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Abstract

Introduction: The rapid development of artificial intelligence (AI) in healthcare has

exposed the unmet need for growing a multidisciplinary workforce that can collabo-

rate effectively in the learning health systems. Maximizing the synergy among multi-

ple teams is critical for Collaborative AI in Healthcare.

Methods: We have developed a series of data, tools, and educational resources for

cultivating the next generation of multidisciplinary workforce for Collaborative AI in

Healthcare. We built bulk-natural language processing pipelines to extract structured

information from clinical notes and stored them in common data models. We devel-

oped multimodal AI/machine learning (ML) tools and tutorials to enrich the toolbox

of the multidisciplinary workforce to analyze multimodal healthcare data. We have

created a fertile ground to cross-pollinate clinicians and AI scientists and train the

next generation of AI health workforce to collaborate effectively.

Results: Our work has democratized access to unstructured health information,

AI/ML tools and resources for healthcare, and collaborative education resources.

From 2017 to 2022, this has enabled studies in multiple clinical specialties resulting
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in 68 peer-reviewed publications. In 2022, our cross-discipline efforts converged and

institutionalized into the Center for Collaborative AI in Healthcare.

Conclusions: Our Collaborative AI in Healthcare initiatives has created valuable edu-

cational and practical resources. They have enabled more clinicians, scientists, and

hospital administrators to successfully apply AI methods in their daily research and

practice, develop closer collaborations, and advanced the institution-level learning

health system.
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1 | INTRODUCTION

Artificial intelligence (AI), referred to as using computers to perform

intelligent tasks typically done by humans,1 has received growing

attention in healthcare research and application, and has sparked

different opinions regarding its role in healthcare. Much of AI's

recent successes come from the subfield of machine learning (ML),

which uses computers to learn from data to make predictions or

decisions without a priori programming. Some AI proponents previ-

ously expected it to displace radiologists and anatomical

pathologists,2 such high expectations for AI to contribute to health-

care in general and address paramount health challenges, such as

the COVID-19 pandemic in particular, have been largely unrealized.

Reflecting on the underlying reasons, we found that instead of

replacing clinicians, most current AI workflows depend on human

expert input in the steps of model development, validation, and

deployment.

To maximize the benefits of precision medicine, we should

enhance collaboration between AI and human healthcare experts. At

its core, Collaborative AI in Healthcare seeks to address critical chal-

lenges in healthcare by fostering trust in AI technologies, democra-

tizing access to AI tools and resources, and building robust

infrastructure to support AI's integration into healthcare systems.

Our mission encompasses not only the technical advancement of AI

but also its ethical, accessible, and equitable application across

diverse healthcare contexts. By weaving these elements together,

Collaborative AI in Healthcare aims to pioneer a comprehensive

approach to harnessing AI's potential for transformative impact on

patient health. Collaborative AI endeavors resonate with founda-

tional Learning Health System (LHS) concepts, notably Friedman's

Learning Cycle,3 by emphasizing continuous learning and improve-

ment. Our initiatives reflect the cycle's phases of data collection,

knowledge generation, and practice integration, yet we also identify

and strive to fill notable gaps such as the occasional lack of trust

between clinicians and AI scientists and the need for the paradigm

shift from reactive to proactive AI.

For learning health systems to advance, it is critical for AI scien-

tists, clinicians, healthcare service providers, and researchers to col-

laborate in developing AI. Building trust between clinicians and AI

scientists is essential to leverage their combined expertise effec-

tively. However, trust is often missing, partly due to fears that AI

could replace certain medical professionals and concerns over AI sci-

entists applying models to data without sufficient clinical context.2

This leads to skepticism about the clinical relevance and reproduc-

ibility of AI findings, compounded by the challenge of interpreting

“black box” AI models. Misapplications of techniques to make these

models explainable can further obscure flaws, presenting invalid

models as plausible.4 Thus, it is important for a multidisciplinary

workforce of clinicians and AI scientists to work together during

each important step: model development, validation, deployment,

and ongoing model governance. This requires the creation of fertile

ground to cross-pollinate clinicians and AI scientists, for them to

learn and practice building collaborative AI for learning health sys-

tems as a “team sport.”

2 | BUILDING COLLABORATIVE
ARTIFICIAL INTELLIGENCE IN HEALTHCARE

Collaborative AI in Healthcare should provide resource and education

infrastructure for AI democratization, putting AI into the hands of cli-

nicians and scientists without specialized AI knowledge, and empower

them to effectively use the technology to work together. Leveraging

the strong partnerships between Northwestern University Feinberg

School of Medicine (FSM) with both Northwestern Medicine's hospi-

tals and Lurie Children's Hospital, we have established such infrastruc-

ture in data, tooling and education, enabling numerous collaborators

from multiple clinical specialties in adult and pediatric medicine to

advance their research and secure extramural funding.

2.1 | Governance and oversight of collaborative
AI in healthcare

To effectively coordinate and manage its diverse activities, Collabora-

tive AI in Healthcare has established a governance framework that

includes an Executive Steering Committee and an Advisory Board,

while leveraging the Community Engagement Panel from
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Northwestern University Clinical and Translational Science Institute

(NUCATS) for community outreach. Our advisory board comprises

diverse faculty from the schools of medicine, engineering, art and

science, as well as leaders of the healthcare system. The 12 mem-

bers of the Advisory Board bring expertise from core AI techniques

applied to multimodal health data (e.g., imaging, clinical notes,

multi-omics), health equity, ethics and patient engagement, various

clinical specialties (e.g., from general internal medicine to cardiovas-

cular and pulmonary care), basic science powered translational

medicine, as well as education innovation and knowledge

management.

This governance structure not only ensures strategic alignment

and ethical integrity but also facilitates broad stakeholder engage-

ment, drawing on a wealth of expertise to create an inclusive and col-

laborative ecosystem. By leveraging the infrastructure of partnering

institutions, we maximize resource efficiency and community impact.

Designed to be dynamic, our governance framework supports the

growth of Collaborative AI in Healthcare and its adaptive response to

the rapidly evolving field of healthcare AI. This approach fosters a

vibrant ecosystem that promotes research, innovation, and leadership,

ensuring that advancements in AI are effectively translated into tangi-

ble benefits for biomedicine. Through this governance model, we are

poised to navigate the complexities of healthcare AI, advancing the

field while prioritizing ethical considerations and the needs of our

diverse community.

2.2 | Disseminating collaborative educational
resource

Since 2020, we have dedicated ourselves to nurturing the next gener-

ation of leaders in medical data science and collaborative AI. This

commitment led to the launch of the AI for Health (AI4H) Clinic,

aimed at providing practical guidance and support to the approxi-

mately 4000 practicing clinicians within our faculty.5 The AI4H clinic

sessions, which complement the winter quarter's medical AI courses

at Northwestern University Feinberg School of Medicine, serve as a

platform where clinicians interested in AI for healthcare can discuss

their clinical challenges and ideas. These sessions are grounded in the

principles of collaborative AI, drawing together a diverse group of cli-

nicians, AI scientists, data scientists, basic scientists, hospital adminis-

trators, and trainees to foster a multidisciplinary approach to

healthcare solutions (Figure 1), all operating under ethical guidelines

for AI development in healthcare.6

The AI4H Clinic has become a catalyst for innovation and collabo-

ration. Clinicians, alongside AI and data scientists, bring forth clinical,

research, or operational problems to explore AI/ML-based solutions

through brainstorming, consultation, and iterative solution develop-

ment. This process not only leads to pilot projects, prototype systems,

and academic publications but also deepens the appreciation of the

nuances of clinical data among AI professionals. Notably, the clinic has

empowered clinicians, especially those previously lacking resources,

F IGURE 1 AI for Health (AI4H) Clinic
as a convener for collaborative artificial
intelligence (AI) in healthcare. AI4H Clinic
brings together clinicians, AI scientists,
data scientists, basic scientists, hospital
administrators and trainees, and operates
under ethical principles guiding
development of AI algorithms for
healthcare.
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to develop and deploy AI models with the support of AI scientists and

informatics trainees. The engagement spans across various clinical

specialties and career stages, fostering clinical implementations and

research breakthroughs (Table 1). This vibrant environment encour-

ages early collaboration, nurturing a natural bond between junior clini-

cians and AI/data science trainees across diverse topics, thereby

laying the groundwork for a future where Collaborative AI in Health-

care flourishes through the synergy of next-generation clinicians and

AI scientists.

The AI4H Clinic, initially envisioned for a select group already

versed in AI, quickly exceeded its capacity due to high demand from

interested clinicians. Rather than limit participation, we innovated by

pairing these clinicians with AI trainees, creating a mentorship

dynamic where both parties could learn from each other. Many clini-

cians, eager to apply AI within their specialties yet lacking analysis-

ready data, were supported by the use of the publicly accessible

MIMIC database.7 This approach allowed AI trainees to craft proto-

type models under the guidance of clinical insights, fostering a practi-

cal learning environment.

These collaborative efforts have led to the development of AI

models tackling critical clinical challenges. Several prototype models

have spanned the phases of data collection and knowledge generation

in Friedman's Learning Cycle, on a variety of concrete clinical tasks

including early prediction of acute kidney injury,8-10 antibiotic

TABLE 1 Selected Northwestern Medicine AI4H Clinic sessions across a wide range of clinical specialties by clinicians from all career stages
(Assistant/Associate/Full Professors and Chief Medical Officer).

Date Specialty Presenter rank Topic

31 January 2019 Pediatric Critical Care Assistant Professor Using machine learning to better understand Multiple

Organ Dysfunction Syndrome in Pediatric Intensive

Care Unit

6 February 2020 Emergency Medicine, Medical

Ethics

Professor, Chief Medical

Officer

Fairness of AI algorithms for risk prediction of heart

attack and stroke across demographic and

socioeconomic strata

20 February

2020

Internal Medicine Associate Professor Predicting next clinical event risks to ensure

outpatient follow-up appointments occur prior to

substantial risk development

5 March 2020 Radiology Assistant Professor Applying machine learning to connectomic

neuroimaging for patients' epilepsy risk prediction

14 January 2021 Emergency Medicine, Geriatrics Associate Professor Using machine learning to predict hospital disposition

with Geriatric Emergency

Department Innovation (GEDI) intervention

18 February

2021

Emergency Medicine Assistant Professor Using AI to predict the resource utilization and time

spent for a given patient's Emergency Room stay

for better triaging

11 March 2021 Internal Medicine Professor Leveraging multi-state patient populations for post-

publication evidence appraisals for AI in healthcare

studies

13 January 2022 Orthopedic Surgery Assistant Professor Identifying patients at higher risk for poor outcomes

after orthopedic surgery and spine surgery using

machine learning

3 February 2022 Neonatal Infectious Disease Assistant Professor Discovering umbilical cord biomarkers for diagnosis of

early onset neonatal sepsis

10 March 2022 Cardiology, Epidemiology Assistant Professor Using data science and machine learning to untangle

the complexities of heart failure diagnosis and

prognosis

12 January 2023 Gastroenterology Associate Professor Using spatial transcriptomics and machine learning to

elucidate irritable bowel disease mechanism and

druggable targets

16 February

2023

Neurology Professor Using deep learning to identify biomarkers for

predicting subsequent hematoma expansion after

intracerebral hemorrhage

2 March 2023 Pediatrics, Emergency Medicine Assistant Professor Determine an operationalizable outcome for

community-acquired pneumonia (CAP) using

machine learning approaches

Note: The involved patient populations include neonates, children, adults, and senior patients, with diverse gender, racial/ethnic, and socioeconomic

profiles.
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stewardship,11 and fluid management for hyperchloremia preven-

tion.12 Meanwhile, a notable couple of efforts have further included

the practice integration phase and spanned the entire Friedman's

Learning Cycle, for example, unsupervised machine learning for pedi-

atric multiple organ dysfunction subphenotyping and targeted

interventions,13 and supervised machine learning to prioritize geriatric

emergency department patients for advanced assessment and multi-

disciplinary care coordination.14

In 2023, we took a significant step toward expanding AI literacy

and fostering patient-centered innovation by launching the North-

western Medicine Healthcare AI Forum. This pioneering biweekly

forum is uniquely inclusive, inviting not only faculty and students from

Northwestern University but also healthcare professionals, patients,

and the broader community within the Greater Chicago area. Our ses-

sions (recordings at https://www.youtube.com/watch?v=6OZJFx_

yvik&list=PLh0E-LUsGkx3akbCnB9gonkIkKGGbPE1T) are designed

to break down the complexities of AI in healthcare, presenting the lat-

est advancements in a manner that is accessible and engaging to

everyone, including patients and their advocates.

Each forum features multiple succinct and modular presentations

that distill complex research and technological innovations into intui-

tive, easily understandable insights. These 10–15 min segments avoid

technical jargon, opting instead for plain English explanations that

invite questions, stimulate open discussion, and encourage participa-

tion from all attendees. By prioritizing patient engagement and making

AI advancements relatable to their experiences and concerns, we aim

to not only educate but also empower our community. This initiative

reflects our commitment to not just advancing healthcare through

technology but doing so in a way that is inclusive, patient-focused,

and driven by the needs and insights of those we aim to serve.

The multifaceted data and education initiatives and resources

have created a constructive and collaborative workspace, which

brings clinicians and AI scientists together and enables significant

research progress through collaborative AI efforts across multiple clin-

ical specialties in both adult and pediatric medicine. In addition, the

collaborative AI efforts are deeply embedded into multiple institu-

tional centers across the Feinberg School of Medicine, including

HeartShare Data Translational Center (U54HL160273), Northwestern

University Clinical and Translational Science Institute (NUCATS,

UL1TR001422), Electronic Medical Records and Genomics (eMERGE)

Multi-center Consortium (U01HG011169), Nutrition Precision Health

for All of Us Chicago Center (UG1HD107697), and Network of the

National Library of Medicine Evaluation Center (U24LM013751),

among others.

2.3 | Democratizing access to unstructured health
information

Much of the patients' information is locked in the form of narrative

clinical notes, which are not analysis ready for data science and AI

tools. Extracting structured information and converting it to model's

features requires NLP.15 In medical schools and health systems, a

relative scarcity of clinical NLP expertise often exists compared to the

broad need from practicing clinicians to extract health information

from unstructured clinical notes for automated downstream proces-

sing. We have observed that many requests from clinicians shared

similarities in the desired information (e.g., presence and absence of

certain clinical conditions, medications, procedures). Thus, we can bulk

process clinical notes to extract desirable information in anticipation

of common interest, serving to democratize access to unstructured

health information.

We have developed bulk natural language processing (NLP) and

data harmonization pipelines to systematically extract structured

information from unstructured clinical notes, and stored processing

results in interoperable data marts to power augmented intelligence in

clinical practice. Figure 2 illustrates the bulk-NLP pipeline, which

begins by identifying sections in clinical notes, breaking paragraphs

into sentences, and sentences into words (tokenization). Stemming is

used to reduce inflected words to their root form, capturing core

meaning. Part-of-speech (POS) tagging assigns a POS tag to each

word, capturing inflections. Syntax parsing assigns a syntactic struc-

ture to a sentence, which, along with stemming and POS tagging

results, informs named entity recognition (concept recognition)16,17

and relation extraction.18-20 Concept recognition can also inform the

syntax parser on the relations between tokens and improve the accu-

racy of parsing.21 These results generate a graph representation for a

sentence, capturing various relations expressed on the mentioned

concepts22 that can be consumed by our graph neural network model

TextGCN23 for relation inferencing from clinical text (e.g., medication

causes adverse events).

To disseminate the use of this state-of-the-art language model,

we have made easy-to-follow tutorial with a simplified version of

TextGCN23 (available at https://github.com/luoyuanlab/text_gcn_

tutorial) and introduced it into classroom teaching so that trainees can

run a graph deep learning model on their laptop within 10 min. Our

pipeline also allows direct regular expression extraction in order to

furnish customized concept and relation recognition.24 Finally, our

concept and relation extraction steps produce outputs that are

mapped to the Unified Medical Language System (UMLS).25 The cap-

tured relations and concepts are stored in OMOP Common Data

Model tables to ensure interoperability across the 12 hospitals in the

adult health system, the pediatric hospital and clinics, and with exter-

nal health systems.

To ensure broad use of the data and tools, we created tutorials

and educational resources (e.g., case studies, consulting sessions, cur-

rently available to approved Northwestern Medicine Enterprise Data

Warehouse [NMEDW] users) for the data marts produced by the bulk

NLP pipelines. These resources are designed to simplify the use of

data marts generated by our comprehensive NLP pipelines, catering

to a wide audience that spans clinicians, researchers, and administra-

tive staff who seek to leverage the wealth of information locked

within unstructured clinical notes. To validate the effectiveness of

integrating structured information from clinical notes, we conducted

studies comparing predictive models based on structured data alone

against models enriched with NLP-extracted information, specifically
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in the context of breast cancer recurrence adjudication and prediction.

The results demonstrated a significant enhancement in model perfor-

mance when incorporating information extracted through our NLP

pipelines.26-29

Our bulk NLP effort has powered research and development

efforts, driven business intelligence, and facilitated clinical tasks such

as computational phenotyping,30,31 disease predictive modeling,32-34

semantic analysis,35 and adverse event detection.36,37 For example,

we have collaborated with NMEDW team to deposit results from the

NLP pipelines into data marts for breast cancer patients (deployment

completed)38 and cardiovascular disease patients (deployment in pro-

gress). The breast cancer data mart has enabled Northwestern investi-

gators to secure federal grants and advance clinical research in breast

cancer recurrence adjudication and prediction,26-29 genetic risk strati-

fication39-41 and intervention, and drug delivery assessment.42-44 We

have adapted an NLP pipeline for cardiovascular disease patients, suc-

cessfully extracting key information like left ventricular ejection frac-

tion from echocardiography reports across our adult care network and

external institutions.45 This also lays the groundwork for downstream

tasks like drug repurposing for atrial fibrillation.46,47

2.4 | Collaboratively advancing artificial
intelligence/machine learning tooling and resources
for healthcare

The integration of deep phenotyping, multi-omics, and ML is revolu-

tionizing our understanding of the pathophysiological evolution and

disease progression by illuminating complex biological pathways.

Achieving this level of insight, however, necessitates a unique blend

of AI, data science, biological sciences, and multispecialty clinical

expertise. Our team embodies this multidisciplinary synergy, creating

multimodal AI/ML tools that harness the complementary nature of

diverse datasets to delve into complex diseases with unprecedented

depth and precision (Figure 3).

For example, in our autism study, we combined healthcare claims,

electronic health records, familial whole-exome sequences, and gene

expression patterns.48 This approach, rather than relying on data vol-

ume alone, allowed us to identify dyslipidemia as a risk factor for a

novel autism subtype. Working with cardiology experts, we have

effectively used deep phenotype (e.g., medical imaging49-52) and geno-

mic data (e.g., Whole Exome Sequencing) to identify distinct patient

subgroups with unique cardiac mechanics.53,54 This approach, utilizing

unsupervised machine learning, has been particularly beneficial in

studying adult hypertension patients at risk of heart failure with pre-

served ejection fraction (HFpEF). Our methodology has enabled the

identification of subgroups with varying cardiac mechanics53 and

HFpEF progression risks.55-57

Our methodology does not merely categorize patients more

accurately; it redefines patient management strategies, enabling

the reclassification of certain cases to more specific and treatable

conditions like transthyretin cardiac amyloidosis.58,59 Through this

work, we are setting new standards for the systematic identifica-

tion of disease subtypes, facilitating the discovery of targeted

interventions and significantly enhancing patient care outcomes.

Our work opens new pathways for leveraging AI-driven insights

F IGURE 2 Bulk natural language processing (NLP) pipeline and resulted data marts with common data model tables. The bulk NLP pipeline
takes in unstructured clinical notes and runs full stack syntactic and semantic processing steps to extract structured information and store them in
data marts. The data marts use common data models to store the information extracted from clinical notes to augment structured EHR and
provide interoperability among hospitals within Northwestern Medicine and with external health systems. These data marts then power business
intelligence and drive research and development by assisting clinicians and scientists at both the medical school and the health system.
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that lead to more precise diagnoses and tailored treatments, trans-

forming patient care for complex diseases.

Our developed tools are actively supporting research, practice,

and education. For instance, they are aiding the HeartShare Data

Translational Center in combining multi-omics, imaging and pheno-

typing data for heart failure subtypes and treatment targets and to

identify novel heart failure subtypes and promote precision medi-

cine. In practice, we embedded ML models, augmented with bulk

NLP extracted features, as part of a human-in-the-loop workflow

deployed at Northwestern Medicine to enhance the identification of

patients transitioning from moderate to severe HF (a deadly situa-

tion sometimes overlooked by primary care physician) and facilitate

timely evaluation by HF specialists for advanced therapies.60 In edu-

cation, these tools are used to train clinicians and AI scientists, with

trainees developing advanced models for diagnosing complex clinical

syndromes such as esophageal motility disorders.61 These tools,

complemented by shared source code and tutorials, provide practical

AI and machine learning training for early career investigators.

We have developed public, pan-disease AI/ML resources to

enhance the applicability of our tools across clinical specialties. One

such initiative is our foray into spatial transcriptomics, an emerging

technology that profiles gene expression in a tissue context. Integrat-

ing spatial transcriptomics datasets from published studies can pro-

vide unique opportunities for clinicians and scientists to extract and

aggregate insights on tissue-context dependent molecular mecha-

nisms.62 Recognizing the lack of a shared, systematically processed

database for this data, we created the Spatial transcriptOmics Analysis

Resource (SOAR). SOAR curates and annotates spatial transcriptomics

F IGURE 3 Multimodal healthcare data for artificial intelligence/machine learning.
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F IGURE 4 Legend on next page.
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data from 2785 samples across 40 tissue types from 11 species.63 It

offers a consistent, user-friendly platform for researchers to visualize

and assess spatial gene expression variability and cell–cell interac-

tions, to better understand various diseases' mechanisms and inform

targeted drug discovery. Accessible at https://soar.fsm.northwestern.

edu/, with tutorials in html, pdf and video forms, SOAR serves as a

one-stop destination for clinicians, scientists, and trainees worldwide,

currently supporting approximately 2700 users.

By collaborating with our diverse team of clinical experts, we can

effectively identify and address prevalent challenges for a learning

health system, such as missing clinical data. Although multiple algo-

rithms have been proposed for imputing missing measurements and

applied in clinical settings,64-74 they lack widespread community

efforts to advance the state-of-the-art imputation techniques for clini-

cal data. To bridge this gap, we have created a dataset with native and

artificial missing values, consisting of common laboratory test results

from complete blood count and metabolic panels from the MIMIC III

dataset7 and organized an international challenge.75 Participants from

various industries and academia experimented with a range of algo-

rithms to handle missing data. The shared lessons, benchmarking data-

set, source code, and tutorials from this challenge have created a

comprehensive resource for clinicians and scientists interested in clini-

cal data imputation.

Addressing healthcare disparities is also a significant challenge for

a learning health system. These disparities can bias machine learning

models, leading to inequitable decisions.76 To tackle this, we have

developed tools to identify and expose biases and inequity in health-

care practices and policies.77-79 For instance, our Monte Carlo simula-

tion of a ventilator shortage in a diverse COVID-19 population

revealed that certain triage strategies, despite intended as “color-
blind,” disproportionately affected Black patients with higher SOFA

scores and comorbidities.78 In response to these findings, we have

taken proactive steps by designing machine learning models that

adopt a more holistic view. These models incorporate both utilitarian

principles, which aim for the greatest good for the greatest number,

and egalitarian perspectives, ensuring fair treatment across all patient

demographics. By integrating social determinants of health, our

models significantly reduced disparities in healthcare predictions and

outcomes for different patient groups, while not sacrificing the overall

performance.80

The Northwestern University Collaborative AI in Healthcare ini-

tiative has been diligently working on democratizing access to

unstructured health information, advancing AI/ML resources, and

disseminating collaborative educational resources. This multifaceted

approach has significantly propelled the successful completion of

numerous studies, and their publications have provided timely value

to multiple clinical subspecialties and topics (Figure 4). As a result, our

closely knit team has been able to accelerate scientific investigations

and expand clinical research. This collaborative effort has significantly

contributed to the successful acquisition and implementation of

numerous NIH-funded awards (Figure 5), which will further sustain

and scale-up our research endeavors.

3 | DISCUSSION AND FUTURE WORK

In November 2022, Northwestern University took a significant step

forward in the intersection of healthcare and technology by institu-

tionalizing the Collaborative AI in Healthcare Initiative into the Center

for Collaborative AI in Healthcare. This pivotal move underscores our

dedication to advancing biomedical AI, supported by the center's staff

who contribute to numerous NIH-funded grants, as illustrated in

Figure 5. These efforts are further bolstered by both non-sponsored

institutional resources from the medical school and partnering depart-

ments and institutes, as well as funding from pharmaceutical and bio-

tech companies for AI-driven drug discovery endeavors.

The center's evolution from a support role in existing grant efforts

to a self-sustaining entity exemplifies organic growth at its finest—

uniting service-oriented efforts, securing institutional backing, and

drawing federal and industry funding. This robust, multi-pillar support

system not only ensures the center's sustainability but also empowers

it to expand its key activities significantly. Our mission is to serve as a

pivotal convener for a multidisciplinary workforce, seamlessly bridging

the gap between clinicians, basic scientists, hospital administrators,

and AI scientists. By doing so, we aim to foster an environment where

collaborative efforts thrive, transcending traditional boundaries and

driving forward the initiatives of learning health systems. This unique

position allows the Center for Collaborative AI in Healthcare to spear-

head innovations that promise to transform patient care, research,

and education in the realm of healthcare AI.

3.1 | Lessons learned

The journey of the Center for Collaborative AI in Healthcare from

inception to its current status has offered numerous valuable

F IGURE 4 The Collaborative AI in Healthcare Initiative has significantly contributed to the successful execution of numerous studies,
analyzed by their publications' trends of topics and focus. The term co-occurrence map from the titles and abstracts of the publications. A

connection denotes the co-occurrence between two terms. Term nodes are sized by the number of times they occur in the title or abstract of the
publication. Distance between two terms indicates how often the terms co-occur in a title or abstract. (A) All terms are assigned (and colored
accordingly) to clusters based on the co-occurrences. The red cluster mainly contains the terms that represent a method, like “representation,”
“classification,” and so forth. The green cluster mainly contains the terms that are related to a medical task, like “COVID,” “treatment,” and so
forth. The blue cluster can contain both method terms (e.g., “prediction model”) and medical terms (e.g., “acute kidney injury,” “intensive care
unit”). (B) All terms are colored according to their average publication year of usage; yellow indicates newer topics. (C) Publications resulted from
the Collaborative AI in Healthcare Initiative, analyzed by the number of publications and citations growing with the year.
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lessons on the importance of organic growth and the adoption of

a product-oriented mindset in shaping the center's resources

and programs. These insights not only reflect the center's strategic

development but also highlight the adaptable and innovative

approach necessary for success in the rapidly evolving field of

healthcare AI.

3.1.1 | Organic growth

Flexibility is key

The center's ability to adapt its focus based on emerging research

findings, technological advancements, and healthcare needs has been

crucial (e.g., developing SOAR from spatial transcriptomics advances).

This flexibility allowed us to respond dynamically to the challenges

and opportunities that arose, ensuring our efforts remained relevant

and impactful.

Building on existing strengths

Leveraging the existing expertise and infrastructure within North-

western University and its partners (e.g., Community Engagement

Panel from NUCATS) facilitated a solid foundation for growth

(e.g., community outreach). This approach underscored the value of

utilizing established resources and relationships as a springboard for

expansion and innovation.

Engaging broadly with stakeholders

Early and ongoing engagement with a wide range of stakeholders,

including clinicians, scientists, administrators, and industry partners,

enriched the center's understanding of diverse needs and perspec-

tives. This inclusivity has been instrumental in designing resources

and programs such as AI4H clinics and NM Healthcare AI Forum that

are both comprehensive and targeted.

3.1.2 | Adopting a product-oriented mindset

User-centered design

Treating the center's offerings as products meant adopting a mindset

focused on the end-user—whether a clinician, researcher, or educator.

This shift emphasized the importance of understanding user needs,

preferences, and challenges, leading to the development of more

F IGURE 5 The Collaborative AI in
Healthcare Initiative has significantly
contributed to the successful acquisition
and implementation of numerous
research grants (R01, R21, R18, R61, R35,
R24), funded by various NIH institutions
and centers. AHRQ, Agency for
Healthcare Research and Quality; NCI,
National Cancer Institute; NHGRI,

National Human Genome Research
Institute; NHLBI, National Heart, Lung,
and Blood Institute; NIA, National
Institute on Aging; NIAID, National
Institute of Allergy and Infectious
Diseases; NIAMS, National Institute of
Arthritis and Musculoskeletal and Skin
Diseases; NICHD, Eunice Kennedy
Shriver National Institute of Child Health
and Human Development; NIDDK,
National Institute of Diabetes and
Digestive and Kidney Diseases; NIGMS,
National Institute of General Medical
Sciences; NINDS, National Institute of
Neurological Disorders and Stroke; NLM,
National Library of Medicine; OD, Office
of the Director.
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accessible, intuitive, and valuable resources (e.g., bulk NLP, SOAR,

AI4H clinics, and NM Healthcare AI Forum).

Iterative development and feedback loops

Embracing a product development approach encouraged the adoption

of iterative cycles, where resources and programs are continuously

refined based on user feedback and performance metrics. This pro-

cess ensures that the center's offerings remain at the cutting edge of

utility and effectiveness (e.g., adding drug discovery function to SOAR

for its 2023 cycle).

Scalability and sustainability

Designing with scalability in mind, the center has focused on creating

resources and programs that can grow and evolve (e.g., partnering

with the health system, the schools of engineering and art and science

when launching NM Healthcare AI Forum). This foresight has been

critical for ensuring long-term sustainability, allowing the center to

adjust its strategies in response to changing demands and new

opportunities.

3.2 | Infrastructure activities

Our commitment to advancing Collaborative AI in Healthcare is

underscored by our dedication to constructing flagship and strategic

datasets that bolster education and foster the growth of the research

community. In the realm of epidemiology, landmark datasets like CAR-

DIA81 and MESA82 have catalyzed multigenerational learning and

research. However, the field of AI in healthcare has faced a gap in

accessible, diverse, and comprehensive datasets that could serve a

similar foundational role. To bridge this divide, we are leading the

CRITICAL (Collaborative Resource for Intensive care Translational sci-

ence, Informatics, Comprehensive Analytics, and Learning) consortium

(U01TR003528), a collaborative effort between prestigious institu-

tions including Northwestern University, MIT, Tufts Medical Center,

University of Alabama at Birmingham, and Washington University.

Through the CRITICAL consortium, we are building a large and

shared data, research, and educational platform that harmonizes com-

prehensive data from ICU patients across multiple institutions to drive

next-generation collaborative AI, benefiting investigators not only

within participating institutions but also from the entire digital health

community. The CRITICAL platform will support fair and generalizable

ML models for advanced patient monitoring and decision support,

featuring rich data, particularly on critically ill patients, by having inpa-

tient and outpatient data pre-, during- and post-ICU admission. In the

coming years, we will expand the CRITICAL consortium to cover more

of the nation's Clinical and Translational Science Award (CTSA)

program hubs.

We plan to also integrate multi-omic data modalities with pheno-

typic data, following the late-fusion strategy83 that prove to work well

in our pilot investigations on understanding complex diseases such as

autism48 and informing drug repurposing prioritization.84 Building

such a comprehensive, multimodal, and diverse data infrastructure is

more than an ambitious goal—it is a necessary step toward realizing

the full potential of healthcare AI. By establishing a national-scale flag-

ship dataset spanning multiple disease domains, we aim to power the

next wave of innovation in healthcare AI, providing a robust platform

for cutting-edge research and educational endeavors. This vision rep-

resents not just the future of AI in healthcare but a fundamental shift

toward more informed, holistic, and effective learning health systems.

3.3 | Training activities

Our commitment to fostering a vibrant AI-ready healthcare workforce

spans all career stages, emphasizing community and capacity building

through comprehensive training initiatives. We have instituted a man-

datory curriculum in digital health and data science for all MD pro-

gram students, equipping future physicians with the essential AI/ML

competencies needed for modern healthcare practice. Additionally,

for three consecutive years, the Bluhm Cardiovascular Institute has

offered a prestigious 1-year AI Fellowship in Cardiovascular Disease,

coupled with a Master's in AI from the NU McCormick School of Engi-

neering, available to select cardiologists or cardiac surgeons.

To further enhance AI healthcare education, we are scaling up the

AI4H Clinic, creating opportunities for faculty engaged in AI health to

mentor a growing workforce. This expansion aims to encompass a

wider and more diverse group, including clinicians, students, and

health system staff. Plans are underway to broaden our AI Health

courses with modular introductory sessions. The launch of biweekly

Northwestern Medicine Healthcare AI Forum makes AI/ML literacy

accessible to all healthcare professionals, patients, and scientists. The

AI4H Clinic sessions themselves are set to become regular bi-weekly

events year-round, offering specialized consulting to foster AI health

initiatives within our hospitals and strengthen ties with the medical

school.

Supporting these endeavors are collaborative efforts across cam-

pus, involving NUCATS, the Northwestern University Institute for AI

in Medicine, the Department of Medical Education, and more, all

working together to create a supportive ecosystem for AI in health-

care.85 Our educational resources, including tutorials and course mod-

ules, are openly available, adhering to FAIR principles (Findable,

Accessible, Interoperable, and Reusable). We are also incorporating

CARE Principles (Collective Benefit, Authority to Control, Responsibil-

ity, and Ethics) for Indigenous Data Governance86 to ensure our train-

ing programs are equity-focused and interdisciplinary.87

Our training activities not only prepare individuals for the techni-

cal demands of healthcare AI but also foster an understanding of its

practical implications, as demonstrated by our early analysis during

the COVID-19 pandemic. This analysis identified outpatient metfor-

min usage as a predictor of inpatient outcomes, leading to our partici-

pation in a multisite clinical trial to explore metformin's potential in

reducing severe COVID-19 outcomes.88 Through these comprehen-

sive training and research efforts, we aim to cultivate an AI-literate

healthcare workforce capable of driving forward the principles of a

learning health system.
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3.4 | Translation activities while incorporating
patient perspectives

Our commitment to transforming healthcare through AI and ML

extends to developing a comprehensive suite of models and analyti-

cal resources that are not only accurate and interpretable, but also

adept at harnessing diverse healthcare data modalities. By integrat-

ing structured electronic health record (EHR) data, unstructured clin-

ical notes, multi-omics, and medical imaging, we adopt an integrative

approach that enhances disease diagnosis accuracy and the develop-

ment of targeted therapies.89 For example, as mentioned in previous

sections, our adoption of bulk NLP for automating breast cancer

recurrence registration, previously a manual task, has significantly

improved data management and impacted clinical practices within

our health system.

We have also seen transformative changes in clinical work-

flows, such as the integration of preoperative MRI evaluations,

which has led to more judicious use of preoperative MRIs.43 In car-

diovascular care, information extracted through bulk NLP has facili-

tated the creation and implementation of ML models that identify

patients at risk of progressing from moderate to severe heart

failure—a critical condition often missed in primary care. These

models are embedded within a human-in-the-loop workflow at

Northwestern Medicine, enhancing patient identification for spe-

cialist evaluation and timely interventions, including the implanta-

tion of left ventricular assist devices, thereby markedly improving

patient outcomes.60

Recognizing the paramount importance of patient involvement,

Collaborative AI in Healthcare is actively exploring avenues to

engage patients more directly in the design, development, and

deployment of AI solutions. Efforts underway include the establish-

ment of patient advisory councils and the integration of patient-

generated data into AI models. As we move forward, Collaborative

AI in Healthcare is dedicated to fostering deeper partnerships with

patients. Our goal is to democratize AI in healthcare by developing

technologies that are not only for patients but also shaped by them.

This commitment to patient-centered innovation ensures that our AI

solutions are both relevant and responsive to the people they are

designed to benefit. By placing patients at the heart of our AI

endeavors, we aim to build a healthcare ecosystem that is inclusive,

equitable, and attuned to the diverse needs of the communities we

serve.

Looking forward, we are dedicated to continuously assessing the

equity and ethical considerations of our AI/ML implementations. This

commitment extends to our health system's community clinics, ensur-

ing that our innovations benefit a broad patient base. Through ongo-

ing training initiatives, we aim to equip a multidisciplinary workforce

with the tools necessary to unlock the full potential of learning health

systems. This strategy not only leverages multimodal health data for a

comprehensive understanding of health and disease but also ensures

that our healthcare system evolves to meet the needs of all patients,

underpinning our vision for a more informed, equitable, and effective

healthcare future.

3.5 | Paradigm shift to proactive AI to address
dynamic healthcare challenges

The shift from reactive to proactive AI represents a transformative

approach in healthcare, moving beyond traditional AI systems that

respond to preselected data and features. Proactive AI is designed to

be inherently collaborative within a learning health system, adept at

navigating the complexities of dynamic healthcare challenges such as

data shifts and biases. It leverages dual feedback loops: the first (level

1) uses algorithms like deep learning to autonomously learn features,

while the second (level 2) employs generative AI and reinforcement

learning (RL) to enhance data quality, identify gaps, and refine data

collection processes.90 This methodology has already seen success,

notably in Greece, where AI-driven strategies informed COVID-19

testing resource allocation and facilitated real-time case data

collection.91

Proactive AI's strength lies in its ability to foster continuous evo-

lution of solutions, stay abreast of knowledge advancements, and

promote integration of diverse health data sources, ensuring the

health system is both adaptive and collaborative. This adaptability is

crucial for addressing the challenges of modern healthcare and maxi-

mizing the benefits of AI in medicine. Building on this foundation,

we are exploring deep RL models to develop dynamic policies for

selecting lab test panels based on prior patient observations, aiming

for accurate diagnoses at reduced costs.92 Furthermore, we are

applying deep RL to devise strategies for the fair and efficient alloca-

tion of healthcare resources during crises, continuously adapting to

changing conditions and mitigating biases inherent in historical

data.93

Looking ahead, our focus on proactive AI opens new pathways

for innovation in healthcare. We aim to expand its application across

more clinical scenarios, from personalized patient care plans to opti-

mizing hospital workflows, ensuring that our health system not only

responds to current needs but anticipates future challenges. This

forward-thinking approach will enable us to harness the full potential

of AI in healthcare, leading to more effective, efficient, and equitable

patient care.

4 | CONCLUSION

As the concept of the learning health system matures into a working

reality, we have taken the initiative to establish education and prac-

tice resources to function as a hub of collaborative AI expertise. This

will assist a multidisciplinary workforce of clinicians and scientists in

successfully applying AI methods in their daily research and practice

of learning health system principles. Our bulk NLP pipelines and

resulting data marts democratize access to unstructured health infor-

mation, our continued efforts in creating easy-to-use AI/ML tools

serve to disseminate analysis resources for multimodal healthcare

data, our AI4H clinic contributes to democratizing access to collabo-

rative education resource. Together, they bridge tighter integration

between the practicing clinicians, scientists, and AI researchers. By
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continuing and expanding these efforts, and disseminating and lend-

ing material support of collaborative AI, we will continue to enable

collaborators to advance clinical research and translational sciences

and to support and sustain the development of learning health

systems.
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