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Graphical Abstract

Abstract

Isolation of ovarian follicles is a key step in culture systems for large mammalian species to promote the continued growth 
of follicles beyond the preantral stage in fertility preservation efforts. Still, mechanical isolation methods are user-skill 
dependent and time-consuming, whereas enzymatic strategies carry increased risk of damaging theca cell layers and the 
basement membranes. Here, we sought to determine an optimal method to rescue domestic cat (Felis catus) early antral 
and antral stage follicles from ovarian tissue and to evaluate the influence of isolation strategy on follicle development, 
survival, and gene expression during 14 days of in vitro culture in alginate hydrogel. Mechanical isolation was compared 
with 90 min digestion in 0.7 and 1.4 Wünsch units/mL Liberase blendzyme (0.7L and 1.4L, respectively). Mechanical 
isolation resulted in improved follicle growth and survival, and better antral cavity and theca cell maintenance in vitro, 
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compared with 1.4L (P < 0.05) but displayed higher levels of apoptosis after incubation compared with enzymatically 
isolated follicles. However, differences in follicle growth and survival were not apparent until 7+ days in vitro. Expressions 
of CYP19A1, GDF9, LHR, or VEGFA were similar among isolation-strategies. Cultured follicles from all isolation methods 
displayed reduced STAR expression compared with freshly isolated follicles obtained mechanically or via 0.7L, suggesting 
that prolonged culture resulted in loss of theca cell presence and/or function. In sum, early antral and antral stage follicle 
development in vitro is significantly influenced by isolation strategy but not necessarily observable in the absence of 
extended culture. These results indicate that additional care must be taken in follicle isolation optimizations for genome 
rescue and fertility preservation efforts.

Lay summary

The ovary contains hundreds of eggs with only a select few developing from an immature stage through to ovulation over 
the course of an animal's lifetime. Rescue of eggs from this pool, and the ability to grow them in culture to a mature stage, 
would be incredibly valuable for fertility preservation efforts in both humans and endangered species. Currently, the 
isolation of ovarian follicles (eggs with their surrounding helper cells) is a key step in culture systems for large mammalian 
species, to promote continued growth. Yet, isolation methods may affect the follicle’s future developmental capacity. We 
evaluated two isolation strategies, mechanical micro-dissection (needle/scalpel blade) and enzymatic digestion (using 
Liberase blendzyme) on ovaries of domestic cats obtained via routine spay procedures. Mechanically isolated follicles 
displayed improved growth, survival, and indications of developmental competence in 14-day culture, compared with 
high concentration (1.4 Wünsch units/mL) enzyme-isolated follicles. However, mechanical isolation was not different from 
low (0.7 Wünsch units/mL) enzyme for these metrics, or for expression of key genes indicative of follicular cell functions. 
Further, differences in follicle growth/survival were not apparent until 7+ days in culture. Thus, ovarian follicle isolation 
strategies influence developmental potential in culture, and extended culture will be required to identify optimal methods 
for fertility preservation efforts.
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Introduction

The ovarian follicle is a complex unit consisting of 
vascularized theca cell layers, a basement membrane or 
basal lamina, and granulosa cells surrounding a centralized 
oocyte. Supporting the development and functionality 
of these cell types over prolonged culture to produce a 
competent oocyte is the goal of in vitro folliculogenesis 
systems. Such an in vitro system would be invaluable to both 
human fertility preservation, and endangered mammal 
genome rescue efforts (Comizzoli et al. 2010, Smitz et al. 
2010). However, supporting folliculogenesis in vitro is 
particularly challenging in large mammalian species with 
prolonged folliculogenesis and large preovulatory follicle 
sizes. Thus far, follicles are typically isolated from ovarian 
tissues at the preantral/early antral stage to promote 
further growth in vitro. For example, a multi-step culture 
method starting with ovarian tissue culture followed by 
isolated follicle culture was recently utilized to produce 

metaphase II oocytes from human follicles (McLaughlin 
et al. 2018). As increased follicle size has been shown to 
improve oocyte developmental competence in a variety 
of species (Bagg et  al. 2004, Songsasen & Wildt 2005, 
Han et al. 2006, Rosen et al. 2008), the ability to isolate 
functional follicular units from surrounding tissue is key. 
Yet, methods to perform follicle isolation carry the risk of 
damaging the follicular unit, particularly theca cells, their 
precursors, and the follicle’s basement membrane, which 
in turn adversely affects normal hormonal function of the 
follicle and its future developmental capacity (Young & 
McNeilly 2010).

Two methods are primarily utilized to isolate ovarian 
follicles from surrounding tissue. First is mechanical 
isolation, either via micro-dissection from the cortical 
tissue or by pressing samples through cell-dissociating 
sieves (Jewgenow & Göritz 1995, Nagashima et al. 2019). 
In the cat, the latter method has been utilized for the 
recovery of preantral stage follicles (Jewgenow & Göritz 
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1995) but the primary disadvantage of the sieve technique 
is that later-stage follicles are too large to pass through 
the mesh intact. Micro-dissection involves the isolation of 
individual follicles from surrounding tissue using needles 
and/or scalpel blades. This method allows for the isolation 
of early antral and antral stages but is a time-consuming 
and labor intensive process, which is highly dependent 
on the skill of the user. Nevertheless, this method has also 
been utilized for the isolation of antral stage (0.5–2 mm 
diameter) domestic cat ovarian follicles (Rojo et al. 2015) 
as well as preantral follicles from human (McLaughlin 
et  al. 2018) and domestic dog (Nagashima et  al. 2019) 
ovarian cortices.

The second method for follicle isolation is by 
enzymatic digestion of the surrounding cortical tissue. 
Enzymatic isolation of ovarian follicles has been 
performed in several species, including the mouse (Eppig 
& Schroeder 1989), hamster (Roy & Greenwald 1985), pig 
(Hirao et  al. 1994, Fattahi et  al. 2020), cow (Figueiredo 
et  al. 1993), dog (Durrant et  al. 1998, Nagashima et  al. 
2017), and human (Roy & Treacy 1993, Lierman et  al. 
2015). A significant disadvantage of this method is that 
proteolytic enzymes such as collagenase or DNase have 
damaging effects on the basement membrane and theca 
layers of the developing follicles (Demeestere et al. 2002). 
Enzymes typically used for isolation include collagenase 
alone (types I, IV, or crude) or a blend of collagenase I 
and DNase. These traditional collagenase preparations 
can contain variable endotoxin levels, which have been 
proposed to have detrimental influences on the structural 
integrity of isolated follicles (Fattahi et al. 2020). The use 
of Liberase, a purified enzyme blend, has been investigated 
and compared with collagenase type IA for the isolation 
of human primordial and primary follicles (Dolmans 
et al. 2006) in which Liberase-isolated follicles displayed 
superior morphology compared with those isolated with 
collagenase. Evaluation of a variety of enzymatic isolation 
protocols on human follicle quality at different stages 
of maturation found that Liberase had fewer damaging 
effects on the structural integrity of the follicle than 
collagenase (Lierman et al. 2015).

While these previously published studies assess 
follicle quality immediately after isolation and after 7 
and 10 days in vitro (Dolmans et al. 2006, Vanacker et al. 
2011, Lierman et  al. 2015, Fattahi et  al. 2020), they are 
limited to the evaluation of preantral stage follicles and 
rarely specifically evaluate the effects of isolation strategy 
in longer-term culture. Specifically, we were interested 
in identifying ovarian follicle isolation strategies that 
allow for the maintenance of theca cell function during 

longer-term culture and in a non-rodent mammalian 
model. For this, we utilized the domestic cat (Felis catus), 
which serves as an excellent model for both human 
and endangered felid physiology (Menotti-Raymond & 
O’Brien 2008, Rojo et al. 2015). The first objective of this 
study was to optimize an enzymatic isolation protocol by 
which early antral and antral stage domestic cat follicles 
can be recovered with minimal damage to the basement 
membrane and theca cell layers. The second objective 
was to examine the influence of enzymatic digestion vs 
mechanical isolation on follicle survival, growth, antral 
cavity development, and the expression of genes that are 
indicative of follicular cell functions.

Materials and methods

All chemicals were purchased from Sigma–Aldrich unless 
otherwise stated.

Source of ovaries

Ovaries were obtained by routine ovariohysterectomy 
performed at local veterinary clinics and transported to 
the laboratory in L-15 medium containing 30 µg/mL 
penicillin G and streptomycin sulfate, and 8.8 µg/mL 
ascorbic acid on ice. Tissues were processed within 6 h of 
excision. Slices of cortical tissue were dissected from the 
surface of each ovary and cut into 2 mm2 pieces. All the 
recovered tissue from each cat was then divided evenly 
among treatment groups for follicle isolation.

Ovarian follicle isolation

Follicles were isolated either via enzymatic digestion 
with Liberase blendzyme or mechanically. All isolation 
methods were carried out in a ‘Base medium', consisting 
of minimum essential medium (MEM) supplemented 
with 2 mM L-glutamine, 50 U/mL penicillin G, 50 µg/mL  
streptomycin sulfate, 0.1 mg/mL ascorbic acid, and 
3 mg/mL BSA. Liberase TM (medium thermolysin 
concentration) was used at 0.7 Wünsch units/mL (0.7 L)  
(previously utilized for domestic dog ovarian follicle 
isolation (Nagashima et al. 2017) and equivalent to 0.135 
mg/mL) and 1.4 Wünsch units/mL (1.4L). The Liberase TM 
enzyme blend contains the neutral protease thermolysin, 
which disrupts the extracellular matrix of the tissue and 
it has been shown to maintain normal morphology 
in isolated ovarian follicles better than collagenase 
(Dolmans et al. 2006, Lierman et al. 2015). Ovarian tissue 
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fragments (2 mm2) were digested at 38°C for 60, 90, or 120 
min (60 and 120 min only in preliminary study) along 
with tissue disruption by vortexing (5 s) at low speed 
every 15 mins. The reaction was discontinued by the 1:1 
addition of base medium with 20% fetal bovine serum 
(FBS) and transferred to a petri dish for the collection 
of isolated follicles. The digested tissue was teased 
apart with needles to achieve complete isolation of the 
follicles after which follicles were collected via WireTrol 
(Drummond Scientific Co., Broomall, PA) and transferred 
to a fresh warm base medium until encapsulation. For 
mechanical isolation (Mech), follicles were isolated from 
the surrounding cortical tissue by using a scalpel and a 
20-gauge needle under a stereomicroscope. Follicles were 
then also transferred via WireTrol to a fresh warm base 
medium until encapsulation. A randomly selected subset 
(n = 3–5) of freshly isolated follicles from each treatment 
group were preserved in 200 μL of RNAlater stabilization 
solution (Fisher Scientific, Waltham, MA) at 4°C for 1 h 
and then stored at −20°C for subsequent gene expression 
evaluation via RT-PCR.

Encapsulation and incubation of isolated follicles

A 0.3% alginate hydrogel (Pronova sodium alginate, 
Novamatrix) was prepared by dissolving the alginate in 
warm PBS without calcium or magnesium. Follicles were 
briefly washed in the alginate solution, then drawn up in 
4 μL alginate and pipetted into a 140 mM NaCl, 50 mM 
CaCl2 solution (1 mL in a Nunc 4-well dish) and allowed 
to crosslink for 2 mins before being transferred to a fresh 
base medium (Xu et al. 2009). Follicles were incubated in 
100 μL of ‘culture medium’ consisting of base medium 
with 0.42 µg/mL insulin, 0.38 µg/mL transferrin, and 0.5 
ng/mL selenium, and supplemented with 1 µg/mL FSH 
and 100 ng/mL EGF in 5% CO2 in air at 38.5°C. Every 
48 h, 40 μL of the incubation medium was manually 
exchanged with fresh medium.

Using a Leitz DM-IL inverted microscope (Research 
Instrument, Falmouth, Cornwall, UK) with a heated 
stage and equipped with a Nikon D5500 camera, follicles 
were imaged on days 1 (Day 0=onset of culture) and 4 
(Study #1) as well as days 7 and 14 (Study #2). Follicle 
diameters were measured using ImageJ image processing 
software (US National Institutes of Health, Bethesda, MD). 
To account for varying follicle shapes (e.g. oblong), two 
measurements of each follicle were made at the onset 
and end of the incubation, including the widest length, 
and the diameter perpendicular to it. The average of 
these two measurements was calculated for each follicle 

and reported as diameter. Diameter assessments made at 
the onset of culture were used to determine follicle stage 
with preantral stage follicles at ≤ 205 µm (excluded in the 
current study), early antral follicles >205 to ≤ 340 µm, and 
antral stage follicles > 340 µm diameter (Reynaud et  al. 
2009).

Liberase blendzyme optimization

Ovaries from four cats (aged 3–9 months) were used to 
identify the optimal digestion incubation period for 
subsequent experiments. Ovarian cortical tissue from 
individual cats was divided evenly among 0.7L and 
1.4L digestion protocols for 60, 90, or 120 min in a 
2×3 design). Post-digestion, follicles displaying good 
morphology (apparently intact basement membrane and 
homogenously dark centralized oocyte, n total = 197) were 
counted.

Isolated follicle culture

Ovaries from ten cats (aged 6–14 months) were used 
to evaluate the effects of Liberase TM vs mechanical 
isolation via micro-dissection on follicle quality and 
viability in long-term in vitro culture. A 90-min digestion 
period was selected for enzymatic follicle isolation based 
on results from preliminary experimentation. A total 
of 339 follicles (including preantral stage, which were 
subsequently excluded from culture to focus on stages 
with developed theca layers) were collected. Early antral 
(nMech = 10, n0.7L = 41, n1.4L = 41) and antral stage (nMech = 49, 
n0.7L = 78, n1.4L = 85) follicles were encapsulated in 0.3% 
alginate and cultured individually in a 96-well plate 
with 100 μL culture medium in 5% CO2 in air at 38.5°C 
for 14 days. Every 48 h, 40 μL of culture medium from 
each well was manually exchanged with fresh medium. 
Diameter evaluations were made on days 1, 3, 7, and 14 at 
which point damage to basement membranes (granulosa 
cell or oocyte extrusion) was also evaluated. On day 14, 
intact follicles (combining early antral and antral stages) 
were removed from alginate beads using two 20-gauge 
needles, and preserved together by isolation group in 200 
μL of RNAlater stabilization solution as earlier described 
for subsequent gene expression evaluation via RT-PCR 
(n = 20–39 follicles/treatment, two to three replicates 
per treatment). For follicle morphology and apoptosis 
evaluations (below), follicles from an additional four cats, 
aged 2–12 months (EA: nMech = 5, n0.7L = 6, and n1.4L = 6; 
Antral: nMech = 15, n0.7L = 13, and n1.4L = 8) were isolated, 
encapsulated, and cultured for 14 days. At the end of 
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in vitro incubation, surviving and intact follicles were 
grouped by treatment and individual animals and fixed in 
4% PFA until histological evaluation.

Histological evaluations

Alginate-encapsulated, fixed cultured follicles (nMech = 19, 
n0.7L = 16, and n1.4L = 13) were embedded in paraffin, cut 
into 6 µm thick sections and mounted on glass slides. For 
morphological analyses, on average, a total of 13 sections 
representing approximately 300 µm depth were processed 
for hematoxylin and eosin (H+E) staining, as previously 
described (Nagashima et  al. 2019), for each follicle and 
treatment groups. This was achieved by evaluating the first 
eight sections (i.e. 48 µm depth) and then two sections of 
every ten subsequent slices. Following H+E staining, slides 
were assessed under light microscopy (Olympus B×40) for 
antral cavity status and putative theca cell layer presence. 
In H+E stained sections containing follicular oocytes 
with visible nucleoli, oocyte diameter was measured 
by averaging measurements of the oocyte at its widest 
diameter and its perpendicular diameter.

For apoptosis evaluation, two sections of every ten 
slices (also cumulatively representing ~300 µm depth) 
were assessed for indirect terminal deoxynucleotidy 
transferase dUTP nick end label using ApopTag Fluorescein 
In Situ Apoptosis Detection Kit (Sigma–Aldrich S7110), as 
per manufacturer’s instructions. Positive control slides 
were incubated with DNase for 15 min at 37°C following 
deparaffinization and rehydration, and negative controls 
were incubated in PBS in lieu of anti-digoxigenin 
antibody. All slides were counterstained with 1 µg/mL 
DAPI (Invitrogen S33025) in Prolong Anti-fade mountant 
(Thermo Fisher P36980) and imaged under fluorescent 
microscopy (EVOS FL Auto 2, Thermo Fisher). Area of 
ApopTag- positive staining was normalized to area of 
DAPI-positive staining per image (as a proxy quantitation 
for proportion of TUNEL-positive cells) in ImageJ (v 
1.52p, from imagej.nih.gov/ij). For each cat (n = 4 
individuals), 3–6 follicles were evaluated per treatment 

group, with the exception of one cat for which only one 
1.4L follicle survived until day 14. Results are reported as 
average ± s.e.m. across individual cats for each treatment 
group.

RNA isolation and RT-PCR

Freshly isolated and post-14 days cultured follicles were 
grouped together according to isolation method and 
culture status and RNA extracted via RNeasy Plus Mini 
Kit (Qiagen), according to the manufacturer’s protocol 
followed by treatment with RapidOut DNA removal 
kit (Thermo-Scientific) to eliminate genomic DNA 
contamination. Total extracted RNA was quantified 
using a NanoDrop™ One/OneC Microvolume UV-Vis 
Spectrophotometer (Thermo-Scientific).

cDNA was synthesized from 100 ng mRNA using a 
Transcriptor High Fidelity cDNA synthesis kit (Roche),  
according to the manufacturer’s instructions. 
Expression of the following genes was evaluated: β-actin 
((Thongkittidilok et al. 2018), a reference gene), aromatase 
(CYP19A1 (Thongkittidilok et  al. 2018), a measure of 
steroidogenesis in granulosa cells), growth differentiation 
factor 9 (GDF9 (Chansaenroj et al. 2019), oocyte-derived 
factor necessary for theca cell layer development (Dong 
et al. 1996)), luteinizing hormone receptor (LHR, a marker 
for theca cell function), STAR protein ( (Thongkittidilok 
et  al. 2018) a regulator of cholesterol transfer for theca 
cell steroidogenesis), and vascular endothelial growth 
factor (VEGFA, a potential marker of theca cell presence 
and functionality). Primer details are included in Table 
1. Reactions were performed according to the following 
parameters: 95°C for 10 min preincubation, followed by 
50 cycles amplification at 95°C 30 s, 60°C for 10 s, 72°C 
for 10 s, and melting at 95°C for 10 s, 65°C for 1 min, and 
97°C for 1 s. All reactions were performed in duplicate 
using a LightCycler® 96 (Roche). Primer efficiency was 
assessed for each gene by serially diluting cDNA and used 
for analysis via the Pfaffl method (Pfaffl 2001).

Table 1 Primer details.

Genes
Primer sequence

Accession number Product length, bpForward Reverse

ACTB ATCCACGAGACCACCTTC CACCGTGTTAGCGTAGAG AB051104.1 75 (Thongkittidilok et al. 2018)
CYP19A1 CAATCCTGCTGCTCACTG CCATGCAATAGCCAGGAC GU306147.1 84 (Thongkittidilok et al. 2018)
GDF9 CATCCGTGGACCTGCTATTT CCAGGTTGCACACACATTTC NM_001165900.1 129 (Chansaenroj et al. 2019)
LHR GTCATGCCTTCAACGGGA GGATGGACTCCAGCCCAT XM_023251671.1 165 
STAR ATGGAAGCGATGGGAGAG CAACTCGTGGGTGATGAC NM_001246196 90 (Thongkittidilok et al. 2018)
VEGFA CAGATGGAGAGCACAAACC ATACTCGATCTCATCAGGGT XM_023253550.1 122 
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Statistical evaluations

Data analyses were performed with JMP Pro 12 software 
(SAS Institute Inc., Cary, NC, USA). Follicle growth was 
evaluated via standard least squares with the day of 
culture, isolation technique and follicle stage as well as 
the interaction between isolation technique and stage, 
as fixed effects, and individual cat as a random variable. 
Post hoc evaluations of growth on each day of culture 
were performed via Wilcoxon non-parametric test with 
significance set at P < 0.05. Evaluations of basement 
membrane integrity, antral cavity status, putative theca 
cell presence, and TUNEL staining between treatment 
groups after culturing for 14 days were also performed via 
Wilcoxon non-parametric test. Survival over the culture 
period was evaluated with Cox proportional hazards 
test with isolation strategy and follicle size and their 
interactions.

Results

In the preliminary evaluation of enzymatic digestion 
time (60, 90, vs 120 min) with both 0.7 and 1.4 Wünsch 
units/mL of Liberase blendzyme, more differences were 
observed between individual cats than between treatment 
groups in terms of follicle yield (Supplementary Fig. 
1, see section on supplementary materials given at the 
end of this article). Thus, a digestion period of 90 min 
was selected to promote the isolation of early antral and 
antral stage follicles while allowing sufficient time for 
mechanical follicle isolation to be completed in parallel. 

Subsequently, 0.7 and 1.4 Wünsch units/mL Liberase 
blendzyme were compared with mechanical dissection. 
Both early antral and antral stage follicles isolated via 
mechanical dissection experienced significantly higher 
growth than the enzymatically isolated counterparts, an 
effect that reached statistical significance in the latter 
half of culture (Fig. 1A). There was no difference between 
enzyme concentrations. For example, mechanically 
isolated early antral stage follicles increased in diameter 
79.6 ± 15.7% (mean ± S.E.M., from an average 290.5 ± 12.4 
µm initial diameter to 513.5 ± 52.1 µm final diameter) 
by day 14, compared with 24.9 ± 5.9% (282.5 ± 5.8 
to 343.8 ± 22.0 µm) and 27.2 ± 6.0% (284.9 ± 5.5 to 
369.1 ± 20.7 µm) for 0.7L and 1.4L-isolated follicles, 
respectively (P < 0.05). Similarly, Mech-isolated antral 
follicles experienced a change in diameter of 27.2 ± 3.6% 
(438.9 ± 8.7 to 613.6 ± 17.7 µm) compared with 17.8 ± 3.6 
(420.5 ± 6.0 to 499.2 ± 11.7 µm) for 0.7L follicles and 
13.2 ± 4.0% (419.2 ± 6.5 to 481.1 ± 17.4 µm) for 1.4L 
follicles (P < 0.05). It should be noted that while ‘excess’ 
stromal cells were present on most follicles at the onset of 
culture, more were co-isolated with mechanical dissection 
compared with enzymatic methods (Fig. 1B).

A loss of basement membrane integrity in 40–60% 
of enzymatically isolated follicles was observable over 
the course of in vitro culture (Fig. 2A). While the loss 
of basement membrane integrity also occurred in 
mechanically isolated follicles, rates were significantly 
reduced for antral stage follicles. As a result, mechanically 
isolated antral follicles experienced significantly improved 
survival rates over 2-week culture (P < 0.05, Fig. 2B).

Figure 1 Growth over 14 days alginate-encapsulated in vitro culture of (A) early antral and antral stage follicles isolated mechanically or via 0.7L or 1.4L 
digestion, with letters indicating differences among isolation groups for each stage on a given day of culture (P < 0.05), and (B) representative images of 
size-matched follicles isolated via the three methods. White bar = 100 µm.
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In histological evaluations, a large portion of 
mechanically isolated follicles demonstrated antral 
cavities (63.8 ± 9.0%) and presence of cells with theca-like 
morphology (65.0 ± 12.6%). In contrast, follicles isolated 
via enzymatic digestion in 1.4L displayed the reduced 
presence of these characteristics (P < 0.05, Fig. 3) – with 
follicles from only one cat maintaining either following 
culture. While H+E sections containing oocyte nucleoli 

were only identified in 20 follicles, and the measured 
values at nucleoli-containing slices did not necessarily 
represent the largest diameters, only one oocyte with a 
pyknotic nucleus was observed and average diameters 
were 77.7 ± 3.6, 77.8 ± 4.8, and 85.2 ± 5.5 µm for 0.7L, 
1.4L, and Mech follicles, respectively (P > 0.05). Indirect-
TUNEL staining of follicles following in vitro culture (Fig. 
4A, controls in Supplementary Fig. 2) revealed a higher 
proportion of cells in Mech-isolated follicles with positive 
signal (normalized to DAPI, Fig. 4B). Apoptotic cells were 
observed at low levels, primarily in the granulosa cell layer 
in all treatment groups (Fig. 4A). Mech and 0.7L-isolated 
follicles also displayed evidence of apoptosis in theca cell 
layers (Fig. 4A and C).

Early antral and small antral follicles were pooled 
for gene expression evaluations. Fresh follicles collected 
immediately following isolation in either Mech, 0.7L, 
or 1.4L were compared with follicles isolated with 
each method and subsequently cultured for 14 days. 
Gene expression results were compared with fresh, 
mechanically isolated follicles. No significant differences 
in expression were observed among treatment groups for 
CYP19A, GDF9, LHR, or VEGFA (Fig.5). Cultured follicles, 
regardless of isolation strategy, displayed reduced STAR 
expression compared with fresh/uncultured Mech- and 

Figure 2 Early antral and antral stage domestic cat follicle survival in vitro 
after Mech isolation compared with 0.7L and 1.4L with (A) proportion of 
intact basement membranes on day 14 of culture, with asterisk (*) 
indicating differences among isolation groups for each stage and total 
follicles per group in white text, and (B) Kaplan–Meier survival, with letters 
indicating differences among isolation groups for each stage. P < 0.05.

Figure 3 Cat follicles with antral cavities and/or 
putative theca cell layers after 14 days of in vitro 
culture, with percent of follicles (Mech, n = 19; 
0.7L, n = 16, and 1.4L n = 13) displaying (A) antral 
cavities, or (B) putative theca cell layers, with 
letters indicating differences among isolation 
methods (P < 0.05), and (C) representative H+E 
images of Mech- vs 0.7L and 1.4L-isolated follicles, 
with * denoting antral cavities and black arrows 
marking putative theca layers. Scale bar = 100 µm.
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0.7L-isolated controls. Uncultured follicles isolated in 
1.4L also displayed reduced STAR expression compared 
with uncultured, Mech- and 0.7L-isolated controls 
(P < 0.05).

Discussion

In this study, we evaluated the impact of various isolation 
strategies for domestic cat early antral and antral stage 
ovarian follicles on in vitro survival, growth, and gene 
expression. We found that (1) mechanical isolation resulted 
in improved follicle growth and survival for early antral 
and antral stage follicles, respectively, when compared 

with enzymatic methods, (2) differences in isolation 
strategy on in vitro follicle surviaval and development 
were only observable after >7 days culture, and (3) both 
mechanical and low-concentration enzymatic isolation 
appear to sustain theca cell layers for subsequent culture.

Previous studies have utilized either mechanical or 
enzymatic methods to isolate varying stage cat ovarian 
follicles. Yet, direct comparisons of the efficacy and 
impact of follicle isolation methods on in vitro growth and 
survival have been limited. In this study, we compared 
mechanical dissection vs enzymatic digestion with Liberase 
blendzyme TM at low (0.7 Wünsch units/mL) or high (1.4 
Wünsch units/mL) concentrations. Our observation of 
the appearance of significant deviations in follicle growth 
and survival trajectories based on isolation strategy only 
after 7+ days of culture is notable. Namely, though fewer 
early antral stage follicles were collected via mechanical 
dissection compared to enzymatic in the 90 min time 
frame, Mech-isolated early antral follicles displayed the 
most robust growth in vitro. While several studies have 
evaluated various enzymatic isolation techniques for 
ovarian follicles, to our knowledge the longest culture 
duration applied to evaluate isolation methodology have 
been 7 (Vanacker et al. 2011) and 10 days (Fattahi et al. 
2020). In the former study, similar protocols were applied 
to human ovarian biopsies for primordial and primary 
follicle isolation; however, owing to the stage, follicles 
were group-cultured, so following the individual fate of 
follicles over the culture period was not possible. In the 
latter study, porcine preantral follicles were isolated using 
mechanical (hand blender or mincing with a scalpel) 
and enzymatic (collagenase or Liberase DH) methods 

Figure 5 Gene expression relative to fresh, mechanically isolated 
domestic cat ovarian follicles, normalized to β-actin after isolation (Fresh), 
or following 14 day  in vitro culture (Day 14) for each isolation method. 
Asterisk (*) represents statistically significant differences among groups  
(P < 0.05).

Figure 4 Apoptosis in domestic cat ovarian follicles isolated mechanically (Mech) or with 0.7 or 1.4 Wünsch units/mL Liberase blendzyme (0.7L, 1.4L) 
following 14 days in vitro culture with (A) representative brightfield, DAPI (blue), TUNEL (ApopTag, green), and merged images, (B) apoptotic index, where 
letters indicate statistically significant (P  < 0.05) differences among treatment groups, and (C) percentage (± s.e.m.) of follicles from each treatment group 
with indirect TUNEL signal in granulosa, theca, or cumulus cells, or the oocyte.
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(Fattahi et  al. 2020). Few intact follicles were collected 
via the mechanical methods utilized in that study, and 
therefore subsequent cultures were not performed on 
mechanically isolated follicles. Nevertheless, the authors 
similarly demonstrated a large disparity in survival 
following 10 days culture between follicles isolated with 
the two other strategies – collagenase (~28% survival) and 
Liberase DH (~58% survival) (Fattahi et al. 2020). Though 
these previous studies focused on preantral stage follicles 
in contrast with the current study, our results emphasize 
that both survival and growth potential of follicles are 
impacted by isolation method. These findings emphasize 
the need for prolonged (>7 days) post-isolation assessment 
for full evaluation of isolation techniques.

Various Liberase blends, dosages, and exposure times 
have been applied to the isolation of ovarian follicles in a 
variety of species (Dolmans et al. 2006, Lierman et al. 2015, 
Nagashima et al. 2017). For the Liberase TM utilized in the 
current study, concentrations typically range from 0.2–1.3 
Wünsch units/mL with incubation periods ranging from 
12–80 min (Dolmans et al. 2006, Kristensen et al. 2011, 
Schmidt et  al. 2018, Buckenmeyer et  al. 2020) for the 
isolation of preantral follicles. Specifically, 1.3 Wünsch 
units/mL concentration of Liberase TM has previously 
been applied to the isolation of murine primordial 
follicles over a 12 min incubation period (Buckenmeyer 
et al. 2020), but for human preantral follicles a range of 
0.20–0.25 Wünsch units/mL with 70–80 min incubation 
is typically utilized (Dolmans et al. 2006, Kristensen et al. 
2011, Schmidt et al. 2018). Recently, 0.5 mg/mL Liberase 
DH (equivalent to 3 Wünsch units/mL but with lower 
neutral protease activity than TM) for 70 min was used 
in the isolation of preantral porcine follicles (Fattahi 
et  al. 2020). Although the 1.4 Wünsch units/mL for 90 
min condition used in the present study was within the 
range used in previous research, follicles isolated via 1.4L 
rarely maintained/developed antral cavities during the 
in vitro incubation. This was likely due to damage to the 
theca cell layer during isolation, which was indicated in 
both the histological evaluations and STAR expression 
level reduction following isolation. However, follicles 
recovered by incubating ovarian tissue with a lower 
concentration (0.7 Wünsch units/mL) of Liberase grew 
and sustained the antral cavity and theca-like cells even 
after 14 days. The findings observed in the present study 
for the cat were similar to those reported previously by 
our laboratory with pre- and early- antral stage domestic 
dog follicles (Nagashima et  al. 2017). In that study, 0.7 
Wünsch units/mL of Liberase TM supported the isolation 

of early antral stage follicles with the capacity to grow and 
produce steroids for at least 14 days in vitro.

The influence of excess co-isolated stromal cells on 
follicle growth cannot be discounted. These cells were not 
observed to proliferate disproportionately in vitro (Figs 1B 
and 3C), so did not contribute directly to the increased 
percent growth reached by mechanically isolated follicles 
in culture. Rather, we hypothesize that they supported 
follicle development. In the mouse, preantral follicles 
co-cultured with murine fibroblasts had improved 
survival and growth in 12 days in vitro culture (Kim et al. 
2013). Ovarian stromal cells, identified as primarily theca 
cells and macrophages, also support primary and early 
secondary murine follicle growth and survival (Tingen 
et  al. 2011). In a large mammalian example, buffalo 
preantral follicles had better survival and development 
in ovarian mesenchymal cell co-culture compared with 
controls, although co-culture with isolated cumulus cells 
was determined to have the best influence (Ramesh et al. 
2008). In these studies, it was suggested that cytokines 
and growth factors produced by the stromal cells or 
involved in their communication with the ovarian 
follicles are likely responsible for the beneficial effects. As 
such, it is possible that the presence of additional stromal 
cells, less prevalent in enzymatically isolated follicles, 
conferred a similar advantage in the current study with 
the mechanically isolated follicles.

Our finding of higher percentages of TUNEL-positive 
cells in mechanically vs enzymatically isolated follicles 
following 14 days culture was surprising. Looking more 
closely at the localization, over half of the cultured follicles, 
regardless of treatment group, displayed low levels of 
indirect-TUNEL staining in granulosa cells. However, as 
noted by others, the observation of apoptotic granulosa 
cells in antral follicles can also be a part of the normal 
developmental process (Van Wezel et al. 1999, Regan et al. 
2018). As previously noted, 1.4L-isolated follicles rarely 
displayed evidence of theca cell layers or antral cavities 
after 14 days culture, therefore little to no staining was 
localized to theca or cumulus cells in that group. In 
contrast, the relatively high positive signal in Mech-
isolated follicles after 14 days culture can be attributed 
to these areas. In the cow, stimulation of theca cells with 
luteinizing hormone (LH) has been demonstrated to 
promote insulin-like growth factor expression, which in 
turn protects granulosa cells from apoptosis and supports 
follicle survival (Hattori et al. 2018). In our current culture 
system, we did not supplement LH during incubation. 
Though chronic LH supplementation in vitro has been 
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demonstrated to downregulate follicle responsiveness to 
FSH in the rat (Orisaka et al. 2013), sequential (e.g. added 
only in the latter half of culture) or intermittent (i.e. timed 
pulsatile addition) supplementation of LH may better 
support theca cell presence/function during extended 
culture in vitro. As oocyte developmental competence 
improves with advancing follicle size/stages, we propose 
that additional modifications to the culture system for 
these early antral and antral stage follicles should be 
explored for future genome rescue efforts.

It was promising to observe that, overall, gene 
expression was not significantly impacted by follicle 
isolation strategy. Based on what is known about the 
follicular localization of CYP19A1 (primarily granulosa 
cells (Duggavathi et al. 2006, Echternkamp et al. 2012)), 
GDF9 (primarily oocyte (Aaltonen et  al. 1999, Paradis 
et al. 2009)) and VEGFA (both theca and granulosa cells 
(Yamamoto et al. 1997)) in other species, it follows that 
they were not overly influenced by isolation technique. 
Conversely, STAR is primarily localized to theca cells in 
murine and human follicles (Kiriakidou et al. 1996, Ronen-
Fuhrmann et al. 1998). Reduced STAR in fresh, 1.4L-isolated 
follicles compared with Mech and 0.7L further indicates 
theca cell loss as a result of the more intensive enzymatic 
isolation strategy. LHR immunolocalizes to theca cells 
of domestic cat follicles of the early antral stage on but 
also in granulosa cells of large (>800 µm diameter) antral 
follicles and ovarian stromal cells (Saint-Dizier  et  al. 
2007). LH stimulates STAR expression (Clark et al. 1995) 
and subsequently the production of androgens (Short 
1962) to support the steroidogenic activity needed for 
advancement of folliculogenesis. Thus, the observed 
lower STAR expression in cultured follicles also supports 
the need for LH supplementation in the culture of 
these early antral and antral stage domestic cat follicles  
mentioned earlier.

In conclusion, we have determined that both 
mechanical micro-dissection and enzymatic digestion 
with 0.7 Wünsch units/mL Liberase blendzyme allow 
for the isolation of developmentally functional, 
advanced stage domestic cat ovarian follicles. Still, 
mechanically isolated early antral and antral follicles 
display improved growth and survival, respectively, 
during extended in vitro culture, potentially owing to the 
presence of an intact theca layer and supportive stromal 
cells. Oocyte morphology and size following culture 
were comparable to what has been reported for early 
antral stage cat follicles; however, subsequent studies 
should also evaluate the developmental competence of 
oocytes from these cultured follicles. Further, improved 

long-term culture conditions to maintain theca cell 
presence and/or steroidogenic activity will be beneficial 
toward the objective of improving the production of  
meiotically competent oocytes from isolated domestic cat 
follicles in vitro.
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