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Exotic topological density waves in cold
atomic Rydberg-dressed fermions
Xiaopeng Li1 & S Das Sarma1

Versatile controllability of interactions in ultracold atomic and molecular gases has now

reached an era where quantum correlations and unconventional many-body phases can be

studied with no corresponding analogues in solid-state systems. Recent experiments in

Rydberg atomic gases have achieved exquisite control over non-local interactions, allowing

novel quantum phases unreachable with the usual local interactions in atomic systems. Here

we study Rydberg-dressed atomic fermions in a three-dimensional optical lattice predicting

the existence of hitherto unheard-of exotic mixed topological density wave phases. By varying

the spatial range of the non-local interaction, we find various chiral density waves with

spontaneous time-reversal symmetry breaking, whose quasiparticles form three-dimensional

quantum Hall and Weyl semimetal states. Remarkably, certain density waves even exhibit

mixed topologies beyond the existing topological classification. Our results suggest gapless

fermionic states could exhibit far richer topology than previously expected.
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T
opological quantum states of matter have attracted
considerable theoretical and experimental attention in
condensed matter research in the last decade, aiming at

robust physical properties protected (often due to some under-
lying symmetry) against variations in microscopic details. For
non-interacting fermions, topology of gapped phases has been
classified for arbitrary dimensions1,2. Examples are Z class Chern
insulators in two dimensions manifesting quantum anomalous
Hall effect3,4, and time-reversal invariant Z2 topological insulators
in three dimensions with robust magnetoelectric response5–8. For
classification of gapless systems, no unified theoretical framework
has emerged yet; nonetheless, recent studies on semimetals
suggest one theoretical route by characterizing topological
properties of band touching points, such as flux monopoles9–13.

In the context of ultracold atoms, recent experimental
developments have realized quantum control of Rydberg
excitations14–20, where strong van der Waals interactions lead
to long-range interacting quantum systems. This allows novel
collective quantum phenomena to be explored qualitatively
beyond what are possible with the usual short-range
interactions in atomic samples. In particular, the experimental
scheme of off-resonant Rydberg dressing19,21,22 permits long life-
time systems with controllable interaction strength and non-
locality, which would promise exotic many-body phases such as
supersolid21–23, quantum spin ice24 and topological Mott states25.

Here we provide one fascinating possibility in a Rydberg-
dressed atomic Fermi gas beyond the present theoretical
paradigm, with mixed gapped and gapless topologies emergent
in a three-dimensional (3D) bond density wave state. We
demonstrate the existence of such an exotic topological density
wave via renormalization group (RG) and self-consistent
calculations. Although our predicted density waves have some
superficial similarity with various density wave phases being
explored in the context of high-Tc cuprate superconductors26–30,
the collective phases we theoretically predict here have no existing
analogues. We also propose an experimental scheme to extract
the topological properties based on time-of-flight signals.

Results
Density wave instability in Rydberg-dressed fermions. We
consider a Rydberg-dressed atomic Fermi gas trapped in a 3D
cubic optical lattice. This Rydberg atomic system has density–
density interactions described by a non-local potential (see
Methods for experimental realization), V(r)¼V6/[1þ (|r|/rc)6],
where V6 describes the interaction strength and rc the interaction
range determined by the Condon radius in Rydberg dres-
sing19,21,22,24,25. Considering a deep lattice, the kinetic motion of
atoms arises mainly from quantum tunnelling between nearest
neighbouring sites providing a unique kinetic energy scale, t. We
will focus on a lattice with octahedral Oh symmetry. The model
Hamiltonian to describe this system is H¼H0þHint with

H0 ¼
X

r;a

� tcyrcrþ aêa þ h:c:
� �

;

Hint ¼
1
2

X
r;r0

V r� r0ð Þcyrcyr0cr0cr:
ð1Þ

Here a is the lattice spacing, a index the three directions x, y and z
and cr the fermionic annihilation operator positioned at r. For
fermionic atoms considered here, V(0) is set to be 0. The intrinsic
properties of this system will depend on only two dimensionless
parameters—V6/t and rc/a, representing the strength of
interaction and its non-locality, respectively.

At half filling, namely one atom per two lattice sites, the Fermi
surface is perfectly nested in the deep lattice limit, because the
single-particle energy dispersion satisfies EkþQ ¼ � Ek , with

Q¼ (p/a, p/a, p/a) (see Methods). The susceptibility towards
forming particle–hole pairing or density waves

rk ¼ cyðkþQÞcðkÞ
� �

;

(with c kð Þ a Fourier-transformed annihilation operator) is
logarithmically divergent due to nesting and the system has
generic instabilities with repulsive interactions. With nearest
neighbor interactions for spinless fermions, the ground-state
density wave order rk is momentum independent, implying a
trivial 3D checkerboard pattern in real space. However, for
Rydberg-dressed atoms, the interaction range, rc can be
comparable to several lattice spacings, which then frustrates the
checkerboard pattern, giving rise to possibilities of unconven-
tional density waves26,31.

Within one-loop RG analysis, we find that the strength of
density wave instability is determined by the eigenvalue problem
of a rescaled interaction matrix g whose symmetry is Oh�T (see
Methods and Supplementary Note 1). Different density waves
correspond to eigenvectors of g, which are classified according to
irreducible representations of the symmetry group32,33. The
symmetry classification of density waves and their representative
irreducible basis functions are shown in Table 1. The trivial
density wave is Aþ1g and all other density waves necessarily have
more complicated momentum dependence for symmetry reasons.
The latter leads to particle–hole pairing on the bonds in real
space26.

Unconventional density wave topology. Before presenting our
microscopic results, let us first look at a non-trivial superposed
density wave, T�1u þTþ2u (see Table 1). We introduce

Dk ¼
Z

d3q

ð2pÞ3
~VðQÞ� ~Vðk� qÞ
� �

rq;

where ~V Qð Þ is the Fourier transform of the interaction V(r). In
the T�1u þTþ2u state, Dk takes a form

Dk ¼DTþ2u
sin kxðcos ky � cos kzÞþ sin kyðcos kz � cos kxÞ
� �

þ i
ffiffiffi
2
p

DT�1u
sin kz:

Here DT�1u
and DTþ2u

take real values. Such a density wave order
has a rich topological structure in 3D momentum space (Fig. 1a),
with three vortex lines located at (0, l, 0), (l, 0, 0) and (l, l, 0), with
lA[�p/a, p/a). These vortex lines are topologically robust in the
sense that they cannot be smoothly removed without touching
the Fermi surface. The Bogoliubov-de Gennes Hamiltonian to
describe quasiparticles in the density wave background reads,

HBdGðkÞ ¼
Ek Dk

D�k � Ek

� �
; ð2Þ

which can be rewritten in terms of Pauli matrices as
HBdGðkÞ ¼~hðkÞ �~s. At the points k�0 ¼ � 2p=3; � 2p=3; 0ð Þ
where vortex lines cross the Fermi surface, the magnitude
of ~h vanishes, leading to zero energy quasiparticles. Around
each nodal point, say k ¼ kþ0 þ dkx; dky; dkz

	 

, we have

hx � 3
2 DTþ2u

dkx � dky
	 


and hy � �
ffiffiffi
2
p

DT�1u
dkz . The quasi-

particles near the gapless points are thus Weyl fermions9–11,34–37

with highly anisotropic velocities. Besides this gapless topological
property, it is worth noting that the other two vortex lines that do
not cross the Fermi surface are also topologically robust.

In general, we argue that the topology of 3D density waves can
be characterized by two integers (n1,n2), n1 being the number of
vortex lines that cross the Fermi surface and n2 the number of
other vortex lines that cannot be contracted to one point without
touching the Fermi surface. The topological numbers n1 and n2

thus encode gapless and gapped topologies, respectively. We
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emphasize that any two vortex lines connectible by the Q vector
are equivalent. For gapped density waves, n1 is necessarily 0, and
we have a Z classification, whereas for gapless states, both n1 and
n2 can be finite and the classification is Z�Z. Using this scheme,
the T�1u þTþ2u state has topological numbers (1,2), exhibiting
mixed topologies. The density wave topology as constructed is
measurable by time-of-flight techniques in atomic experiments
(see Methods).

Phase diagram. We now discuss the actual density waves sup-
ported by Rydberg-dressed atoms. With infinitesimal repulsive
interaction, the relative strengths of instabilities in different
channels are fully determined by the non-locality strength rc/a.
The leading instabilities, as quantified by the corresponding
eigenvalues of the g matrix, are shown in Fig. 2. When rc is small,
the interaction is essentially nearest neighbour, for which the
g matrix is mainly determined by the momentum independent
part of interaction ~VðQÞ (the Fourier transform of the interaction
at Q). This makes the trivial Aþ1g density wave completely
dominant over all other density wave states. Increasing rc, the
longer-ranged part of the interaction becomes more important,
which suppresses ~VðQÞ (see Fig. 2c) and consequently the Aþ1g
density wave. Simultaneously, other density wave channels with
non-trivial momentum dependence get enhanced. The dominant
instabilities are T�1u , E�g , Tþ2g and Tþ2u , and we have a transition

from Aþ1g to T�1u around rc/a¼ 1.46. The phase diagram based on
the instability analysis from RG is suggestive, and is rigorous in
leading order. However, considering finite interactions, non-lin-
earity may lead to significant physical effects. In particular, when
rc reaches the scale of lattice spacing, the instability strengths in
different channels are quasi-degenerate, which we attribute to the
‘step-like’ feature of the Rydberg-dressed interaction (see Meth-
ods). Non-linear effects must then be taken into account to
determine the actual phase diagram.

To incorporate non-linearity, we numerically simulate a system
of size 64� 64� 64 with periodic boundary condition using self-
consistent methods (see Methods). The solution for the ground-
state density wave order Dk is expanded in terms of basis
functions

Dk ¼
X
a;b

Da;bfa;bðkÞ; ð3Þ

where fa,b(k) are the basis functions from symmetry classifica-
tion (see Table 1), with a labelling different classes and b different
functions within one class. In the self-consistent theory including
non-linear effects, spontaneous symmetry breaking could occur
and superpositions of density waves from different classes are
allowed, subject to the constraint Dk ¼ D�kþQ. The coefficients
Da,b are required to be real.

In our self-consistent calculations, spontaneous symmetry
breaking of Oh�T is found for a large range of rc and the
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Figure 1 | Density wave topology. The colour index shows the phase angle (in units of p) of the momentum-dependent density wave order Dk projected on

the Fermi surface. (b,c) use the the same colour scheme as shown in a. a–c correspond to topologically distinct density wave states. The red dotted lines

are vortex lines around which the phase of Dk changes by 2mp (ma0). Right on vortex lines, Dk vanishes. In a, one vortex line crosses the Fermi surface. In

both a,b, all vortex lines cannot be adiabatically removed without touching the Fermi surface, and thus are topologically robust, whereas in c, the vortex line

is adiabatically removable and is thus topologically trivial.

Table 1 | Symmetry classification of three-dimensional density wave orders. The classification is according to irreducible
representation of the symmetry group Oh�T .

Aþ1g A�1g Aþ1u A�1u

1,cos kxcos kyþ cos kycos kzþ cos kzcos kx, i(cos kxþ cos kyþ cos kz) — —
Aþ2g A�2g Aþ2u A�2u

— — — —
Eþg E�g Eþu E�u

cos kzðcos kx� cos kyÞ
2cos kxcos ky � cos kz cos kxþ cos kyð Þ

�
i cos kx� cos kyð Þ

i 2cos kz� cos kx� cos kyð Þ

�
— —

Tþ1g T�1g Tþ1u T�1u

— —
sin kx cos ky þ cos kzð Þ
sin ky cos kzþ cos kxð Þ
sin kz cos kxþ cos kyð Þ

8<
:

isin kx

isin ky

isin kz

8<
:

Tþ2g T�2g Tþ2u T�2u

sin kx sin ky

sin ky sin kz

sin kz sin kx

8<
: —

sin kx cos ky � cos kzð Þ
sin ky cos kz� cos kxð Þ
sin kz cos kx� cos kyð Þ

8<
: —

In the labelling of different classes, the superscript ± tells how the density wave transforms under T symmetry. The basis functions representing particle–hole paring of upto next nearest neighbouring
sites are given. Owing to the constraint Dk ¼ D�kþQ , the basis functions in T even (odd) classes are real (purely imaginary). The normalization constants for the basis functions are neglected in this table.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8137 ARTICLE

NATURE COMMUNICATIONS | 6:7137 | DOI: 10.1038/ncomms8137 | www.nature.com/naturecommunications 3

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


symmetry-broken ground states support various superposed
density waves, yielding a rich phase diagram (Fig. 3). Surprisingly,
all the superposed states are found to break T symmetry and
consequently the time-reversal symmetry due to the resultant
complex structure in Dk. The topological gapless density wave
T�1u þTþ2u is indeed an allowed solution as argued earlier. The
other gapless phase that occupies a large region in the phase
diagram is E�g þT�1u þTþ2g þTþ2u . In both gapless phases, the
quasiparticle density of states has a ‘soft-gap’ feature (Fig. 3c),
a signature of the emergent topological Weyl fermions. In

addition, we find three gapped phases, Aþ1g , Aþ1g þT�1u and
E�g þTþ2g , whose quasiparticle density of states has a ‘hard-gap’
(Fig. 3b). In atomic experiments, the quasiparticle spectrum and
density of states can be directly measured by spectroscopic
techniques38,39.

We now discuss topological properties of the density
waves in the phase diagram. In E�g þT�1u þTþ2g þTþ2u state,
as compared with T�1u þTþ2u , its complex order Dk gets an
additional contribution, which is

ffiffiffi
2
p

DTþ2g
sin kzðsin kx � sin kyÞþ

iDE�g 2cos kz � cos kx � cos ky
� �

=
ffiffiffi
3
p

. Treating these additional
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Figure 2 | Leading density wave instabilities for Rydberg-dressed atomic Fermi gas. (a) Most dominant eigenvalues of the g matrix (see Methods),

representing the strengths of particle–hole paring instability of corresponding channels. Increasing rc, the Aþ1g channel gets suppressed, and other channels,

T�1u , E�g , Tþ2g and Tþ2u , with non-trivial momentum dependence are enhanced. (b) Step-like interaction form for Rydberg-dressed atoms. Two atoms far apart

behave as in Rydberg excited states and interact with van der Waals potential, whereas they become more ground state like at short distance. (c) The

Fourier-transformed interaction ~VðQÞ Q ¼ ðp=a; p=a; p=aÞ½ �. As we increase the cutoff rmax (see Methods), ~VðQÞ converges and the truncation error is

already negligible when rmax/rc¼ 3.
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Figure 3 | Phase diagram for Rydberg-dressed atomic Fermi gas. In this plot, the interaction strength is fixed to be V6/t¼4. To quantify contributions

from different classes, we introduce Da ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

b j Da;b j 2
q

, (see Equation 3). (a) The phase diagram with varying Condon radius rc. As we increase rc, we

get a sequence of density wave phases, Aþ1g , Aþ1g þT�1u , Tþ2g þ E�g , E�g þT�1u þTþ2g þTþ2u and T�1u þTþ2u . The first three are fully gapped and the last two are

gapless. The phase transition between the two gapless phases is found to be second order. The corresponding broken symmetry is space inversion. The

phase transitions among the gapped phases are first order. (b,c) The density of states for gapped and gapless phases, respectively.
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components as perturbations, we get three vortex lines
located at ð0; l;DE�g =ð

ffiffiffi
6
p

DT�1u
Þðcos l� 1ÞÞ, ðl; 0;DE�g =ð

ffiffiffi
6
p

DT �1u
Þ

ðcos l� 1ÞÞ and ðl; l; 2DE�g =ð
ffiffiffi
6
p

DT�1u
Þðcos l� 1ÞÞ, the third of

which crosses Fermi surface. These vortex lines are no longer
straight, but otherwise have the same topology as shown in
Fig. 1a. The E�g þT�1u þTþ2g þTþ2u state is topologically equiva-
lent to T�1u þTþ2u , having the same topological numbers (1,2).

In the E�g þTþ2g state which is gapped, Dk takes a form

Dk � 2DT þ2g
sin kx sin ky þ iDE�g ðcos kx � cos kyÞ:

The resulting vortex line (with vorticity 2) is located along the kz

axis (note that the Oh symmetry has been spontaneously broken),
thus not crossing the Fermi surface (see Fig. 1b). This state has
topological numbers (0,2) in our classification scheme. Actually,
in this state, the quasiparticle Hamiltonian HBdG(k), with
arbitrary fixed kz, has finite Chern number 2. Such a state
thus exhibits 3D quantum anomalous Hall effect, featuring
chiral surface modes, which mediate highly anisotropic transport
properties—dissipationless in x or y direction but diffusive
in the z direction40,41. In the other gapped state, Aþ1g þT�1u ,
we have

Dk � DAþ1g ;1
� 2=

ffiffiffi
3
p

DAþ1g ;2

X
a 6¼ a0

cos ka cos ka0 þ i
ffiffiffi
2
p

DT�1u
sin kz:

The vortex line of this state is shown in Fig. 1c, but it is
topologically unstable. The Aþ1g þT�1u state has trivial topological
numbers (0,0), topologically equivalent to Aþ1g .

Discussion
We expect our proposed topological density waves to be generic
for Rydberg-dressed atomic Fermi gases even if the interaction
potential is not precisely of the specific r6 form. The key
qualitative ingredient is the step-like feature in the interaction. To
confirm this, we also have carried out calculations for Rydberg p-
wave-dressed atoms24, and similar topological states are indeed
found (see Supplementary Fig. 2, Supplementary Table 1 and
Supplementary Note 2). We therefore believe that our prediction
for novel collective topological density waves should apply
generically to dressed Rydberg optical lattices. Besides, by
assuming momentum dependence of Fermi velocity is
negligible, we even derive an approximate criterion for
unconventional density waves to occur in generic long-range
interacting systems (see Methods).

Considering the effect of a harmonic potential as present in
most atomic experiments, the gapped density wave states are
expected to be robust and occupy a finite spatial region as
analogous to incompressible Mott shells in trapped lattice Bose
gases42. For the gapless density waves with emergent Weyl points,
we expect to have Weyl fermions of finite density in the trap,
where more interesting many-body effects are worth future
exploration.

Methods
Density wave instability under infinitesimal repulsion. The single-particle
energy dispersion for the 3D cubic lattice with Oh symmetry is
Ek ¼ � 2t cos kx þ cos ky þ cos kz

	 

. Having a non-local density–density inter-

action, the scattering vertex among single-particle modes k1, k2, k3 and k4 is

Gðk1; k2; k3; k4Þ ¼
1
2

~Vðk2 � k3Þþ ~Vðk1 � k4Þ
�

� ~Vðk2 � k4Þ� ~Vðk1 � k3Þ

:

At half filling, from the Fermi surface nesting, repulsive interactions cause
instabilities in density wave channels. Such instabilities can be tracked by RG flow
of the effective couplings near the Fermi surface,

gkf ;k
0
f
	 Gðk0f þQ; kf ; k0f ; kf þQÞ;

The RG equation at one-loop level43,44 reads

�L@Lgkf ;k
0
f
¼
Z

d2qf

ð2pÞ2
gkf ;qf

gqf ;k
0
f
; ð4Þ

with L the momentum cutoff of the theory and g a rescaled interaction matrix,

gkf ;k
0
f
¼ 2pvf ðkf Þ½ �� 1=2gkf ;k

0
f

2pvf ðk0f Þ
� �� 1=2

; ð5Þ

where vf(kf) is the Fermi velocity. In the RG flow, the largest eigenvalue of the
g matrix diverges most quickly as approaching the low energy limit. The
magnitudes of eigenvalues quantify the relative strength of instabilities in different
channels. The symmetry group of g is Oh�T , with T a two-element group
involving the transformation T(k)¼ kþQ.

Non-linear effects and self-consistent theory. The variational state we choose to
describe density wave order26 is

Cj i¼
Y0

k

ukc
yðkÞþ vkc

yðkþQÞ
� �

vacj i; ð6Þ

with |vaci the vacuum and k running over one half of the Brillouin zone, for
example, kzZ0. The self-energy and density wave order are given by (see
Supplementary Note 1)

�k ¼
1
2

Z
q

~Vðk� qþQÞ� ~Vðk� qÞ
� �

nq

Dk ¼
Z

q

~VðQÞ� ~Vðk� qÞ
� �

rq;

with
R

q 	
R d3 q
ð2pÞ3, nq ¼ cyðqÞcðqÞ

� �
and rq ¼ cyðqþQÞcðqÞ

� �
. The self-

consistent equations are obtained to be

Dk ¼
1
2

Z
q

~Vðk� qÞ� ~VðQÞ
� �

Dq
�
eq

�� ��; ð7Þ

�k ¼
1
2

Z
q

~Vðk� qÞ Eq þ�q
� ��

eq

�� ��; ð8Þ

with quasiparticle spectra eq ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEq þ�qÞ2 þ j Dq j 2

q
. With moderate

interaction strength, self-energy corrections could be significant, but the
modification to the Fermi surface is reasonably weak (see Supplementary Fig. 1).

In numerics, a brute force treatment of self-consistent iteration would lead to
numerical cost of OðN2

s Þ, with Ns the number of lattice sites, which makes the
numerical calculations too heavy for large systems. We simplify the problem by
rewriting

Dk ¼
1
2

X
r

e� ik�rVðrÞ
Z

q

eiq�rDq=jeqj

2
64

3
75� 1

2
~VðQÞ

Z
q

Dq=jeqj; ð9Þ

�k ¼
1
2

X
r

e� ik�rVðrÞ
Z

q

eiq�r Eq þ�q
	 


=jeqj

2
64

3
75:

Following the bracketing order above in numerical iteration, the cost is greatly
reduced. In our calculations, we choose a long-range cutoff rmax, so that
V(|r|4rmax) is set to be 0. The numerical cost for each iteration is then
O rmax=að Þ3Ns
	 


, which makes it feasible to simulate large systems. For all
numerical results presented in the main text, rmax is set to be 6� a and varied to
ensure that results do not change qualitatively.

An approximate criterion for unconventional density waves. Since solving the
eigenvalue problem of the g matrix requires numerics in general, we would like to
give an approximate criterion for unconventional density waves to occur in a
generic system, and give some intuition why such orders are supported by Ryd-
berg-dressed interactions. The assumption we take here is that the momentum
dependence of Fermi velocity is negligible. Under this assumption, the eigenvalue
problem of g becomes equivalent to that of

~Vðk� k0Þ � ~VðQÞ:
From Fourier transformation, we knowZ

k0

½~Vðk� k0Þ � ~VðQÞ�e� ik0 �r ¼ ½VðrÞ� ~VðQÞdr;0�e� ik�r:

The density wave channels (Dk) are then given by the plane waves e� ik � r, r
labelling different solutions. The eigenvalue associated with the trivial density wave
with r¼ 0 is then � ~VðQÞ. For other density waves having momentum depen-
dence, with ra0, the eigenvalues are V(r). With isotropic interactions, the density
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wave solutions with the same |r| are degenerate. In particular with step-like
interactions as for Rydberg-dressed atoms, the solutions with |r|orc are actually all
quasi-degenerate. This would strongly amplify non-linear effects, giving rise to
possibilities for superposed density waves.

The criterion for unconventional density waves to dominate over the trivial
one is,

maxfVðrÞg4� ~VðQÞ; ð10Þ
which implies for the Rydberg interaction that

1

1þða=rcÞ6
4�

X
r 6¼ 0

ð� 1Þrx=aþ ry=aþ rz=a

1þð j r j =rcÞ6
:

The parameter region where we find interesting phases in the full RG analysis and
self-consistent calculations, indeed satisfies the above condition. For general
interactions, the most likely region to look for unconventional density waves can be
easily identified by the derived criterion in equation (10).

Rydberg dressing scheme and experimental accessibility. Coherently coupling
ground-state (|gi) atoms to Rydberg excitations (|ei), the internal dynamics of one
single atom is described by a Hamiltonian

Hatom ¼ O ej i gh j þH:c:½ � þ d ej i eh j; ð11Þ
with Rabi frequency O and detuning d19,21,22,24,25. Atoms in Rydberg states interact
through a strong van der Waals interaction, VeeðrÞ ¼ C6

j r j 6. With far off-resonant
atom-photon coupling, O/d51, ground-state atoms get weakly admixed with
Rydberg states, which yields an effective interaction as shown in Fig. 2b. This
scheme, unlike resonantly populating Rydberg states, has been theoretically shown
to provide long life-time (from a few to hundreds ms) atomic samples21,22. We
take a lattice spacing a of 500 nm. For 40K atoms in Rydberg s-states with a
principal quantum number n¼ 25, the bare van der Waals interaction strength is
C6/a6E2p� 100 MHz (ref. 45). With a detuning d¼ 2p� 50 MHz, and Rabi
frequency O¼ 2p� 5 MHz, we have rcEa and V6E2p� 10 kHz; and with
d¼ 2p� 2 MHz and O¼ 2p� 0.4 MHz, we have rcE1.7a and V6E2p� 6 kHz.
The resultant interaction strengths are comparable to typical nearest neighbor
tunnelling in optical lattices (on the order of a few kHz). We expect the
equilibration time to be set by the collision time (around a few tenth ms) from
previous study on non-equilibrium Fermi–Hubbard models46. Our predicted
mixed topological density waves are in principle accessible with the off-resonant
dressing scheme, although the required laser power has not yet been achieved in
the present experiment19. The transition temperatures can be estimated from the
energy gap (or the ‘soft-gap’ for gapless states) which is around 100 nK, and
rigorous calculations are left for future works. We want to mention here that the
parameter region rcca, which could be more experimentally feasible, is expected
to also support superposed density waves (equation 10), although self-consistent
calculations there are more challenging.

Experimental signature of density wave topology. In experiments, the
momentum dependence of the density wave order can be extracted from time-of-
flight measurements. Using mean field theory, it is straightforward to show that

j rk j 2¼ nkh i nkþQh i� nknkþQh i: ð12Þ
At finite temperature, to extract |rk|2, it is necessary to measure both the product
hnkihnkþQi and the correlation hnk nkþQi. At half filling, the latter originates
purely from thermal fluctuations. The former is dominant when the temperature is
not too high as compared with the quasiparticle energy gap (or the ‘soft-gap’ for
gapless states). This implies that it should be experimentally straightforward to get
a precise measurement of |rk|2. In the zero temperature limit, the density wave
order is completely determined by the product |rk|2¼hnkihnkþQi. Moreover from
the relation,

rk ¼ �
1
2
Dk

ek
nFðekÞ� nFðekþQÞ½ � ð13Þ

the vortex lines of Dk immediately follow by tracking the vanishing points of |rk|.
With vortex lines located in the 3D momentum space, the topological numbers of
density waves can be easily extracted.
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