterol.
A variety of genes associated to cholesterol synthesis and intake
were significantly up-regulated in tumor tissues. The cholesterol
synthesis rate-limiting enzyme 3-hydroxy-3-methylglutaryl
coenzyme A reductase (HMGCR) was up-regulated in many
tumors such as gastric cancer, glioma and prostate cancer.
Overexpression of HMGCR promoted the proliferation and
migration of these tumor cells, while knockdown of it
inhibited tumors proliferation and migration. In addition,

FIGURE 1 | The overall design and flow chart of the study.
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targeted inhibition of HMGCR has been initially adopted to treat
solid cancer, blood cancer and drug-resistant tumors (Chushi
et al., 2016; Qiu et al., 2016; Kong et al., 2018; Lee et al., 2018;
Yang et al., 2020). Additionally, the expression of low-density
lipoprotein receptor (LDLR) that mediates cholesterol uptake was
related to the occurrence and development of breast cancer,
pancreatic tumors, glioma, and prostate cancer (Guo et al.,
2011; Yue et al., 2014; Guillaumond et al., 2015; Gallagher
et al., 2017). However, so far, there are no relevant research
on the prognostic value of the gene signature related to
cholesterol homeostasis in EC.

In this study, we aim to build an efficient gene signature to
predict the prognosis of EC via mining the data in the Cancer
Genome Atlas (TCGA). The overview and roadmap of the
study are shown in Figure 1. First, we plan to analyze the
mRNA expression data and clinical information related to
cholesterol homeostasis in EC patients in TCGA, and
determine the prognostic differentially expressed genes
(DEGs). Then, the least absolute shrinkage and selection
operator (LASSO) regression analysis is to be adopted to
establish a cholesterol homeostasis related gene signature in
the training cohort, whose predictive performance will be
further verified through the test cohort. Subsequently, we
intend to perform enrichment and immune analysis on
DEGs in high- and low-risk groups. In short, we hope to
develop an efficient gene signature related to cholesterol
homeostasis, which will help the diagnosis and precision
treatment of EC.

MATERIALS AND METHODS

Data Collection
The mRNA expression data and clinical information of 552 EC
samples and 23 normal samples were downloaded from TCGA
database (https://portal.gdc.cancer.gov/). After deleting the
samples with missing information and repetitions, using the
“sample” function of the R, the remaining 539 EC samples
were randomly divided into the TCGA training cohort (n �
307) and the TCGA test cohort (n � 232) according to the ratio of
6:4. In addition, 74 genes associated to cholesterol homeostasis
were sourced from the Molecular Signatures Database (MSigDB)
(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp)
(Subramanian et al., 2005; Liberzon et al., 2015). The gene list was
shown in Supplementary Table S1.

Identification of Cholesterol
Homeostasis-Related Prognostic DEGs
In order to obtain DEGs related to cholesterol homeostasis, we
adopted the “limma” R package to analyze the differential
expression of mRNA between EC patients and normal patients
in the TCGA database with a false discovery rate (FDR) < 0.05.
Then, regarded p < 0.05 as the critical standard, we performed
univariate Cox regression analysis on the overall survival (OS) of
74 cholesterol homeostasis-related genes to obtained the
prognostic genes. Subsequently, the DEGs and prognostic

genes were intersected to acquire the corresponding prognostic
DEGs related to cholesterol homeostasis for further analysis. The
“heatmap” R package was utilized to draw a heatmap to more
intuitively display the differential expression levels of DEGs
between tumor patients and normal patients. In addition, the
STRING online tool (http://string-db.org/) and correlation
analysis were applied to further explore the relationship
between each cholesterol homeostasis-related prognostic DEG.

Development and Validation of Cholesterol
Homeostasis-Related Gene Signature
LASSO regression analysis was employed to construct a
prognostic model of cholesterol homeostasis-related genes,
and the risk score was calculated by the following formula:

risk score � ∑
n

i
Xi × Yi (X: coefficient value of each gene, Y:

expression level of each gene). Hereafter, we divided the
patients into a high-risk group and a low-risk group based
on the median value of the risk score. The Kaplan-Meier
(KM) curve and receiver operating characteristic (ROC)
curve were used to evaluate the prediction efficiency of
cholesterol homeostasis-related gene signature, which was
drawn by the “survival” and “timeROC” R packages,
respectively. In addition, the principal component analysis
(PCA) was introduced to visually demonstrate its predictive
performance. Finally, univariate and multivariate Cox
regression analysis were applied to further validate the
gene signature.

Enrichment Analysis and Immune
Infiltration Analysis
According to median value of the risk score, we divided the EC
patients into high- and low-risk groups. Next, regarding |
log2FC|≥1 and FDR<0.05 as the specific criteria, we utilized
the “limma” R package to screen out the DEGs between the
two risk groups. Afterward, we further performed gene ontology
(GO) analysis and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis for these genes using the
“clusterProfiler” R package. Furthermore, we adopted the “gsva”
package to perform a single-sample gene set enrichment analysis
(ssGSEA) to calculate the scores of immune infiltrating cells and
immune function in the TCGA training cohort and TCGA test
cohort, and applied the “limma” package to analyze differences in
immune scores between high- and low-risk groups.

Verification of mRNA and Protein
Expression of Seven Genes in the Gene
Signature
The mRNA expression data of these genes was from the
UALCAN database (http://ualcan.path.uab.edu/)
(Chandrashekar et al., 2017), while partial representative
immunohistochemistry (IHC) pictures of each gene in tumor
tissues and normal tissues resourced from the Human Protein
Atlas database (https://www.proteinatlas.org/) (Uhlen et al., 2015;
Uhlen et al., 2017).
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Mutation Analysis
Furthermore, in order to further explore the mutations of
the seven genes in the gene signature, we utilized the
cBioportal database (https://www.cbioportal.org/)
(Cerami et al., 2012; Gao et al., 2013) to perform
mutation analysis on them.

Statistical Analysis
We adopted Wilcoxon test to analyze the difference in
mRNA expression between normal samples and EC

samples, while using Mann-Whitney U test to compare
the immune scores of EC patients in high- and low-risk
groups. In addition, we utilized the KM curve of the two-
sided log-rank test to analyze the OS of patients in
different risk groups. Univariate and multivariate Cox
regression analysis with hazard ratio (HR) and 95%
confidence interval (95% CI) were applied to evaluate
the predictive power of the gene signature. Unless
otherwise specified, p < 0.05 is considered statistically
significant.

FIGURE 2 | Identification of the prognostic DEGs related to cholesterol homeostasis in EC and the establishment of risk model. (A) Heatmap of 57 cholesterol
homeostasis-related DEGs. (B) Venn diagram between DEGs and prognostic genes. (C)Heatmap of nine cholesterol homeostasis related prognostic DEGs. (D) The PPI
network of prognostic DEGs. (E) Correlation analysis of prognostic DEGs. (F) The minimum standard and (G) the corresponding coefficient of LASSO Cox regression
analysis.
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RESULTS

Identification of Cholesterol
Homeostasis-Related Prognostic DEGs
We analyzed the expression data of 74 genes related to
cholesterol homeostasis in 552 EC samples and 23 normal
samples in TCGA database to obtain 57 DEGs (p < 0.05,
Supplementary Table S2). The heatmap of these genes was
shown in Figure 2A. Most of cholesterol homeostasis-related
genes were differentially expressed between normal samples
and EC samples. Therefore, we could reasonably speculate that
cholesterol homeostasis is related to EC. Meanwhile, we
screened 74 genes related to cholesterol homeostasis
through univariate Cox regression analysis and acquired 10
prognostic genes. Taking the intersection of 57 DEGs and 10
prognostic genes, we got nine cholesterol homeostasis-related
prognostic DEGs, namely ACAT2, ATF3, FADS2, FASN,
FBXO6, GLDC, HMGCS1, NFIL3 and S100A11
(Figure 2B). Obviously, ATF3 and NFIL3 were down-
regulated in tumors, while other seven genes were up-
regulated (Figure 2C). Afterward, we conducted a PPI
network and correlation analysis on these nine prognostic
DEGs, and the results were displayed in Figures 2D,E,
respectively.

Construction of Cholesterol
Homeostasis-Related Gene Signature in the
TCGA Training Cohort
We performed LASSO regression analysis on the nine prognostic
DEGs in the TCGA training cohort and constructed a cholesterol
homeostasis-related gene signature composed of seven genes
(Figures 2F,G). The risk score formula is as follows: risk score
� 0.450×ACAT2 expression value + 0.192×ATF3 expression
value-0.294×FADS2 expression value + 0.350×FASN
expression value-0.255×FBXO6 expression value +
0.073×GLDC expression value-0.127×S100A11 expression
value. The detail coefficient value of each gene in the gene
signature was listed in Table 1. Based on the median value of
risk score, we divided all tumor samples into a high-risk group
(n � 153) and a low-risk group (n � 154) (Figure 3A). The scatter
plot demonstrated that the higher the risk score, the shorter the
survival time of patients and the greater the number of deaths

(Figure 3B). In addition, the KM curve revealed that the
prognosis of the low-risk group was better than that of the
high-risk group (p < 0.001, Figure 3C). The area under the
ROC curve (AUC) for 3, 5, and 7 years were 0.800, 0.751 and
0.729, respectively, indicating the gene signature has a high
prediction accuracy (Figure 3D). Furthermore, we explored
the predictive power of the gene signature through PCA and
found that the two risk groups of patients can be well distributed
in the two clusters (Figure 3E). It is worth noting that the
univariate and multivariate Cox regression analysis with
HR � 3.341 and HR � 2.640 indicated that the risk score is an
efficient independent prognostic indicator (p < 0.001, Figures
3F,G). Furthermore, we analyzed the relationship between the
risk score and clinical characteristics and clarified that the risk
score was significantly correlated with age (p < 0.0359), grade (p <
0.0001), vital status (p < 0.0001) and survival time (p � 0.0126)
(Table 2).

Validation of the Gene Signature in the
TCGA Test Cohort
The 232 patients in the TCGA test cohort were divided into a
high-risk group (n � 131) and a low-risk group (n � 101)
(Figure 4A). As the risk score increased, the survival time of
patients was shortened and the number of deaths increased
(Figure 4B). The KM curve indicated that the prognosis of
the high-risk group was significantly worse than that of the
low-risk group (p � 0.014, Figure 4C). The AUC of ROC
curves (0.587 for 3 years, 0.615 for 5 years and 0.650 for
7 years) further verified the prediction accuracy of gene
signature (Figure 4D). The PCA for the TCGA test cohort
demonstrated that patients in the high- and low-risk groups
can also be well distributed in the two clusters, reflecting the
predictive stability of the gene signature (Figure 4E).
Additionally, exploring the correlation between risk score and
clinical variables, we found that the risk score of the gene
signature in the TCGA test cohort was significantly correlated
with grade (p � 0.0001) (Table 2).

Enrichment Analysis of DEGs in Two Risk
Groups
First, we analyzed the mRNA expression data of patients in the
high- and low-risk groups in the TCGA training cohort, and
obtained 624 DEGs (Supplementary Table S3). Then, we
performed GO and KEGG enrichment analysis on these
DEGs. The results indicated that GO analysis mainly focused
on motile cilium, cilium movement, microtubule bundle
formation, axoneme assembly and cilium organization
(Figure 5A), while KEGG pathway was significantly enriched
in salivary secretion, viral protein interaction with cytokine and
cytokine receptor, thiamine metabolism, neuroactive ligand-
receptor interaction and IL-17 signaling pathway (Figure 5C).
Furthermore, we did the same analysis on the TCGA test cohort,
and acquired 737 DEGs (Supplementary Table S4). The GO
analysis result of the test cohort was very analogous to the
training cohort (Figure 5B). However, the KEGG analysis of

TABLE 1 | Seven cholesterol homeostasis-associated genes and their
coefficient value.

Cholesterol
homeostasis-related gene

Coefficient

ACAT2 0.450101268881603
ATF3 0.191572389314417
FADS2 −0.294243330448616
FASN 0.349504505980225
FBXO6 −0.255362254835645
GLDC 0.0734508495464785
S100A11 −0.126942460515127
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the test cohort was mainly enriched in cell cycle, endocrine
resistance, progesterone-mediated oocyte maturation, bladder
cancer and Cushing syndrome, which was quite different from
those of the training cohort (Figure 5D).

Comparison of Immune Cells and Immune
Function of EC Patients in High- and
Low-Risk Groups
We adopted ssGSEA to score the immune infiltrating cells
and immune function of patients in the high- and low-risk
groups in the training cohort and test cohort, and analyzed

the differences of the scores. Comprehensive analysis of two
cohorts, we could disclosure that the immune infiltrating cells
and immune function enrichment scores between the high-
and low-risk groups are quite different. In general, the
immune infiltrating cells and immune function scores of
the high-risk group were lower than those of the low-risk
group, especially in the test cohort (Figures 6A–D). In detail,
the immune infiltrating cells such as immature dendritic cells
(iDCs), neutrophils and T helper cells of two cohorts in the
high-risk group were significantly lower than those in the
low-risk group (Figures 6A,C), while immune function
activities such as the type II interferon (IFN) response,

FIGURE 3 | Comprehensive prognostic analysis of the seven-gene signature in the TCGA training cohort. (A) Distribution of risk scores for EC patients. (B)
Distribution of survival time of patients with different risk scores. (C) KM plot of OS analysis of EC patients in high- and low-risk groups. (D) ROC curve of the gene
signature. (E) PCA of the gene signature. (F) Univariate and (G) Multivariate Cox regression analysis.
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TABLE 2 | Correlation between risk score and clinical variables of patients with EC.

Clinical variables TCGA training cohort p-value TCGA test cohort p-value

Total (n = 307) Risk score Total (n = 232) Risk score

High Low High Low

Age (years)
≤60 108 45 63 98 50 48
>60 198 107 91 133 80 53
Unknown 1 1 0 0.0359* 1 1 0 0.7035
Grade
Low (G1 & G2) 126 27 99 91 25 66
High (G3 & G4) 181 126 55 <0.0001**** 141 106 35 <0.0001****
Vital status
Alive 259 120 139 193 102 91
Dead 48 33 15 <0.0001**** 39 29 10 0.0960
Survival time (years)
≤3 196 105 91 134 82 52
>3 111 48 63 0.0126* 98 49 49 0.7794

“*” represents p < 0.05.
“****” represents p < 0.0001.
Bold values represent p < 0.05.

FIGURE 4 | Validated prognostic analysis of the seven-gene signature in the TCGA test cohort. (A) Distribution of risk scores for EC patients. (B) Distribution of
survival time with different risk scores. (C) KM curve for EC patients in the high- and low-risk group. (D) ROC curve of the gene signature. (E) PCA diagram for EC
patients.
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T cell co-stimulation and human lymphocyte antigen (HLA)
were weaker than the low-risk group (Figures 6B,D).

Verification of mRNA and Protein
Expression of Seven Genes in the Gene
Signature
First, we applied UALCAN to verify mRNA expression of seven
genes in the gene signature, and found the expression between
normal samples and tumor samples was significantly different.
Compared with normal samples, except for the down-regulation
of ATF3, other genes were up-regulated in tumor tissues
(Figure 7A). Interestingly, except for ATF3 and FBXO6 (PATF3
� 0.109, PFBXO6 � 0.051), the expression of other five genes in the

gene signature were closely bound up with the mutation of TP53
(Figure 7B). In addition, we adopted representative IHC results
in the Human Protein Atlas database to verify that the protein
expression levels of these genes are highly consistent with mRNA
expression (Figure 8A).

Mutation Analysis of Seven Genes in the
Gene Signature
To further explore whether genes in the gene signature are prone
to mutations, we utilized the cBioportal database to analyze the
mutations of each gene in EC samples in the TCGA database. It
was found that the mutation frequency of these genes was
between 2.6% and 14%, mainly missense mutation and

FIGURE 5 | Enrichment analysis of DEGs between high- and low-risk groups. Bubble graphs of (A) GO enrichment analysis and (C) KEGG pathway enrichment
analysis in the TCGA training cohort. Bubble graphs of (B) GO enrichment analysis and (D) KEGG pathway enrichment analysis in the TCGA test cohort.
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amplification. Among them, FASN had the highest mutation
frequency at 14%, while ACAT2 had the lowest at only 2.6%
(Figure 8B). The detailed mutation types and locations of each
gene were displayed in Figure 8C.

DISCUSSION

With the increasing incidence and decreasing age of onset, EC is
still one of the most common intractable gynecological
malignancies in women (Bray et al., 2018; Siegel et al., 2019).
Patients with early-stage EC generally have a better prognosis,
while those with advanced, recurrent or metastatic EC have a
worse prognosis. At present, the diagnosis of EC based on clinical

symptoms, cytology and transvaginal ultrasound does not seem
to be very specific (Kinde et al., 2013; Clarke et al., 2018).With the
rapid development of molecular genetics and sequencing
technology, some single-gene biomarkers have been unearthed
to predict prognosis of malignant tumors (Shang et al., 2018; Li
et al., 2020a; Du et al., 2020). However, since they are more
susceptible to various factors, the prediction effect of these single
gene did not seem to meet our expectations. Therefore, screening
for more stable gene signature composed of multiple genes may
be a means to improve this dilemma.

Cholesterol homeostasis is essential for maintaining the vital
activities of cells and the body. The imbalance of cholesterol
homeostasis is closely related to tumor proliferation, invasion and
metastasis. It has been demonstrated that cholesterol homeostasis

FIGURE 6 | Comparison of immune cells and immune functions of EC patients between high- and low-risk groups. (A,B) Comparison of the ssGSEA scores of
immune cells and immune functions between high- and low-risk groups in the TCGA training cohort. (C,D) Comparison of the ssGSEA scores of immune cells and
immune functions between high- and low-risk groups in the TCGA test cohort. The statistical differenceswere shown as follow: ns, not significant; *, p < 0.05; **, p < 0.01;
***, p < 0.001.
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related genes were abnormally expressed in gastric cancer,
glioma, prostate cancer, breast cancer and pancreatic tumors
(Guo et al., 2011; Yue et al., 2014; Guillaumond et al., 2015;
Chushi et al., 2016; Qiu et al., 2016; Gallagher et al., 2017; Kong
et al., 2018; Lee et al., 2018; Yang et al., 2020). However, there is
no relevant research on the prognostic value of the gene signature
related to cholesterol homeostasis in EC so far.

In our study, we have successfully established and verified the
gene signature related to cholesterol homeostasis composed of
seven genes (ACAT2, ATF3, FADS2, FASN, FBXO6, GLDC and
S100A11), which could predict the prognosis of EC.

ACAT2, the full name is Acetyl-CoA Acetyltransferase 2,
whose encoded cytoplasmic acetoacetyl-CoA thiolase is an
enzyme involved in lipid metabolism. It mainly participates
in the biosynthetic pathway of cholesterol (Chang et al.,

2009). It has been confirmed that ACAT2 could promote the
proliferation, migration and invasion of breast cancer cells after
being up-regulated by leptin, whichmight be a potential biomarker
and precision treatment target (Huang et al., 2017).

ATF3, called activating transcription factor 3, is a
transcription factor that plays an important role in metabolic
regulation, immune response and tumorigenesis (Ku and Cheng,
2020). As the center of the adaptive cellular response network,
ATF3 participated in tumorigenesis of colon cancer, breast
cancer, prostate cancer, liver cancer and lung cancer
(Taketani et al., 2012; Wang and Yang, 2013; Wolford
et al., 2013; Li et al., 2017; Li et al., 2019). Thence, as one
of the main regulators of metabolic homeostasis, ATF3 may
be a valuable target for precise treatment of metabolic
imbalance, immune disorders and cancer.

FIGURE 7 | Verification of mRNA expression of seven genes in the gene signature. (A) The mRNA expression levels of each gene between EC samples and normal
samples. (B) The relationship between themRNA expression and themutation of TP53 of various genes in EC samples and normal samples. Data was acquired from the
UALCAN. *, p < 0.05; ***, p < 0.001; ****, p < 0.0001.
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FIGURE 8 | Representative protein expression and mutation analysis of each gene. (A) Representative IHC results of each gene in tumor tissues and normal
tissues. Data resourced from The Human Protein Atlas. (B)Overview of mutations of each gene in the gene signature. (C) Detailed mutation sites and types of each gene
in the gene signature. The data was derived from the cBioportal database.
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Fatty acid desaturase 2 (FADS2) is the rate-limiting enzyme of
fatty acid synthesis. It plays an important role in the
reprogramming of fatty acid metabolism and is closely related
to the proliferation, invasion and metastasis of tumor cells. It has
been found that FADS2 was abnormally expressed in liver cancer,
glioblastoma, lung cancer and breast cancer, which may be an
important biomarker of tumor metabolic reprogramming (Lane
et al., 2003; Wang et al., 2018; Vriens et al., 2019; Li et al., 2020b).

Fatty acid synthase (FASN) is one of the key enzymes in fatty
acid synthesis pathway. Past studies have verified that FASN
overexpression promoted the occurrence, development and
metastasis of tumor cells, which may be a biomarker for many
tumors to produce malignant phenotypes and poor prognosis.
Besides, recent studies have indicated FASNmay play an important
role in regulating the expression of pro-apoptotic proteins
and DNA repair pathways (Wu et al., 2014; Fhu and Ali, 2020).

The F-box protein6 (FBXO6), also known as FBG2, is a key
component of the ubiquitin-protein ligase complex and is widely
distributed in most tissues of the human body (Cai et al., 2019). Ji
et al. discovered that FBXO6 was significantly highly expressed in
ovarian tumor tissues and correlated with the poor prognosis of
patients with advanced ovarian tumors (Ji et al., 2021). Cai et al.
clarified that high expression of FBXO6 could inhibit the
proliferation of non-small cell lung cancer, promote apoptosis
and increase the sensitivity of cisplatin (Cai et al., 2019).

Glycine decarboxylase (GLDC) is an oxidoreductase that
regulates glycolysis and methylglyoxal metabolism in the
glycine cleavage system. It has been reported that GLDC is
an oncogene in non-small cell lung cancer and glioma, while
other studies have confirmed it is a tumor suppressor in
gastric cancer and liver cancer. In short, GLDC is involved in
the occurrence and development of several cancers and may
be a potential biomarker (Berezowska et al., 2017; Zhuang
et al., 2018; Kang et al., 2019; Zhuang et al., 2019).

S100A11 is a member of the S100 protein family which is a
multi-gene calcium binding family. Abnormally expressed of
S100 protein has been confirmed to be associated to
inflammation, cardiomyopathy, neurodegenerative diseases,
immune diseases and cancer. Among them, for cancer, it was
particularly related to the occurrence and prognosis of bladder
cancer, pancreatic cancer, colorectal cancer, esophagus cancer
and gastric cancer, and is expected to be an energetic tumor
biomarker (Ji et al., 2004; Ohuchida et al., 2006; Salama et al.,
2008; Cui et al., 2021; Ma et al., 2021).

In short, these genes are mainly related to cell metabolism,
including cholesterol metabolism, fatty acid metabolism,
glycolysis and glycine metabolism. However, how they interact
with each other remains to be further studied.

Moreover, as mentioned before, in Figure 7B we found
that most of cholesterol homeostasis related genes in the gene
signature were closely bound up with the mutation of TP53.
Jiang et al. revealed that the abnormal amplification of TP53
in HCC was related to cholesterol metabolism disorders
through genome-wide analysis (Jiang et al., 2020). Freed-
Pastor et al. demonstrated that the highly expressed sterol
biosynthesis-related genes in breast tumors were bound up
with TP53 mutations and statins could inhibit the

proliferation of TP53 mutations cancer cells (Freed-Pastor
et al., 2012). Hu et al. clarified that mutant TP53 might play
an important role in the progress of high-grade serous
ovarian cancer by up-regulating the gene expression of key
enzymes in fatty acid and cholesterol biosynthesis (Hu et al.,
2013). In summary, we can reasonably speculate that there
are inextricable links between cholesterol metabolism, TP53
and tumors. However, the mechanism of their interaction
awaits further study.

In addition, the immune infiltration analysis of DEGs between
high- and low-risk groups revealed that the immune cell
infiltration score and immune function score of the high-risk
group were generally lower than those of the low-risk group. It
could be speculated that the poor prognosis of patients in the
high-risk group may be related to the decline of immune cells and
function caused by the imbalance of cholesterol homeostasis.
According to these results, we can reasonably speculate that
cholesterol homeostasis is bound up with the tumor immune
microenvironment (TIME).

Our research inevitably has certain limitations. First, it will be
better if the predictive performance of gene signature can be
verified through RNA sequencing of collected tissue samples.
Secondly, we need to further explore the relationship between
these genes and TIME in the follow-up.

CONCLUSION

In conclusion, we constructed and verified a cholesterol
homeostasis-related gene signature composed of seven
genes to predict the prognosis of EC, which correlated
with immune infiltration. This gene signature provided a
new option for the prognosis prediction of EC, which is
expected to help the diagnosis and precision therapy of EC.
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