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AbsTrACT
Fabry disease is a rare inborn error of the enzyme 
α-galactosidase (α-Gal) and results in lysosomal 
substrate accumulation in tissues with a wide range of 
clinical presentations. The disease has attracted a lot of 
interest over the last years, in particular since enzyme 
replacement therapy (ERT) has become widely available 
in 2001. With rising awareness and rising numbers 
of (diagnosed) patients, physicians encounter new 
challenges. Over 900 α-Gal gene mutations are currently 
known, some with doubtful clinical significance, posing 
diagnostic and prognostic difficulties for the clinician 
and a lot of uncertainty for patients. Another challenge 
are patients who develop neutralising antibodies to ERT, 
which possibly leads to reduced therapy effectiveness. 
In this article, we summarise the latest developments 
in the science community regarding diagnostics and 
management of this rare lysosomal storage disorder and 
offer an outlook to future treatments.

InTroduCTIon
Fabry disease (FD) is of interest to specialties across 
the spectrum of internal medicine. A range of muta-
tions on the X-chromosome cause a defect in α-ga-
lactosidase (α-Gal) enzyme production, resulting in 
absent or reduced enzyme activity and accumulation 
of globotriaosylceramide (Gb3) and other sphin-
golipids in lysosomes in various tissues—mainly 
cardiac, endothelial, neuronal and renal—resulting 
in end-organ damage and failure.1

Newborn screening has now been performed in 
several countries, yielding a prevalence ranging 
from 1:1368 to 1:8882.2–5 This is in contrast to 
earlier presumed prevalence of 1:40 000-1:117 
0006

Clinical variability of different mutations, vari-
able disease severity and symptom onset make the 
disease notoriously difficult to diagnose. There is 
huge clinical variability even within the same family 
mutation7 8 as well as large intersex variability. 
Heterozygote females tend to have higher residual 
enzyme activity as they are mosaic due to variable 
X-chromosome inactivation.9 Opposed to previous 
views that women are merely heterozygote carriers 
with no notable disease activity, we now know that 
they can display clinical manifestations not dissim-
ilar to males with major organ involvement and 
associated morbidity/mortality.9

A classification of classic phenotype and late-
onset phenotype is widely used as the natural 
disease process and prognosis differ.10 Typically, 
classic phenotype patients are null mutant and have 
no residual enzyme activity, even though due to the 
method of the enzyme assay they may have reported 

enzyme activity of 1%–3%. These patients usually 
display early onset of symptoms—some already in 
their early childhood— such as neuropathic pain or 
anhidrosis. They proceed to major organ compli-
cations as early as their 20s or 30s. Late-onset 
patients—typically females or males with non-clas-
sical mutations—may present with only one organ 
involvement, typically in their 50s.10 All organ 
complications can however occur in both classical 
and late-onset phenotype (see table 1).

Once suspected, men are diagnosed with FD if 
enzyme activity is <35% of the mean. The gold 
standard of diagnosis for females is α-Gal gene 
sequencing only.11 Genetic analysis is however 
expensive and only available in specialised labo-
ratories. Moreover, >900 variants of the α-Gal 
gene have now been identified,12 many of doubtful 
pathological significance. In these cases, invasive 
tissue diagnosis investigating the presence of Gb3 
deposits is indicated. Therefore, there is a need for 
more practical and simple diagnostic tools.

Since 2001 widely available enzyme replacement 
therapy (ERT) with recombinant agalasidase alfa 
and beta has been a game changer for diagnosing 
and treating FD13 and has sparked a lot of interest; 
the rising awareness resulted in high-risk popula-
tions being screened (dialysis, renal transplant, left 
ventricular hypertrophy, cryptogenic stroke)14 and 
whole families started on treatment.

The current challenges of ERTenzyme replace-
ment therapy are many: first, there is relative lack 
of efficacy with a lack of visible therapy effect. 
This results in difficulties with standardised disease 
activity/therapy monitoring . Antibody formation 
possibly also contributes to reduced therapy effect.

In this article, we review novel biomarkers for 
diagnosis and therapy monitoring as well as current 
practice of treating patients who develop antibodies.

We also discuss novel treatment options with oral 
therapy and gene therapy, raising the possibility of 
a cure.

Finally, we highlight the need for systematic 
multidisciplinary approach to assessment of organ 
involvement and therapy optimisation.

biomarkers
Many attempts have been made over the years to 
find a disease-specific marker that would ideally 
serve as a rapid screening tool as well as indicator 
of therapy response.

Gb3
As such Gb3—the end product which accumulates 
in lysosomes and is routinely used to diagnose the 
disease on tissue biopsy—heart, kidney15 and most 
recently skin16—has so far failed to convince as a 
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Table 1 Typical organ involvement in morbus Fabry

organ system Complications

Ophtalmological Cornea verticilllata, tortuous vessels, cataracts58

Dermatological Angiokeratoma, hypo/anhidrosis, telangiectasia, 
lymphedema59

Neurological Neuropathic pain, transient ischaemic attack, stroke, 
neuropsychiatric complications (depression)60

Cardiac Conduction abnormalities, left ventricular hypertrophy, 
sudden cardiac death61

Renal Proteinuria, reduced glomerular filtration rate62

Gastrointestinal Diarrhoea, constipation, early satiety, nausea63

Auditory Hearing loss, tinnitus, vertigo64

Respiratory Cough, wheezing, airflow limitation65

suitable plasma or urine marker. A study by Young17 performed 
on hemizygotes, heterozygotes and healthy controls failed to reli-
ably detect increased Gb3 levels in plasma and urine in heterozy-
gotes and hemizygotes with non-classical mutation. Additionally, 
Schiffmann failed to demonstrate a correlation between plasma 
or urine Gb3 and clinical response to ERT.18

An interesting approach to detect Gb3 deposits in peripheral 
blood mononuclear cells (PBMCs)19 represents a low-cost and 
simple alternative to invasive biopsies. What is more, the Gb3 
load in PBMC decreases with long-term ERT and could poten-
tially be used for disease monitoring. It is important to highlight 
that this method failed to detect Gb3 deposits in non-clas-
sical/missense mutations, in particular in four patients with 
D313Y mutation, which are known to be non-disease-causing 
mutations.20

LysoGb3
The Gb3 degradation product, globotriaosylsphingosine 
(lysoGb3), is currently used in disease screening,21 22 but also in 
the determination of pathogenicity of a mutation for homozy-
gotes as well as heterozygotes. In a prospective evaluation/vali-
dation study of 124 patients,23 lysoGb3 levels were correlated 
to clinical picture, mutation type as well as biochemical and 
imaging studies and shown to be a reliable predictor of clini-
cally relevant disease. In another study, a raised level of lysoGb3 
could be detected even in females with normal α-Gal activity 
and subsequently those patients were proved to have clinically 
significant disease.24

Furthermore, lysoGb3 levels have been shown to decrease with 
ERT, in particular in patients with classical phenotype.25 26 Since 
these findings, lysoGb3 has been widely accepted as the most 
accurate marker of disease activity. However, long-term data on 
clinical outcomes in patients who achieve lysoGb3 reduction are 
currently not available.

Emerging biomarkers
Several other avenues have been explored but are not yet widely 
in use due to lack of data. In a pilot study, Cammarata et al iden-
tified four micro-RNAs specific for Fabry patients27 regardless of 
mutation, sex or age. However, two of these micro-RNAs were 
linked with endothelial dysfunction and the number of patients 
and controls (30 patients and 30 controls respectively) was too 
small to derive test sensitivity/specifity.

Further attempts to identify Fabry-specific biomarkers include 
identification of new Gb3 isoforms using metabolomics28 29 and 
quantifying abnormal urinary protein excretion using proteome 
analyses30 31; however, none were able to validate a clinically 
useful single parameter.

ErT: pitfalls
As indicated above, intravenous ERT has been the gold standard 
since 2001.

The therapy efficacy monitoring issue has partially been 
addressed above. Long-term data over the last 17 years are now 
available to assess clinical response to therapy,32 33 and ERT has 
been shown to provide the greatest benefit to patients if started 
early on. On the other hand, during short-term assessments (gener-
ally yearly controls), which are relevant to the clinician and patient 
in standard practice, it can be very difficult to assess progress and 
make evidence-based decisions on therapy switch or modification, 
mainly due to slow progression of the disease, coupled with irre-
versibility of organ damage and poor therapeutic efficacy.

We have already discussed the role of biomarkers measured 
in plasma and urine and PBMC. A further assessment option 
is repeated biopsy of affected organs to prove Gb3 deposit 
reduction,34 which is invasive and impractical. Enzyme activity 
measurements are equally unsuitable as enzyme activity 
measured in plasma/leucocytes is sensitive to time after last 
enzyme infusion.

Therefore, careful clinical assessment, history taking and organ 
investigations are currently the best tools in the clinician’s box 
in day-to-day practice, alongside standard adjunctive therapy for 
specific organ involvement.

The next issue around ERT is antibody formation. The main 
concern in the first trials were immediate infusion-associated reac-
tions which are IgE mediated. Premedication protocols—usually a 
combination of single-dose paracetamol or a non-steroidal anti-in-
flammatory drug, antihistamine and steroid, plus increasing infu-
sion duration to prevent such reactions—have been established 
successfully and are still used.35

IgG seroconversion has been reported in the first clinical trials 
in approximately 40% patients; however, it was thought not to 
influence enzyme efficacy.34

Data from the Fabry registry report seroconversion with neutral-
ising antidrug antibodies (ADA) in 73% males as opposed to 12% 
females treated with agalsidase beta, which is likely due to complete 
absence of native enzyme in men with classical mutations. This 
theory is supported in the fact that men with missense mutations 
were far less likely to develop antibodies, possibly due to residual 
native enzyme activity.36

Over the years long-term effect of neutralising antibodies has 
not been studied in detail, in particular their impact on clinical 
outcomes.

A study by Benichou et al observed significantly impaired Gb3 
clearance in skin biopsies of patients treated with ERT and high 
antibody titres.37

A correlation between antibody levels and lysoGb3 has been 
confirmed in a study of 60 Japanese patients.26 Similarly, when 
analysing in vitro enzyme inhibition in relation to lysoGb3 levels, 
disease severity scores and subjective symptoms in a group of 
168 patients,38 a study confirmed higher lysoGb3 levels as well 
as worse disease severity scores in patients with serum-mediated 
enzyme inhibition. There was no difference for the enzymes used 
(agalsidase alfa or beta) assuming a cross-reactivity and therefore 
not advocating for a therapy switch in antibody-positive patients. 
The theory of cross-reactivity is supported by Linhart et al,39 
who proved in vitro inhibition to both agalsidase alfa and beta 
in ADA-positive patients irrespective of which enzyme they were 
treated with.

In contrast two other studies40 41 postulated a reduction in 
plasma lysoGb3 with switch from agalsidase alfa to agalsidase 
beta in antibody-positive patients, however, not reaching levels as 
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Figure 1 Patient journey in FAZiT. ERT:enzyme replacement therapy.

Figure 2 Specialist investigations. ENT, ear, nose and throat; LFT, liver 
function tests; FBC, full blood count; TSH, thyroid stimulating hormone; 
BNP, brain natriuretic peptide; MRI, magnetic resonance imaging; ACR, 
albumin-creatinine-ratio; PCR, protein-creatinine-ratio.

low as antibody-negative patients. This could be explained by the 
administration of a higher dose of agalsidase beta with full anti-
body saturation rather than assumption of non-cross-reactivity. 
This theory was supported by a study of ADA levels immediately 
after enzyme infusion, where circulating ADA levels were signifi-
cantly lower following a higher dose enzyme infusion.42

More recent studies have raised the question of immune modu-
lation therapy in response to antibody formation as experienced 
in other lysosomal storage disorders eligible for ERT.43 In partic-
ular, a study investigating the effect of immunosuppression in 
transplant patients on antibody formation delivered valuable 
insights44—immunosuppression has been shown to decrease ADAs 
significantly in therapy naive as well as previously treated patients. 
Further prospective studies are needed to evaluate clinical impact 
of lowering ADAs and correlation with biomarkers would be 
particularly interesting.

To conclude, routine antibody screening is currently not 
part of clinical practice but may explain why some patients 
suffer significant disease progression with ERT. Further data 
are needed to develop strategies for affected patients, be it 
ERT switch, dose increase, immunomodulation treatment or a 
switch to a different therapy option.

novel approaches
Migalastat
A new therapy approach with migalastat was established in 2016. 
Migalastat is a small-molecule chaperone which facilitates enzyme 
trafficking to lysosomes in certain mutant enzymes.45 The advan-
tage for patients is oral administration, thus avoiding the need 
for biweekly enzyme infusions and possible associated adverse 
reactions. In theory, migalastat has a higher volume of distribu-
tion than ERT46 and given consistently may result in better func-
tional enzyme availability. On the downside, migalastat can only 
be used in suitable mutations—most commonly single missense 
mutations47, which is the case for an estimated 30% of all Fabry 
patients.48 A full updated list of amenable mutations is provided 
by the manufacturer Amicus Therapeutics. A first randomised 
controlled trial comparing migalastat with ERT has shown compa-
rable effect on renal function, cardiac and composite outcomes,48 
first cardiac MRI analyses show a possible positive impact on 
fibrosis and cardiac hypertrophy.49

To date, one phase II study has examined the combination 
of ERT with migalastat and showed promising results with a 
1.2-fold to 5.1-fold increase of enzyme activity compared with 
ERT alone.50 Large co-administration studies are needed to 
confirm these findings and evaluate long-term clinical outcomes.

Lucerastat
Substrate reduction therapy (SRT) uses yet another approach that 
was tried in other lysosmal storage disorders such as miglustat in 
Gaucher disease51 and offers the advantages of oral therapy irre-
spective of genotype. A new drug lucerastat—a direct inhibitor 
of glucosylceramide synthase—is currently in the later stages of 
clinical trial development. Glucosylceramide synthase catalyses the 
first step to glycosphingolipid synthesis, therefore by direct inhibi-
tion a lower Gb3 load is achieved.52 Again, a combination of SRT 
with ERT and/or chaperone therapy may result in more favourable 
outcomes for Fabry patients.

Gene therapy
Lastly, first gene therapy clinical trials are under way (https:// clin-
icaltrials. gov/ ct2/ show/ NCT03454893? cond= Fabry+ Disease& 
draw= 3& rank= 21). Animal studies in Fabry knockout mice have 
succeeded in introducing a working copy of the α-Gal gene via 
viral vectors (adenovirus or retrovirus), resulting in increased enzy-
matic activity at 6 months.53 A similar therapeutic approach has 
been successfully used in human haemophiliacs.54 The prospect of 
a cure with a single infusion of vector gene is exciting; however, 
there are currently several limitations of vector use—namely 
vector neutralising antibodies, which in theory can be overcome 
by emerging non-viral vectors. Other limitations of course include 
lack of long-term effects data as well as ethical issues of adminis-
tering genome-modifying treatment to children.

Multidisciplinary team: FAZiT
Because of the rarity and chronicity of the disease, as well as diag-
nostic and therapeutic uncertainties, we believe that specialist 
multidisciplinary assessment is of great benefit to our patients, 
in particular in the setting of lack of national and international 
guidelines on assessment and management. The first benefits of 
multidisciplinary work were reported by the oncologists55 who are 
historically champions of comprehensive care of their patients. In 
the rare diseases community, similar attempts have been successful 
in treating patients with Gaucher disease.56

Our large national centre FAZiT (Fabry Zentrum für inter-
disziplinäre Therapie – Fabry Centre for Multidisciplinary 

https://clinicaltrials.gov/ct2/show/NCT03454893?cond=Fabry+Disease&draw=3&rank=21
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Main messages

 ► Gold standard diagnosis of Fabry disease is genetic analysis, 
but distinguishing non-pathogenic variants can still be a 
challenge.

 ► Novel biomarkers such as lyso Gb3 add to establishing 
diagnosis and treatment monitoring.

 ► Relative lack of enzyme replacement therapy efficacy, partly 
due to antibody formation, may be alleviated by combination 
with new oral therapy approaches.

 ► Multidisciplinary work is key to comprehensive management 
of Fabry patients.

Current research questions

 ► Can we develop a reliable diagnostic tool/score to identify 
non-pathogenic mutations?

 ► Is there a role for immunomodulation in antibody-positive 
patients on enzyme replacement therapy (ERT)?

 ► Will future randomised controlled trials show that 
combination of ERT and chaperone/substrate reduction 
therapy add benefit to clinical outcomes?

 ► Will gene therapy bypass all current difficulties and deliver a 
cure?
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self-assessment questions

Please answer true or false
1. Children—in particular boys—who suffer from Fabry disease 

can develop neuropathic pain as young as age 3–4.
2. Due to the x-linked nature of the disease, women are carriers 

but do not develop significant disease.
3. Male patients with Fabry disease always develop 

angiokeratomas.
4. The main cause of death in classical phenotype patients is 

end-stage kidney disease.
5. The most reliable biomarker for disease monitoring is 

lysoGb3.

Therapy), attached to the University Hospital Würzburg, 
Germany, incorporates the core specialties nephrology, cardiology 
and neurology, who are involved at each patient visit, with collab-
oration from other departments - radiology, ear, nose, and throat, 
ophthalmology, gastroenterology, paediatrics, psychiatry and social 
services.

For our standard patient journey, see figures 1 and 2.
Putting patient care in the centre of our focus, we are actively 

involved with patient groups and organise yearly educational meet-
ings with talks by experts in their respective fields. This is a great 
opportunity for patients to share their experience and support each 
other.

Lastly, we of course contribute to further research of diagnostic 
tools and therapies and contribute to international consensus on 
disease management.57
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