
Citation: Ledda, M.; Merco, M.;

Sciortino, A.; Scatena, E.; Convertino,

A.; Lisi, A.; Del Gaudio, C. Biological

Response to Bioinspired Microporous

3D-Printed Scaffolds for Bone Tissue

Engineering. Int. J. Mol. Sci. 2022, 23,

5383. https://doi.org/10.3390/

ijms23105383

Academic Editor: Daniel Arcos

Received: 29 March 2022

Accepted: 9 May 2022

Published: 11 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Biological Response to Bioinspired Microporous 3D-Printed
Scaffolds for Bone Tissue Engineering
Mario Ledda 1,* , Miriam Merco 1, Antonio Sciortino 2, Elisa Scatena 3,4, Annalisa Convertino 2 ,
Antonella Lisi 1,† and Costantino Del Gaudio 3,4,*,†

1 Institute of Translational Pharmacology, National Research Council, Via Fosso del Cavaliere 100,
00133 Rome, Italy; miriam.merco@ift.cnr.it (M.M.); antonella.lisi@ift.cnr.it (A.L.)

2 Institute for Microelectronics and Microsystems, National Research Council, Via Fosso del Cavaliere 100,
00133 Rome, Italy; Antonio.Sciortino@artov.imm.cnr.it (A.S.); annalisa.convertino@cnr.it (A.C.)

3 Hypatia Research Consortium, Via del Politecnico snc, 00133 Rome, Italy;
elisa.scatena@fondazioneamaldi.it

4 E. Amaldi Foundation, Via del Politecnico snc, 00133 Rome, Italy
* Correspondence: mario.ledda@ift.cnr.it (M.L.); costantino.delgaudio@consorzioipazia.it (C.D.G.)
† These authors contributed equally to this work.

Abstract: The scaffold is a key element in the field of tissue engineering, especially when large defects
or substitutions of pathological tissues or organs need to be clinically addressed. The expected out-
come is strongly dependent on the cell–scaffold interaction and the integration with the surrounding
biological tissue. Indeed, mimicking the natural extracellular matrix (ECM) of the tissue to be healed
represents a further optimization that can limit a possible morphological mismatch between the
scaffold and the tissue itself. For this aim, and referring to bone tissue engineering, polylactic acid
(PLA) scaffolds were 3D printed with a microstructure inspired by the trabecular architecture and
biologically evaluated by means of human osteosarcoma SAOS-2 cells. The cells were seeded on
two types of scaffolds differing for the designed pore size (i.e., 400 and 600 µm), showing the same
growth exponential trend found in the control and no significant alterations in the actin distribution.
The microporous structure of the two tested samples enhanced the protein adsorption capability and
mRNA expression of markers related to protein synthesis, proliferation, and osteoblast differentiation.
Our findings demonstrate that 3D-printed scaffolds support the adhesion, growth, and differentiation
of osteoblast-like cells and the microporous architecture, mimicking the natural bone hierarchical
structure, and favoring greater bioactivity. These bioinspired scaffolds represent an interesting new
tool for bone tissue engineering and regenerative medicine applications.

Keywords: biomimetic scaffolds; bone tissue engineering; regenerative medicine; biocompatibility

1. Introduction

Bone healing is a naturally occurring process that can be categorized as primary (the
fracture gap is less than 0.1 mm and is filled directly by continuous ossification) and sec-
ondary (the more common form, which occurs when the fracture edges are less than twice
the diameter of the injured bone) [1]. However, the desired outcome is strongly hampered
when large injuries occur. Moreover, even if the defect size is not the only parameter used
to define a defect as critical, and a commonly agreed treatment is controversial, it has
been reported that in most species, a length exceeding 2–2.5 times the diameter of the
affected bone can be considered the minimum size that will not heal spontaneously [1–3].
Several surgical options are currently available (e.g., autografts, allografts, or synthetic
substitutes), but each of them is characterized by advantages and disadvantages that must
be critically evaluated by referring to the pathological case to be treated [4]. In this regard,
tissue engineering offers an alternative solution by developing ad hoc scaffolds that aim to
address all the related issues associated with currently implanted devices, supporting the
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regeneration of novel autologous tissue. The design of specific scaffolds is, therefore, a key
topic that deserves particular attention. The instructive role that it is expected to exert on
seeded cells needs to be accurately tailored in order to guide tissue healing and regeneration
and to provide an appropriate three-dimensional microenvironment to correctly support
biological processes [5]. For this aim, several design requirements should be considered
and targeted for the requested therapeutical protocol, including materials, fabrication
techniques, addition of bioactive compounds, and surface functionalization. All these cues
can be further enhanced by dealing with a scaffold characterized by a microarchitecture
resembling that of the biological tissue to be treated. In this respect, and referring to bone
pathologies, the preparation of morphological structures similar to the trabecular bone
arrangement can be regarded as a functional feature to ensure continuity between the
artificial and the natural environment. Such a result can be achieved by means of additive
manufacturing thanks to the intrinsic properties to finely control the deposition of the
selected materials. Clearly, the resolution can span a wide dimensional range depending
on the printing technology, from stereolithography to fused deposition modeling [6], but
the possibility to move forward from simple assembled scaffolds, which are unlikely to
resemble the natural microarchitecture, can pave the way to a more biomimetic approach
to prepare ad hoc tissue-engineered constructs [7]. Several 3D-printed scaffolds have been
evaluated for bone tissue engineering as reviewed, for instance, by Wang [8], Zhang [9], and
Lin [10], but only a few have been proposed with a trabecular-like architecture [7,11–14].
The latter approach should be emphasized since the scaffold is supposed to be a temporary
extracellular matrix (ECM) and its properties should be replicated, including both bioactive
cues and morphological cues. Most scaffolds that have been assessed so far are character-
ized by a regular structure, which is easily controllable in the design and fabrication stages,
allowing prompt regulation of relevant features, such as the porosity, permeability, and
mechanical behavior. However, this result can limit the potential of a tissue-engineered
construct, especially in vivo, which represents the real “working” environment where any
possible drawbacks should be minimized or avoided.

To evaluate the biological response of bone ECM-like scaffolds fabricated by fused de-
position modeling (FDM), human osteosarcoma SAOS-2 cells were chosen as the osteoblast
model. These cells have an osteoblast phenotype with characteristics that are similar to
human primary osteoblasts [15] and, compared to other osteoblast-like cells, better mimic
primary human osteoblast cells’ behavior when they interact with biomaterials. Since
SAOS-2 cells represent a very good and well-characterized osteoblast-like model, they were
used to investigate the in vitro assessment of 3D-printed biomimetic scaffolds to evaluate
the biocompatibility, bioactivity, and osteoconductive properties. The effects of two scaffold
models, with different microporosity, on cells’ growth, proliferation, metabolic activity,
cell morphology, and mRNA expression of key genes, including osteogenic differentiation
markers, are reported here.

2. Results and Discussion
2.1. Adhesion, Growth, and Differentiation of Osteoblast-like Cells on Bioinspired
3D-Printed Scaffolds

The formation, remodeling, and healing of bone is a coordinated process involving
various cell types in which osteoblasts, skeletal cells of mesenchymal origin, play a key role
as they have the specific ability to synthesize all constituents necessary for bone matrix
deposition [16]. Several osteoblast cell lines from different origins have been established
as models to study the biology of bone and for in vitro investigation of cell differentiation,
cytokine and hormonal regulation, synthesis and secretion of matrix proteins, molecular
mechanisms of bone diseases, and drug pharmacokinetics. In the field of tissue engineering,
these cell models are extensively used, due to the limited availability of primary human
osteoblast cells, for biocompatibility and osteoconductivity evaluation of novel biomaterials.
Osteosarcoma cells are among the cell models that are most used in tissue engineering
research as they show characteristics of osteoblasts, such as the ability to express specific
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receptors for 1,25-dihydroxyvitamin D3 and parathyroid hormone, synthetize cell-matrix
with alkaline phosphatase (ALP) activity, or produce specific bone matrix proteins [17–19].
Although the tumor origin of osteosarcoma cells results in significant phenotypic differences
from primary osteoblasts [20] regarding their morphology, proliferation rate, cytokines,
growth factors and matrix proteins expression profile, and mineralization activity [21], they
are widely used as an in vitro osteoblast-like model for biopharmaceutical evaluations.
Human osteosarcoma SAOS-2 cells have an osteoblast phenotype, with higher levels of
ALP activity than in other osteosarcoma cell lines [22] that are comparable to human
primary osteoblast cells [15]. It has been shown that the SAOS-2 growth factor expression
and collagen structure that they produce are similar to those of primary human osteoblast
cells [23,24]. More importantly, this cell line, compared to other osteoblast-like cells, can
better mimic primary human osteoblast cells’ behavior in response to the biomaterial
interaction. For these reasons, and as the human osteosarcoma cell line, SAOS-2, represents
a very good and well-characterized osteoblast-like model, it was selected in this study to
investigate their in vitro interaction with 3D-printed scaffolds, which mimicked the bone
microarchitecture, to assess their biocompatibility and the osteconductive properties.

The cells were seeded on a PLA control case (CTR) and on two different microporous
PLA scaffold models (i.e., SCF 400 and SCF 600), and their adhesion, proliferation, and
differentiation capability were investigated. First, the cell growth was examined using
cycle-phase distribution analysis and the WST-1 colorimetric assay. The propidium-iodide-
labeled DNA showed no significant differences in the cell phase percentage of SAOS-2 cells
grown for 4 days on both scaffolds compared to the CTR sample, indicating efficient cell
cycle activation and progression. These results, as reported in Figure 1, were confirmed
by the WST-1 colorimetric assay, which showed a clear exponential trend from day 1 to
day 4 in the cells grown on the scaffold surfaces, with the proliferation rate on day 3 and 4
being lower than the CTR cells. This last finding is expected in cells where a differentiation
process is on-going, as later confirmed by the expression analysis of osteoblastic markers.
The cell growth study was completed by performing nuclei staining analysis with Hoechst
33342, which clearly showed an increase in the number of SAOS-2 cells seeded on the PLA
scaffolds from day 1 to day 4 (Figure 1) and an even distribution on the substrate. These
results confirmed the lack of cytotoxicity of the PLA scaffolds and indicated that they are a
suitable surface for cell attachment.

Using phalloidin staining, the influence of the PLA scaffolds on SAOS-2 cells’ adhesion,
flattening, and lengthening was studied, visualizing the actin cytoskeleton morphology and
organization. The cytoskeleton, which is essential for maintaining cell shape, is involved in
a wide variety of cell functions associated with the differentiation process, including the
spatial organization of cell organelles, intracellular membrane traffic, modulation of surface
receptors, and the mitosis process [25]. It was observed that the cells attached well to
the scaffold substrates and maintained their actin cytoskeleton organization, morphology,
shape, size, and orientation, which is similar to the cells grown on CTR (Figure 2).
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Figure 1. (A) 3D-printed scaffolds with a pore size of 400 (left) and 600 µm (right). (B) Time evolution
of SAOS-2 nuclei on SCF 400 scaffolds, SCF 600 scaffolds, and PLA control (CTR), revealed by Hoechst
staining 33342, magnification 10× (C) Cell cycle analysis of SAOS-2 seeded on SCF 400 scaffolds, SCF
600 scaffolds, and PLA control (CTR). (D) Cell growth analysis using the WST-1 assay of SAOS-2
seeded on SCF 400, SCF 600, and PLA control (CTR) (data are shown as mean SD).

Figure 2. Actin distribution analysis of the SAOS-2 cells seeded on SCF 400 scaffolds, SCF 600
scaffolds, and PLA control (CTR) by confocal laser scanning microscopy.

2.2. Differentiation of Osteoblast-like Cells on Bioinspired 3D-Printed Scaffolds

Based on the above-described results, it is possible to assert that the two scaffolds
can support SAOS-2 cell adhesion, metabolic activity, and proliferation, providing strong
evidence of their biocompatibility and cell-friendly response. To further confirm the
3D-printed scaffolds’ biocompatibility, and to test their osteoconductivity, the mRNA
expression of genes involved in osteogenic differentiation or that play a central role in cell
biosynthetic machine activity was studied. With this aim, the mRNA expression of the
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following key constitutive genes was evaluated: β-actin (β-ACT), which is involved in
cell motility, structure, and integrity; Ki67, a marker of cellular proliferation; and RPL34,
a ribosomal protein involved in cell translation. The mRNA expression of osteogenic
markers, such as osteopontin (OPN), alkaline phosphatase (AP), RUNX2, and osteocalcin
(OCL), was also evaluated. These mRNA transcripts are highly expressed in SAOS-2 cells
and can be considered as health markers of cells. Their expression, which was analyzed
in cells grown for 4 days on scaffolds using the RT-PCR assay, was similar among the 2
samples and unchanged when compared to the control (Figure 3). More importantly, the
osteogenic commitment capability of the SAOS-2 cells grown on 3D-printed scaffolds was
also verified, as a valuable indicator of their capability of maintaining the differentiation
potential and consequently their osteoconductive proprieties. PLA is an FDA-approved
polymer, which, in addition to having excellent biocompatibility and biodegradability, has
osteoinductive properties, including the ability to support the expression of osteogenic
markers [26]; therefore, it has been extensively studied for bone repair [27,28].

Figure 3. qRT-PCR analysis of SAOS-2 key gene expression. The housekeeping genes (constitutive
gene) β-ACT, Ki67, and RPL34 were investigated in SAOS-2 cells grown on SCF 400 scaffolds, SCF
600 scaffolds, and compared to PLA control (CTR). Data are shown as mean SD.

Osteogenesis is a multistep series of events modulated by an integrated cascade of
gene expression characterized by three orderly stages: (1) proliferation; (2) extracellular
matrix (ECM) deposition and maturation; and (3) mineralization of the bone ECM [29].
These phases are accompanied by the activation of transcription factors, including RUNX2
and specific genes associated with the osteoblast phenotype, such as alkaline phosphatase
(ALP), osteocalcin (OCL), and osteopontin (OPN). ALP is considered a marker of early
differentiation, which is expressed at the end of the proliferative period and during depo-
sition and maturation of the ECM. Both OPN, the main phosphorylated glycoprotein of
bone, and OCL, a highly conserved small molecule, are expressed during the last phase
of osteogenesis, which is associated with mineralization of the bone matrix [30]. mRNA
expression analysis of these osteogenic markers was conducted in cells grown for 4 days on
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the PLA scaffolds (Figure 4) using the qRT-PCR assay, revealing a statistically significant
increase in the 4 markers for both samples (i.e., SCF 400 and SCF 600) compared to those
grown on the control. The collected results highlight that the osteogenic phenotype is
not only maintained in cells grown on the PLA scaffolds, confirming the well-established
osteoinductive properties of PLA [31], but that the differentiation process was efficiently
activated and upregulated in the SCF 400 and SCF 600 microporous 3D scaffolds, as shown
by the higher levels of early and late bone differentiation markers expressed in both 3D
PLA scaffolds compared to CTR.

Figure 4. qRT-PCR analysis of the early and late osteoblast differentiation markers’ (RUNX2, AP
OPN, and OCL) expression on SAOS-2 cells grown on SCF 400 and SCF 600 scaffolds compared to
PLA control (CTR). * identify statistical significance (p < 0.05). Data are shown as mean SD.

2.3. Bioactivity of 3D-Printed Scaffolds

It is hypothesized that the positive effect of the scaffolds on SAOS-2 differentiation
is related to their bioinspired 3D microarchitectures and microporosity, which mimics the
natural extracellular matrix of the bone and favors greater bioactivity. Together, these two
features contribute to the creation of an osteoinductive microenvironment and stimulate
osteogenic differentiation. In support of this conclusion, many studies have reported that
microporosity plays a significant role in enhancing the osteoinduction of 3D scaffolds [32].
The microporosity increases the surface area of the scaffold, providing more protein ad-
sorption sites, which facilitate the interactions between supports and cells and improve
the nutrient’s availability [33]. The absorbed proteins can subsequently stimulate the
osteogenic-related functions of cells, such as attachment, proliferation, osteogenic differ-
entiation, and biomineralization [34,35]. Moreover, the capillary force generated by the
microporosity improves the attachment of cells on the scaffolds’ surface and enables cell
penetration into micropores that are smaller than them. To deeply study the adhesion
and penetration capability of cells in the scaffolds, their microstructure was investigated,
after seeding SAOS-2 cells, using scanning electron microscopy (SEM). The images of both
samples reported in Figure 5 confirm a random porous microarchitecture, in which the
microporosity is very evident, which is different from the flat and ordered structure of
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the CTR. Furthermore, the cells appear to be well attached to the scaffold surfaces, con-
firming the confocal analysis, and many of them are concentrated around the pore wall,
demonstrating an ability to penetrate the scaffold.

Figure 5. SEM images of the cells seeded on the CTR (left panel), SFC 400 (central panel), and SFC
600 (right panel) scaffolds at 2 different magnifications (50× top line, 200× bottom line).

As discussed, the capability of biomaterials to absorb protein is directly related to their
bioactivity and impact on the interaction between the cells and scaffolds, playing a key role
in proliferation and osteogenic induction. Proteins are adsorbed before cells adhere to the
surface of biomaterials and the kinetics of this process can influence the subsequent cell
behavior. In this study, to examine the scaffold bioactivity related to the protein adsorption
capability, the kinetics of protein adsorbed on the scaffold surfaces was measured at various
incubation intervals (1, 2, 3, 4, and 7 days) and compared to CTR. As shown in Figure 6, the
amount of proteins adsorbed by the two tested scaffolds was higher compared to CTR at all
time points. Both scaffolds show a rapid increase on day 1 followed by a further noticeable
increase in protein adsorption on SCF 600 and a slight but significant increase on SCF 400
compared to CTR. The collected data suggest that the microarchitecture of both scaffolds,
characterized by a greater porosity, enhanced the protein adsorption capacity on SCF 600,
which has a major porosity compared to SCF 400, and thus improved the bioactivity.
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Figure 6. Protein absorption of the SCF 400 and SCF 600 scaffolds compared to the PLA control. Data
are shown as mean SD. * identify statistical significance (p < 0.05).

3. Materials and Methods
3.1. Scaffold Fabrication

The design and fabrication procedures of the 3D-printed scaffolds have already been
reported [5]. Briefly, 2 random 3-dimensional distributions of spheres, i.e., virtual pores,
with a diameter of 400 and 600 µm, were created using a custom-made script and subtracted
from a box-shaped volume (10 × 10 × 3 mm) to produce porous CAD models. These
models were then imported in ideaMaker (Raise3D Inc., Irvine, CA, USA) and sliced at
0.25 mm in the Z direction. Scaffolds were fabricated by processing polylactic acid (PLA
filament; Formfutura BV, The Netherlands) using a Raise 3D N2 printer (Raise 3D Inc.,
Irvine, CA, USA), setting the nozzle temperature at 205 ◦C and that of the build surface at
40 ◦C. According to the design procedure, the 3D-printed scaffolds were labeled SCF 400
and SCF 600, respectively. As a control case, box-shaped PLA samples with a flat surface
were fabricated.

3.2. Cell Culture

The human osteosarcoma SAOS-2 cell line was obtained from the American Type Cul-
ture Collection (ATCC, HTB-37 Rockvile, MD, USA). The cells were grown in high-glucose
Dulbecco’s modified Eagle’s Medium (DMEM; Euroclone, Milan, Italy), supplemented with
10% heat-inactivated fetal bovine serum (FBS, Euroclone), 2 mM L-glutamine (Sigma, Darm-
stadt, Germany), 1.0 unit/mL penicillin (Sigma), and 1.0 mg/mL streptomycin (Sigma,
Darmstadt, Germany). The cells were cultured on a plastic Petri dish at 37 ◦C in a hu-
midified incubator containing 5% CO2. For all experiments, the scaffolds were immersed
in ethanol 70% for 30 min, and washed with phosphate-buffered saline (PBS). SAOS-2
cells (3 × 104 cells/cm2) were seeded on both the PLA scaffolds’ surfaces and on the PLA
sample (CTR) and grown for up to 4 days.
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3.3. Cell Growth Analysis

The SAOS-2 cell growth trend was quantified by a colorimetric assay based on oxida-
tion of water-soluble tetrazolium salts (Cell Proliferation Reagent WST-1; Roche Diagnostics,
Darmstadt, Germany). Exponentially growing SAOS-2 cells were seeded on both scaffold
surfaces and on the PLA sample (CTR) at a density of 3 × 104 cells/cm2, cultured for up to
4 days in a humidified incubator (37 ◦C, 5% CO2), and analyzed every day. WST-1 reagent
diluted to 1:10 was added to the medium of SAOS-2 cells on day 1, 2, 3, and 4 following plat-
ing, and after an incubation of 2 h in a humidified atmosphere, the supernatants (100 µL) of
cells were placed in 96-well plates and analyzed using the formazan dye. Quantification of
the produced formazan dye was performed by absorbance measurement at 450 nm with a
scanning multiwell spectrophotometer (Biotrack II; Amersham Biosciences, Little Chalfont,
UK). For the nuclei analysis, cells were washed three times with PBS, stained for nuclei
localization with Hoechst 33,342 (trihydrochloride–trihydrate), and examined.

3.4. Cell Cycle Analysis by Flow Cytometry

The cell cycle of SAOS-2 cells grown for 4 days was analyzed by flow cytometry
analysis. A single-cell suspension of cells was fixed in 10 mL of 70% cold ethanol at 4 ◦C.
Fixed cells were washed in PBS, then stained with propidium iodide (20 µg/mL; Sigma)
and RNase A (250 µg/mL; Sigma) solution for 30 min at room temperature in the dark [36].
Approximately 1 × 106 cells were acquired using an FACSCalibur (Becton Dickinson)
cytometer and the cell cycle analysis was performed using ModFIT LT 2.0 software.

3.5. Real-Time Quantitative RT-PCR Analysis

Total RNA was extracted from the SAOS-2 cells, grown on both the PLA sample
and the scaffold surfaces for 4 days, using TRIzol Reagent (Invitrogen). One microgram
of total RNA was used to synthesize first-strand cDNA with random primers, using an
iScriptTM cDNA synthesis kit (Bio-Rad, CA, USA). Quantification of all gene transcripts
was carried out by real-time quantitative polymerase chain reaction (RT-qPCR), using the
SsoAdvanced™ Universal SYBR® Green Supermix (Bio-Rad) and Bio-Rad Real-Time PCR
Detection Systems. Each reaction was run in triplicate and contained 0.5 µL of cDNA
template along with 250 nM primers in a final reaction volume of 20 µL. The investigated
genes are reported in Table 1. The cycling parameters were 50 ◦C for 2 min, then 95 ◦C for
10 min to activate DNA polymerase, then 40 cycles of 95 ◦C for 15 s, and finally, 60 ◦C for
1 min. The melting curves were produced using Dissociation Curves software (Bio-Rad)
to ensure that only a single product was amplified. As negative controls, tubes where
RNA or reverse transcriptase were omitted during the RT reaction were used. Experiments
were carried out to compare the relative levels of each transcript and endogenous control
GAPDH in every sample. The data were analyzed using the following equation described
by Livak [36]:

Amount of target was calculated using the 2−∆∆Ct equation.

∆Ct = (average target Ct − average GAPDH Ct)

∆∆Ct = (average ∆Ct treated sample − average ∆Ct untreated sample)

Before using the ∆∆Ct method for quantification, a validation experiment was per-
formed to demonstrate that the efficiency of the target genes and the reference GAPDH
was equal.
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Table 1. Sequence of primers used for qRT-PCR.

Target Gene Primer Sequence Annealing Temperature (◦C)

β-ACT 5′-gctcctcctgagcgcaag-3′

5′catctgctggaaggtggaca-3′ 60

OPN 5′-gtgtggtttatggactgagg-3′

5′-acggggatggccttgtatg-3′ 60

Ki67 5′-tgaacaaaaggcaaagaagac-3′

5′-gagctttccctattattatggt-3′ 60

RPL34 5′-gaaacatgtcagcagggcc-3′

5′-tgactctgtgcttgtgcctt-3′ 60

RUNX2 5′-catcatctctgccccctct-3′

5′-actcttgcctcgtccactc-3′ 60

ALP 5′-caatgagggcaccgtggg-3′

5′-tcgtggtggtcacaatgcc-3′ 60

OCL 5′-cagcgaggtagtgaagag-3′

5′-gaaagccgatgtggtcagc-3′ 60

GAPDH 5′-catcatctctgccccctct-3′

5′-caaagttgtcatggatgacct-3′ 60

3.6. Scanning Electron Microscopy Analysis

The cells plated on the scaffolds were fixed with 4% paraformaldehyde for 10 min and
the dried specimens were coated with an evaporated Au thin film (10 nm) before analysis
with a ZEISS SIGMA 300 field emission SEM. The morphological analysis was verified at
an accelerating voltage of 5 kV using a secondary electron (SE) detector.

3.7. Confocal Laser Scanning Microscopy Analysis

SAOS-2 cells seeded on scaffolds and CTR, and grown for 48 h, were fixed with 4%
paraformaldehyde for 10 min and permeabilized with 0.2% triton X-100 in PBS containing
1% bovine serum albumin for 5 min. The cells were then incubated with phalloidin
tetramethylrhodamine isothiocyanate conjugated (1:100) with an anti-actin toxin (Sigma) in
a blocking buffer for 1 h, washed 3 times in PBS/BSA, and stained for nuclei localization
with Hoechst 33342. Cover slips were collected, cell-side down, on a microscope slide with
0.625% N-propyl gallate in PBS glycerol 1:1. The cover slip ‘sandwich’ was sealed to prevent
exposure to air and to exclude and prevent the crystal formation of H2O. Fluorescence
analyses were performed using a LEICA TCS 4D Confocal Microscope supplemented with
an Argon Krypton laser and equipped with 40 × 1.00–0.5 and 100 × 1.3–0.6 oil immersion
lenses. Confocal optical Z sections were acquired at 2-µm intervals for each field considered
and a middle confocal Z section is shown.

3.8. Protein Adsorption

Protein adsorption was determined using the method of Bradford. Each scaffold
was incubated in a 24-well plate with 1 mL of fetal bovine serum (FBS) at 37 ◦C. The
concentration of the protein in the FBS solution was measured with a commercial protein
assay kit (Biorad). Samples were immersed in a fetal bovine serum (FBS) solution and at
various incubation intervals (1, 2, 3, 4, and 7 days). The amount of proteins adsorbed was
calculated by subtracting the amount of proteins left in the FBS solution after adsorption
from the amount of proteins in the control FBS solution (without sample) under the same
incubation conditions.
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3.9. Statistics Analysis

Each experiment was performed three times (n = 3). The results are presented as mean
± SD. The significance of the difference was evaluated using the Student’s t test, with
p < 0.05 as the minimum level of significance.

4. Conclusions

The use of 3D-printed scaffolds that resemble the microarchitecture of bone tissue can
pave the way for an improved tissue engineering approach to treat several pathologies
and enhance the expected outcome. In this respect, the biological response of the present
tested scaffolds proved a clear biocompatibility and cell-friendly properties and, more
importantly, the capability to induce/promote and support osteogenic differentiation,
which is directly correlated with the bone-like architecture and porous microstructure,
making them biomimetic and bioactive.
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