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Due to their delicate locations as well as aggressive and infiltrative behavior, malignant

brain tumors remain a therapeutic challenge. Harnessing the efficacy and specificity of

the T-cell response to counteract malignant brain tumor progression and recurrence,

represents an attractive treatment option. With the tremendous advances in the current

era of immunotherapy, ongoing studies aim to determine the best treatment strategies for

mounting a tumor-specific immune response against malignant brain tumors. However,

immunosuppression in the local tumor environment, molecular and cellular heterogeneity

as well as a lack of suitable targets for tumor-specific vaccination impede the successful

implementation of immunotherapeutic treatment strategies in neuro-oncology. In this

review, we therefore discuss the role of T cell exhaustion, the genetic and antigenic

landscape, potential pitfalls and ongoing efforts to overcome the individual challenges

in order to elicit a tumor-specific T cell response.
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T CELL ACTIVATION AND EXHAUSTION

Basics of T Cell Activation and Antigen Recognition
Eliciting a tumor-specific T cell response is the primary goal of most immunotherapeutic treatment
strategies. Two major CD3+ T cell populations exist—CD4+ T Helper cells and CD8+ cytotoxic T
cells (CTLs). While CD4+ T cells are able to orchestrate and modulate an antigen specific immune
response through their high plasticity and ability to produce cytokines, CTLs can induce selective
cell apoptosis through direct cell-cell interaction and targeted release of effector molecules, such
as perforin and granzymes. The specificity of T cells is guided through activation of the T cell
receptor (TCR) which recognizes antigens in the form of peptides, which are presented by human
leukocyte antigen (HLA) molecules on the cell surface (1). Although reasonable cross-presentation
of antigens, as well as cross-recognition by TCRs has been described in all T cell populations,
CTLs primarily interact with peptide/HLA class I molecule complexes, which are expressed by
all nucleated cells and present intracellular antigens. CD4+ T cells on the other hand are mainly
activated by antigens presented by HLA class II molecule peptide complexes, which are expressed
on antigen presenting cell populations, i.e., dendritic cells, macrophages/microglia and B cells (2).
HLA class II molecules present mainly extracellular antigens. In general, antigens are presented in
form of 8–10 (HLA class I) and 12–15 (HLA class II) amino acid long peptides, respectively, after
their protein of origin has been degraded by the proteasome in the cytosol and loaded onto HLA
molecules in the endoplasmic reticulum (3).

Unfortunately, since tumor cells are derived from normal tissue, antigenic demarcation
represents a major hurdle for tumor-specific immune initiation (2). Here, tumor-specific antigens
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(TSA), describing antigens which are found exclusively in tumor
cells, i.e., due to tumor-specific gene expression, or tumor-
associated antigens (TAA), which are not exclusive, but may
be aberrantly expressed in tumor cells, represent the desired
target to stimulate a tumor-directed immune response. Upon
recognition of the tumor-antigen through TCR/peptide:HLA
ligation, T cell activation requires additional stimuli from co-
receptors (1). These co-receptors can promote or inhibit T cell
activation, and tumors might benefit from expressing inhibitory
receptors, which are also known as checkpoint molecules. The
interplay of antigen presentation and co-receptor expression
highlights the functional complexity of the immunological
synapse during tumor-specific T cell responses. In this review, we
will therefore summarize the current state of the literature and
discuss potential treatment strategies to elicit a tumor-specific T
cell response in malignant brain tumors.

Tumor-Infiltrating Lymphocytes in
Malignant Brain Tumors
Tumor-infiltrating lymphocytes (TIL) are primarily composed
of CD8+ CTLs, conventional CD4+ T helper cells and
regulatory T cells (Tregs), which in most studies are defined
by CD4+ CD25+ FoxP3+ expression (4–6). Although CD3+

T cell infiltration is vastly outnumbered by tumor-associated
macrophages and microglia, multiple studies have proven that
increased tumor-infiltration with T cells is associated with
prolonged survival in glioblastoma (4, 7–9). T cell-associated
survival in glioblastoma patients was independent of age, post-
operative treatment, and MGMT promotor methylation status
(7). However, although a positive correlation of TILs with overall
survival was shown in multiple cancer entities, this observation
is still discussed controversially in glioblastoma. For example,
a study by Zhai et al. demonstrated that higher CD3e/CD8a
mRNA expression levels correlated with decreased survival in
glioblastoma (10). In addition, the role of different T-cell subsets
in the orchestration a tumor-specific immune response is still
incompletely understood. Here, the study by Ladomerski et al.
showed that depletion of CD8+ T cells at a late time-point
during tumorigenesis and treatment in a syngeneic murine
glioma model leads to a loss of treatment effect, while CD4+
T cells were indispensable at every time-point (11). Notably,
this effect implicates an early tumor-infiltration of CD8+ T
cells and a continuous impact of CD4+ T cells throughout the
disease course. Furthermore, a recent comprehensive analysis
of published gene expression data by us showed that individual
mRNA gene expression levels need to be interpreted cautiously
as immune cell subsets should better be evaluated using a gene

Abbreviations: bMMRd, biallelic mismatch repair deficiency; CD, cluster of
differentiation; CTA, cancer testis antigen; CTLs, cytotoxic T lymphocytes;
EGFR, epidermal growth factor receptor; EGFRvIII, epidermal growth factor
receptor variant III; GSC, glioma stem-like cells; HCMV, human cytomegalovirus;
HLA, human leukocyte antigen; IDO, indolamine desoxygenase; MGMT, O6-
methylguanine-DNA-methyltransferase; NSCLC, non-small cell lung cancer; PD-
L1, programmed death ligand 1; TAA, tumor-associated antigen; TCGA, The
Cancer Genome Atlas; TCR, T cell receptor; TGFβ, transforming growth factor β;
TIL, tumor-infiltrating lymphocytes; Tr1, type 1 regulatory T cells; Tregs, regulatory
T cells; TSA, tumor-specific antigen; WHO, World Health Organization.

expression signature (12). Here, our study by Bockmayr et al.
demonstrated a positive correlation of infiltrating T cells, defined
by a gene signature consisting of 10mRNA expression levels, with
overall survival in IDH-wildtype glioblastoma (12).

The prevalence of T cell subsets increases with tumor
grade in astrocytic tumors (4). Interestingly, this finding was
not confirmed in high-grade meningioma, as the number of
infiltrating T cells decreased in anaplastic meningioma (WHO
◦III) compared to WHO grade I tumors (13). Furthermore,
correlative analysis of TIL numbers in pediatric medulloblastoma
showed no association of an increased lymphocyte infiltration
with prolonged survival (14). However, difference in immune
infiltration could be observed between differentmedulloblastoma
subtypes, with SHH tumors having the strongest infiltration of
T cells (15). The study even described that patients with higher
numbers of granzyme B-positive CTLs, i.e., activated CD8+ cells,
had a shorter survival compared to patients with low granzyme
B-positive CTLs (14). Comparison of the immunophenotype
of different pediatric brain tumors demonstrated significantly
higher infiltration of myeloid and lymphoid cells in pilocytic
astrocytoma and ependymoma compared to malignant tumors,
such as medulloblastoma or glioblastoma (16). It is not clear
if the disparity between grade-dependent increase of immune
infiltrates in astrocytic tumors compared to low TIL numbers in
meningioma or malignant pediatric tumors can be explained, for
example, due to the underlying differences in genetic aberrations
or due to differences in the mechanisms of immune escape.

Tregs—Opposing Tumor-Specific Immune
Activation
Within the tumor-specific TIL population, regulatory T cells
(Tregs) were identified as a pro-tumorigenic subpopulation.
Characterized by their hallmark cytokines, IL-10 and TGF-
β, which can effectively suppress tumor-specific T cell
activation, Tregs are attracted to the local tumor environment
by soluble mediators, such as CCL22 or CCL2 produced by
glioblastoma cells (17–19). Higher tumor-grade was paralleled
by increasing Treg infiltration in glioma (20). Although discussed
controversially, increased Treg frequencies correlate with
shorter survival and earlier recurrence in glioblastoma patients
(9, 21). This finding, however, could not be confirmed when
screening for mRNA expression of FoxP3 and Helios, both
Treg-specific transcription factors, in large glioblastoma TCGA
data sets (22). Recently a similarly immunosuppressive CD4+

FoxP3− subpopulation was identified, called Type 1 regulatory
T cells (Tr1) (23). Tr1 cells co-express the surface markers
CD49b and Lag-3 and are upregulated in peripheral blood
and in the tumor microenvironment in glioblastoma patients
(24). In medulloblastoma and other malignant brain tumors,
studies on the involvement of Tregs in tumor progression are
scarce. Gene expression studies found a higher Treg marker
expression in the WNT medulloblastoma subtype (15). A recent
investigation in medulloblastoma tissue, showed that a tumor
driving pathway, e.g., mTOR activation can cross-talk with
indolamin-desoxygenase (IDO) expression, which consecutively
induces Treg cell expansion and immunosuppression of
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tumor-specific immune responses (25). The IDO-mediated
immunosuppression through recruitment of Tregs with a
subsequent negative impact on overall survival was confirmed
in glioblastoma patients (26). Therefore, the direct interaction
between tumor-specific CTLs and Tregs will represent a major
focus for immunemonitoring protocols in current and upcoming
immunotherapeutic strategies.

T Cell Exhaustion in Glioblastoma
During tumor evolution, cancer cells develop strategies to escape
from tumor-specific immune elimination (27). As the best
studied example in malignant brain tumors, we will discuss T
cell exhaustion in the context of glioblastoma. As mentioned
above, glioblastoma attract immunosuppressive immune cell
populations, such as MDSC or Tregs, which secrete soluble
mediators to silence the tumor-directed immune response.
However, cancer cells themselves can express negative regulators
of immune activation. Together, multiple mechanisms lead
to the inhibition of T cell activation, consequently resulting
in dysfunctional and exhausted T cells. The most prominent
example of direct TIL inhibition in glioblastoma is the immune
checkpoint programmed cell death ligand 1 (PD-L1). PD-L1
expression was observed in 2.8–32.2% of glioblastoma tumors,
with a high variability due to differences in quantification
and antibody usage (28–30). The relevant PD-L1 expression
and negative correlation with overall survival paved to way
for the first immune checkpoint studies in glioblastoma (29–
31). In parallel, studies increasingly focused on characterizing
the effect of immune escape on T cells. T cell exhaustion in
glioblastoma at first described dysfunctional immune phenotypes
in peripheral blood. Here, gene expression profiling of peripheral
T cells from glioblastoma patients revealed down regulation
of genes involved in TCR ligation, activation and intracellular
signaling compared to healthy controls (5). Furthermore, the
frequency of CD4+ CD57+ T cells and negativity for the
activation marker CD28 could be correlated with survival
in HCMV positive glioblastoma patients (32). In addition to
increased frequencies of Tregs, circulating monocytes showed
elevated expression of PD-L1 (B7-H1) and tumor-associated
macrophages from glioblastoma tissue specimens displayed even
greater PD-L1 expression (33). Recent studies now performed
in depth flow cytometry studies to characterize the immune
exhaustion in the tumor microenvironment. Here, work by
Woroniecka et al. and our group showed that exhaustion is a
primary feature of the tumor environment and is characterized
by the expression of surface markers PD-1, Tim-3, CD39,
TIGIT, Lag-3, CTLA-4, 2B4, and BLTA (6, 34). Exhaustion
varied according to tumor type, but was especially pronounced
in glioblastoma (34). Dysfunctional T cells demonstrated an
effector- and transitional memory phenotype indicating antigen-
induced activation thereby highlighting that TILs in glioblastoma
represent a subpopulation which presumably have been activated
to form a tumor-specific response (6).

So far, it is not clear which T cells could benefit from
immune checkpoint inhibition, e.g., anti-PD-1 treatment, as
currently tested in phase III clinical trials in glioblastoma
(35). Although murine studies have pointed out the efficacy

of immune checkpoint inhibition using anti-PD-1, anti-Tim-3,
anti-CTLA4, combinations thereof and radio-chemotherapy (36,
37), it is incompletely understood which T cell population will be
activated and how tumor-specific activation will be constituted
(38). In the CD4+ TIL compartment, ex vivo analyses revealed
defined exhaustion profiles of PD-1+ cells, which were refractory
to PD-1 blockade (39). Taken together, these studies show that
T cell dysfunction in the local tumor microenvironment is not
yet fully understood, but presumably poses a major obstacle
for the formation of a tumor-specific immune response. We
hypothesize, that treatment strategies that combine targeted
immune activation and T cell disinhibition will most likely be
necessary to overcome the challenge of T cell exhaustion.

Basic principles and considerations of tumor-specific immune
activation against malignant brain tumors are summarized in
Figure 1. Factors influencing tumor-specific cytotoxic CD8+ T
cells are shown in Figure 2.

GENETIC LANDSCAPE IN MALIGNANT
BRAIN TUMORS

Mutational Load and Cancer
Immunotherapy
Immunotherapy using checkpoint inhibitors has demonstrated
remarkable remissions in patients with melanoma and other
entities (40–43). However, the long-term therapy response
with sustainable anti-tumor responses was limited to a certain
subgroup of patients. These patient responses are summarized
in the “immunotherapy tail.” Following studies focused on
identifying predictive factors for immunological success of
tumor-specific response. While the analysis of PD-L1 expression
on tumor cells seems not sufficient to predict success of anti-PD-1
checkpoint inhibition (44), recent work in melanoma, colorectal-
and lung cancer convincingly identified the mutational load
of tumors as significant predictors for response to checkpoint
inhibitors (45–47). A higher mutational burden in tumors
contributes to increased expression of neo-antigens, which are
not expressed in normal tissue, and therefore can be recognized
as “foreign,” resulting in tumor-specific immune activation (46).
Analysis of matched pretreatment and resistant tumor samples
from NSCLC patients during checkpoint inhibition therapy
showed that resistant tumor samples displayed a loss of 7 to
18 putative mutation-associated neoantigens in resistant tumors,
implicating elimination of specific tumor subpopulations due
to T cell activation (48). Unfortunately, the comprehensive
computational analysis of mutational events and distribution
among multiple cancer entities by Alexandrov et al. revealed that
the included brain tumors, i.e., glioblastoma, medulloblastoma,
and pilocytic astrocytoma, harbor mutations only at a very
low frequency (49). While melanoma, as the entity with the
highest mutational load, on average contains >10 mutations
per megabasepair (mbp), brain tumors have <1 mutation per
mbp (Glioblastoma: 0.9; Medulloblastoma: 0.5 and pilocytic
astrocytoma:<0,1 mutations/mbp). As a result, less neo-antigens
are available to be recognized by T cells and these tumors are
described as immunologically “cold.”
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FIGURE 1 | Overview of basic principles of tumor-specific immune activation and the involved cell types. In addition, a short summary of tumor-mediated mechanism

of immune escape or immune suppression is given.

Mutational Load in Glioblastoma
Selective targeting of essential pathways to inhibit tumor
progression has proven ineffective in glioblastoma. Although
few core pathways, namely EGFR, RTK/PI3K, p53 and RB
regulation, are suspected as initial drivers of proliferation and
tumor initiation (50, 51), established glioblastoma diversify
into multiple subclonal populations, rendering glioblastoma a
highly heterogenic cancer (52). While glioblastoma in the rare
childhood cancer syndromes with biallelic mismatch repair
deficiency (bMMRd) display a hypermutated phenotype with
up to 16-times higher neoantigen load than immunoresponsive
melanoma (53), the frequency of neo-antigens in adult newly-
diagnosed glioblastoma is low, as high mutational loads are
only observed in ∼3.5% of tumors (54). Several factors can
influence the mutational load of tumors. While smoking-
induced lung cancer and UV-associated melanoma are primarily
cause by DNA-damaging molecular events, increasing the
general mutational burden, no such causes are suspected in
glioblastoma pathogenesis. The only factors, known so far,
to potentially increase the neoantigen load in glioblastoma

are age and the adjuvant treatment consisting of chemo-
and radiation therapy. Studies suggest that age-associated
mutational burden doubles every 8 years (55). However, in
these analyses the general doubling time of different tissue
types have to be considered. Therefore, glioblastoma neoantigen
load will be only marginally affected, as cells of the central
nervous system divide less frequently compared to, e.g., cells
of the gastrointestinal tract. Temozolomide, an alkylating agent
and first line chemotherapy in newly-diagnosed glioblastoma,
promotes the occurrence of mutational events and therefore
the frequency of neoantigens amenable for tumor-specific T
cell activation. Therapeutic efficacy of temozolomide is closely
linked to the presence of promotor methylation of the O6-
methylguanine-methyltranferase (MGMT) (56). A recent study
be Wang et al. demonstrated that a hypermutation genotype was
only found in recurrent glioblastoma and was present in ∼17%
of cases (57). Interestingly, 94% of tumors with a hypermutated
genome gained mutations in genes encoding DNA mismatch
repair (MMR) proteins, such as MSH, PMS, and MLH genes
(57). It is unclear if the increased neoantigens load in recurrent
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FIGURE 2 | Schematic representation how the activation and tumor-specific response of cytotoxic CD8+ T cells (CTLs) can be influenced during cancer

immunotherapy of malignant brain tumors. Myeloid-derived suppressor cells (MDSC), bone marrow (BM).

glioblastoma is presented to the immune system and can be
translated into immunological response to immunotherapy in the
recurrent disease stage, as the tumor-specific T cell repertoire
appears to loose diversity (6). Interestingly, in contrast to most
cancer entities, in which higher mutational burden correlates
with better survival, glioma seems to be an exception, as
the study by Samstein et al. demonstrated the opposite (58).
Does this observation maybe reflect the immuno-oncological
privilege of the brain? Currently, the concept of the correlation
of a higher mutational burden with improved immunotherapy
response is, at least in part, challenged (59). One hypothesis
states, that an increased mutational burden might also result
in decreased abundance for specific antigens which potentially
fall below the threshold of T cell recognition (46, 60). Future
studies in brain tumors will have to assess how the mutational
burden influences the antigenic landscape and T cell recognition
during immunotherapy.

Genetic Mutations and Heterogeneity in
Glioblastoma
The most frequent genomic alterations in glioblastoma are found
in EGFR, PTEN, TP53, TERT, or RB1 genes, among others (61).
In rare cases and mostly in childhood or adolescent gliomas,
additional mutations in histones and chromatin remodeling

genes are described (62). However, the molecular pathology
of glioblastoma is not defined by point mutations, but rather
by copy number variations leading to amplification of genetic
drivers in proliferative pathways (61). With the increasing
depth of molecular cytogenetics, glioblastoma revealed its
complex heterogeneity on a cellular and molecular level.
Single cell analysis of EGFR amplification, for example, shows
that multiple EGFR amplifications frequently coexist within
the same tumor (51). The presumable molecular subgroup
classification into proneural, mesenchymal and classical of
individual tumors attempted to define molecular subgroups in
order to better understand the driver pathways in glioblastoma
(63, 64). However, this molecular profiling was challenged when
single cell sequencing demonstrated, that multiple different
molecular subtypes can be found within a single tumor
(52). Furthermore, the heterogeneous nature of glioblastoma
is not only defined by intratumoral, but also intertumoral
diversity, as geographically separated, multifocal, or long-term
recurrent tumors arise from different clonal subpopulations (65).
Overcoming this heterogeneity poses major challenges to tumor-
specific immunotherapy strategies, as finding a suitable target to
activate T cells against a large diversity of different subclones
is complicated (2). Over the next paragraphs we will discuss
current efforts to design vaccines which aim to mount a diverse,
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but tumor specific T cell-mediated immune response against
malignant brain tumors.

ANTIGENIC LANDSCAPE IN MALIGNANT
BRAIN TUMORS AND TARGET DEFINITION

A major challenge of T cell-based immunotherapy is the
definition of meaningful targets and several strategic approaches
exist to tackle this challenge. It can be hypothesized, that failure
of anti-PD-1 trials in glioblastoma so far, is the result of a missing
targeted immune response, as immune checkpoints release the
breaks on all immune cells with the checkpoint expressed on its
surface, regardless of its antigen specificity. Target definition is
therefore of utmost importance since the presence of the antigen
on tumor cells is a prerequisite for an effective immune-mediated
tumor cell lysis. The antigenic structure which is recognized by
the TCR is in principle a peptide derived from a source protein
presented by an HLA molecule. The following approaches of
antigen-discovery are commonly applied.

Proteomics/Transcriptomics
Definition of candidate antigens are commonly based on
precursor data such as proteomic or transcriptomic data.
Over- or exclusively expressed genes or proteins are considered
potential candidate antigens and peptides with high binding
affinity to HLAmolecules are predicted using in silico algorithms
such as SYFPEITHI or netMHC (66, 67). Predicted HLA ligands
are usually validated using functional T cell assays in order
to demonstrate a memory T cell response in tumor patients.
However, this approach has several potential pitfalls including
the definition of exclusively or overexpressed genes/proteins.
This definition is commonly based on queries using publicly
available databases for normal tissue expression levels such
as GTEx for gene expression or The Human Protein Atlas
for protein levels in various normal human tissues (68, 69).
Also, if no primary experimental data of cancer tissue is
available, public domain databases such as the The Cancer
Genome Atlas (TCGA) are commonly used (70). A conceptual
problem in this strategy is the poor correlation of precursor
data to direct mass spectrometry-based evidence of the natural
HLA ligands. It was shown repeatedly that the natural peptide
ligandome presented by HLA does not completely reflect the
transcriptome or the proteome (71–74). Another drawback
is the uncertainty which is added by using in silico epitope
prediction algorithms such as SYFPEITHI or netMHC (66,
67). SYFPEITHI is a prediction algorithm which is based
on direct mass spectrometry data of eluted peptides from
mono-allelic cells and uses position-specific scoring matrices
(PSSM) (66, 75, 76).

Other prediction algorithms such as netMHC and
netMHCpan are based on machine learning algorithms trained
with experimental data from HLA binding assays. A drawback
of these training sets is that peptide-MHC complexes displaying
weak binding affinities are also included, but they would not
necessarily represent physiological interactions. Furthermore,
binding assays show that peptides can bind to HLA molecules

in vitro, but do not take into account any intracellular processing
preferences. However, netMHCpan-4.0 integrates both publicly
available HLA ligandomics data and binding affinity data,
thus increasing the sensitivity and specificity of their binding
prediction (67).

Another group of potential immunotherapy targets aremainly
defined by a characteristic gene expression profile. So called
cancer testis genes encode for a group of immunogenic proteins
entitled cancer testis antigens (CTA) which in theory are almost
exclusively expressed in the immunoprivileged tissue of the
testes, but importantly also in various human malignancies.
This unique gene expression pattern led to CTA, such as
MAGE, NYESO, IL13Rα2 (77, 78), being considered prime
targets for antigen-specific immunotherapy and CTA are targets
of ongoing clinical trials in glioblastoma (e.g., NCT02208362;
www.clinicaltrials.gov). A publicly available database named
CTDatabase (http://www.cta.lncc.br/) lists CTAs. However, it
has to be considered that by far not all genes listed fulfill the
theoretical criteria of testes- (and tumor-) exclusive expression.
In many cases, significant gene expression in normal tissues
(i.e., when using the human normal tissue gene expression
atlas GTEx) can be detected and the representation of the
gene products on HLA of the CTA list members is in
general low and not tumor-exclusive (79). Although the
CTA concept is interesting from an immunotherapy/antigen
discovery standpoint, the definition and listing of CTAs needs
major refinement.

Antigens associated with gliomas that derive from “self,”
non-mutated sources are best exemplified by the ICT-107
vaccine. ICT-107, is an autologous dendritic cell immunotherapy
targeting six “self ” antigens with known expression on both
tumor and cancer stem cells (80, 81). The antigens in this vaccine
are either HLA-A∗01 restricted (MAGE-1, AIM-2) or HLA-
A∗02 restricted and derive from the following source proteins:
melanoma-associated antigen-1 (MAGE-1), antigen isolated
from immunoselected melanoma-2 (AIM-2), human epidermal
growth factor receptor-2 (HER2/neu), tyrosinase-related protein-
2 (TRP-2), glycoprotein 100 (gp100), and interleukin-13 receptor
alpha 2 (IL-13Rα2). The selection is based on preclinical
studies including gene expression analysis, direct evidence of
the source protein as well as the detection of T cell responses
against thementioned antigens (82–89). Regarding inter-tumoral
heterogeneity, at least 3 antigens were expressed on all of the
tumors, four or more antigens on 97% of tumors, and all 6
antigens were expressed in 83% of tumors. The exact intra-
tumoral heterogeneity of these antigens within the tumor is
not known, however targeting multiple epitopes rather than
a single epitope should decrease the probability of tumor
escape. In a phase I study, ICT-107 was well-tolerated and
could induce systemic type I cytokine responses (80). A phase
II study did not meet the primary endpoint of improved
overall survival, however it showed significantly improved
progression-free survival withmaintained quality of life andmost
interestingly a clinical and immunological benefit for patients
that were HLA-A∗02 positive (90). Unfortunately, an already
started phase III trial was suspended due to financial problems
of the industry sponsor.
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Neoepitopes
Neoepitopes, as described above, are derived from somatic cancer
mutations and thus tumor-specific. They contain “foreign”
sequences and are believed to be highly immunogenic as they
were reported to contribute to relevant immune responses
(91–97). Due to this relative immunogenicity, memory T cell
responses based on in silico neoepitope predictions could just
be a relic of immunoediting (27). If the established tumor
was shaped by immune selection of antigen-loss variants, then
in silico predictions, even if supported by memory T cell
data, fall short to overcome this immune escape mechanism.
Nevertheless, it has to be taken into consideration that two phase
I clinical trials use in silico neoepitope predictions in melanoma
patients induced immune responses. Mutated epitopes were
targeted by fully individualized RNA (NCT02035956) or long
peptide vaccines (NCT01970358) based on up to 20 in silico
predicted neoepitopes (96, 97). Both approaches induced or
boosted neoantigen-specific T cell responses also associated
with a clinical response (96, 97). This further emphasizes
the potential of neoantigens as targets for peptide-specific
immunotherapies (96, 97). However, in contrast to melanoma,
the mutational load in malignant brain tumors is rather low and
the likelihood of such an approach to lead to clinical success
in brain tumors is limited. Thus, in malignancies with low
mutational load such as glioblastoma, it seems to be important
to apply antigen discovery strategies that also incorporate non-
mutated targets.

HLA Ligandome Mapping Using Mass
Spectrometry
An alternative strategy to bottom-up strategies that start from
genomic, transcriptomic or proteomic data is the direct analysis
of the peptides that are naturally presented by HLA. The most
commonly used technique is immunopurification of peptides
followed by mass spectrometry (LC-MS/MS) sequencing. As
opposed to the epitope prediction algorithms mentioned above,
mapping the natural HLA ligandome is an unbiased technique
and describes the immunologically pivotal level of peptide
presentation without the need of inferring information from
precursor data. This strategy was pioneered and systematically
developed by a research group at the Department of Immunology
at the University of Tübingen in Germany, led by Hans-
Georg Rammensee and Stefan Stevanović. Early efforts were
still limited by much lower technical sensitivity of the mass
spectrometry devices available and the need for manual fragment
spectra interpretation, also requiring larger amounts of tissue
samples. Technical improvements of mass spectrometers in
mass accuracy, sensitivity, resolution and speed as well as the
miniaturization of the immunopurification protocols led to the
generation of large datasets and the possibility to map the
HLA ligandome of smaller amounts of tissue. At the same
time, bioinformatic tools were developed to process the growing
amount of mass spectrometry data, introducing automatic
fragment spectrum annotation and to deconvolute multi-allelic
datasets (98). Target definition for cancer immunotherapy using
this approach is usually based on comparative profiling of

tumor against benign HLA ligandome data. Potential non-
mutated targets are characterized by frequent representation
in malignant, but not in benign immunopeptidomes (99–102).
Tumor-exclusivity can either be on the level of HLA ligands, e.g.,
in terms of differential antigen processing in cancer cells (103),
or on the level of the entire antigen (79, 99, 101, 102, 104). So far,
in-depth investigations of the non-mutated immunopeptidome
presented on native clinical samples have been published for
AML (99), CLL (105), MM (102), mantle cell lymphoma (93),
EOC (101), and metastatic malignant melanoma. Regarding
glioblastoma, the first HLA peptidome publications described the
HLA-ligandome of HLA-A∗02 (the most frequent HLA class I
allotype in Caucasians) including immunogenicity testing of the
most promising candidates and the ligandome of non-HLA-A∗02
allotypes (106, 107). Both authors used gene expression data as
an adjunct for target selection despite the known uncoupling
of transcriptome/proteome and the HLA ligandome. The HLA
class II ligandome of patient samples and was first described
in a paper that focused on the description of the antigenic
landscape of glioblastoma stem-like cells (79). In this publication,
which also included immunogenicity testing of candidates,
antigen definition was based on a purely HLA ligandome centric
approach using a comparative analysis of tumor samples and
a large database of HLA peptidomes of various normal tissues.
An HLA peptidome paper that used 3 glioblastoma cell lines
could show the induction of CTAs by the chemotherapeutic
drug decitabine, which however is not commonly used to treat
glioblastoma (71). A recent analysis of plasma-soluble HLA
ligands found a strong correlation between plasma ligands and
tumor tissue derived ligands, but a weak correlation between both
plasma and tumor tissue derived peptidomes and the tumors
proteoms (108).

The Importance of Choosing the
Appropriate Tissue Sample
An important question arises even before choosing one of the
antigen-discovery strategies mentioned above. Irrespective of
the technique, results will always depend on the tissue input.
Glioblastoma is a highly heterogeneous tumor and different
tumor regions such as a mainly necrotic core, a contrast-
enhancing, highly vascularized rim, and a non-enhancing
infiltration zone at the peripheral border of the lesion (61).
Even within these regions, intratumoral heterogeneity calls
for a multi-epitope approach since various antigens are only
present in certain subclones. This is especially true for common
glioblastoma mutations such as the mutations of the epidermal
growth factor receptor (EGFR). The EGFR gene is amplified
in roughly 40% of glioblastomas and patients with EGFR
amplified tumors frequently have a deletion mutation called
EGFRvIII (109). The EGFRvIII mutation occurs in 20–30% of
all glioblastoma patients, but even if the mutation is present,
only a fraction of tumor cells will be positive (110). This
example highlights the importance of tissue sampling, ideally
with biological replicates and with samples from various tumor
regions to prevent sampling errors and to enlarge the variety of
tumor antigens that can potentially be discovered. Also, analytic
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techniques should reflect tumor heterogeneity (e.g., single cell
sequencing or next generation sequencing techniques with high
sequencing depth/coverage).

Another aspect that has to be considered is the tumor cell
content in brain tumor samples. A surgical biopsy will always
be “contaminated” by non-tumorous cells such as infiltrating
immune cells, endothelial cells, normal neuronal or glial tissue or
peripheral blood cells. Several strategies exist to address this issue.
For cleaner sampling tissue digestion of the surgical sample can
be performed in order to receive a single cell suspension, which
then will be sorted to exclude certain fractions (e.g., CD45+

immune cells or CD31+ endothelial cells) before further analysis.
For example, fractionated HLA class I immunoprecipitation of
cell populations from enzymatically dissociated ovarian cancer
was performed with high peptide yields (101). However, a major
problem of malignant brain tumors is the lack of a robust surface
marker that can be used for positive selection of glioblastoma
cells. Thus, tumor cells can only be enriched by depleting other
cell fractions. Another strategy to correct for non-tumorous
cells in patient samples are comparative analyses with long-
term cell lines. Long-term cell lines will consist of 100% tumor
cells, but are prone to cell culture artifacts over time. However,
comparative analyses with patient samples and focusing on
antigens that are both present in the long-term cell line and in
the fresh surgical specimen can lower the likelihood of detecting
antigens from non-tumorous cells or antigens that are due to the
artificial environment of cell culture (79). Despite the attempt
to deconvolute tumor heterogeneity on a non-hierarchical level,
it has to be considered that certain cell populations within the
tumor bulkmight represent high priority targets. In a hierarchical
tumor like glioblastoma, a small subpopulation of tumor cells
might display a more malignant phenotype and exhibit stem
cell-like functions. These cells are termed glioma stem-like
cells (GSC) and play a crucial role in tumorigenesis, tumor
maintenance and resistance toward conventional therapies such
as radiotherapy and chemotherapy (61). Therefore, the antigenic
landscape of this subpopulation is of great immunotherapeutical
interest. Recently, GSC antigens have been described based on
proteomics and based on HLA ligandomics (79, 107, 111).

VACCINE STUDIES IN GLIOBLASTOMA

In order to give an overview of currently ongoing and already
recruited vaccine trials in glioblastoma, we summarized all trials
fromwww.clinicaltrials.gov (Supplementary Table 1). Excluding
trials with a “terminated, “unknown” or “withdrawn” status,
we found 78 trials under the search term “glioblastoma” and
“vaccine” which in total aim to recruit 4130 patients (Figure 3).
Overall 54% of trials primarily investigate newly diagnosed
glioblastoma. Although only 4% of trials so far reached the phase
III, these trials will include 21% of all patients (Figure 3A).
The two most prominent treatment approaches are dendritic
cell vaccines and peptide vaccinations. The primary rout of
vaccination was intradermally. Intratumoral injection or local
therapy only represented a fraction of all primary treatment
routes. Interestingly, so far, only very few trials incorporatedHLA

stratification of patients or combined their vaccination strategy
with checkpoint inhibitors, and only about 50% of trials applied
adjuvants (Figure 3B).

In addition, currently there are 39 phase I studies found
under the term “glioblastoma” and “immunotherapy” at www.
clinicaltrials.gov which are recruiting, not yet recruiting,
enrolling by invitation, or active (not recruiting). These trials
are increasingly integrating combinatorial treatment approaches
which apply a vaccination or cellular-based, i.e., CAR T cells,
approach together with a checkpoint inhibitor in order to
increase the efficacy of the tumor-specific T cell response
(Table 1). Genetically modified T cells are currently being
evaluated in multiple trials. For example, CAR T cells specific
for the IL13Rα2 are genetically optimized for improved co-
stimulation during activation (Table 1). Better understanding of
themultifaceted biology of tumor-specific immune responses will
allow, for example, gene therapeutic techniques to be increasingly
utilized to specifically modulate and improve tumor vaccines.

CLINICAL APPLICATION IN
PERSONALIZED CANCER
IMMUNOTHERAPIES AND DESIGN OF
FUTURE TRIALS

High degrees of inter- and even intra-patient heterogeneity in
tumor biology demand tailored therapies. Personalized cancer
immunotherapy can be divided into three categories. Stratified
approaches include biomarker-based selection of patients
subsequently treated with the same drug (e.g., rindopepimut) in
the presence of the EGFRvIII mutation. Passively personalized
therapies are based on autologous cellular material, whereby
tumors did not undergo molecular characterization (e.g., whole
tumor lysates). In turn, actively personalized approaches do not
only apply molecular markers for patient selection, but also for
definition of drug composition. Active personalization can be
categorized into warehouse and fully individualized concepts,
explained at the example of peptide vaccination. Warehousing
includes selecting off-the-shelf peptides for individual vaccine
cocktails, whereas fully individualized therapies depend on
de novo synthesis of patient-specific peptides identified by
immunopeptidomics, epitope prediction or immunogenicity
screening (112).

Regarding personalized immunotherapy approaches targeting
glioblastoma, two early phase studies were published recently
which are great examples of current strategies in this field.
A phase I/Ib study applied a neoantigen multiepitope peptide
vaccine for patients with newly diagnosed MGMT-unmethylated
glioblastoma (113). Resected tumor tissue DNA and normal
germline DNA were analyzed to identify neoantigens and
vaccine production occurred during recovery from surgery and
administration of radiotherapy. Vaccines contained up to 20
long peptides that were administered in a prime–boost schedule
with poly-ICLC (polyinosinic and polycytidylic acid) following
radiotherapy. A total of 8 patients were vaccinated and in
5 patients, tissue from a recurrent tumor surgery could be
analyzed. Although in silico prediction was based on an HLA
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FIGURE 3 | Pie charts illustrate the different trials listed under www.clinicaltrials.gov when searching for “glioblastoma” AND “vaccine.” Terminated, trials with

unknown status or withdrawn trials were excluded. (A) General and (B) detailed overview of different clinical trials. Charts illustrate the data which is summarized in

Supplementary Table 1. The data was last updated 11/2018.

class I algorithm, both neoepitope-specific CD8+ and CD4+ T
cell responses were found in the periphery and among tumor-
infiltrating lymphocytes. Interestingly, immune responses were
only observed in patients that did not require steroid treatment.
As many brain tumor patients receive potent steroids such as
dexamethasone to treat perilesional edema, immunotherapists
have to acknowledge the known immune suppression linked
to glucocorticoids and come up with alternative strategies to
manage brain edema. Such strategies might include the use
of bevacizumab.

In a phase I trial published by the Glioma Actively
Personalized Vaccine Consortium (GAPVAC) 15 patients with
newly diagnosed glioblastoma (HLA-A∗02:01- or HLA-A∗24:02-
positive) were treated with a peptide vaccine (APVAC1) derived
from a premanufactured warehouse of unmutated antigens
followed by APVAC2 mainly targeting in silico predicted
neoepitopes. Personalization was based on mutations and
analyses of the transcriptomes and HLA ligandome of patient
tumors. Immunogenicity for both APVAC1 and APVAC2 was
shown. Unmutated APVAC1 antigens triggered predominantly

central memory CD8+ T-cells responses, while APVAC2 induced
mainly CD4+ T cell responses.

Both studies showed feasibility and safety—vaccines based
on personalization and rather challenging logistics could
be produced and administered in a meaningful time. Both
studies also showed antigen-specific immunogenicity, however
it remains still unclear whether these strategies will lead to
improved patient survival in the future.

The vaccination trial by Keskin et al. found expression
of multiple co-inhibitory receptors on post-vaccination TIL—
consistent with T cell exhaustion (113). These findings warrant
the investigation of combining the strategies mentioned above
with immune checkpoint blockade.

We hypothesize, that for successful future clinical trials two
major immunological concepts primarily need to be taken into
consideration: (1) Guiding the immune system toward mounting
a tumor-specific immune response, i.e., defining the tumor as
the target, (2) Boosting the tumor-specific immune response to
be able to overcome tumor-mediated immunosuppression and
immune escape. For point 1, multiple therapeutic treatment
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TABLE 1 | Overview of the current phase I study landscape for the search term “glioblastoma” AND “immunotherapy” (last updated 01/2020, n = 39 studies, www.

clinicaltrials.gov).

NCT

identifier

Status (01/2020) Phase Estimated

enrollment

Tumor type Study title

NCT02649582 Recruiting I/II 20 Newly diagnosed GBM Adjuvant dendritic cell-immunotherapy plus temozolomide in GBM patients

(ADDIT-GLIO)

NCT04165941 Not yet recruiting I 12 Newly diagnosed GBM Novel gamma-delta (γδ)T cell therapy for treatment of patients with newly

diagnosed GBM (DRI)

NCT03961971 Not yet recruiting I 15 Recurrent GBM Trial of anti-tim-3 in combination with anti-PD-1 and SRS in recurrent GBM

NCT03426891 Recruiting I 32 Newly diagnosed GBM Pembrolizumab and vorinostat combined with temozolomide for newly

diagnosed GBM

NCT00639639 Active, not recruiting I 42 Newly diagnosed GBM Vaccine therapy in treating patients with newly diagnosed GBM multiforme

NCT03707457 Recruiting I 30 Recurrent GBM Biomarker-driven therapy using immune activators with nivolumab in patients

with first recurrence of GBM

NCT02208362 Recruiting I 92 Recurrent ◦ III or ◦ IV

glioma

Genetically modified T-cells in treating patients with recurrent or refractory

malignant glioma

NCT04047706 Recruiting I 30 Newly diagnosed GBM Nivolumab, BMS-986205, and radiation therapy with or without temozolomide

in treating patients with newly diagnosed GBM

NCT04201873 Not yet recruiting I 40 Recurrent GBM Pembrolizumab and a Vaccine (ATL-DC) for the treatment of surgically

accessible recurrent GBM

NCT04003649 Recruiting I 60 Recurrent GBM IL13Ralpha2-targeted chimeric antigen receptor (CAR) T cells with or without

nivolumab and ipilimumab in treating patients with recurrent or refractory GBM

NCT03714334 Active, not recruiting I 24 Recurrent GBM DNX-2440 oncolytic adenovirus for recurrent GBM

NCT03170141 Enrolling by invitation I 20 Recurrent GBM Immunogene-modified T (IgT) cells against GBM

NCT02852655 Active, not recruiting I 35 Recurrent GBM A pilot surgical trial to evaluate early immunological pharmacodynamic

parameters for the PD-1 checkpoint inhibitor, pembrolizumab (MK-3475), in

patients with surgically accessible recurrent/progressive GBM

NCT03491683 Active, not recruiting I / II 52 Newly diagnosed GBM INO-5401 and INO-9012 Delivered by electroporation (EP) in combination With

cemiplimab (REGN2810) in newly-diagnosed GBM

NCT03174197 Recruiting I / II 60 Newly diagnosed GBM Atezolizumab in combination with temozolomide and radiation therapy in

treating patients with newly diagnosed GBM

NCT03389230 Recruiting I 42 Recurrent GBM Memory-enriched t cells in treating patients with recurrent or refractory grade

III-IV glioma

NCT03344250 Recruiting I 18 Newly diagnosed GBM Phase I EGFR BATs in newly diagnosed GBM

NCT03347097 Recruiting I

(early)

40 Newly diagnosed GBM Adoptive cell therapy of autologous TIL and PD1-TIL cells for patients with

GBM

NCT03158389 Recruiting I / II 350 Newly diagnosed GBM NCT Neuro master match - N²M² (NOA-20) (N²M²)

NCT03866109 Recruiting I / II 21 Newly diagnosed GBM A phase I/IIa study evaluating temferon in patients With GBM & unmethylated

MGMT (TEM-GBM)

NCT03392545 Recruiting I 30 Malignant glioma Combination of Immunization and Radiotherapy for Malignant Gliomas

(InSituVac1) (InSituVac1)

NCT03341806 Recruiting I 30 Recurrent GBM Avelumab With laser interstitial therapy for recurrent GBM

NCT03532295 Not yet recruiting I / II 55 Recurrent GBM Epacadostat in combination with radiation therapy and avelumab in patients

with recurrent gliomas

NCT02529072 Active, not recruiting I 7 Recurrent ◦ III or ◦ IV

glioma

Nivolumab with DC vaccines for recurrent brain tumors (AVERT)

NCT02062827 Recruiting I 36 Recurrent ◦ III or ◦ IV

astrocytoma

Genetically engineered HSV-1 phase 1 study for the treatment of recurrent

malignant glioma (M032-HSV-1)

NCT03223103 Recruiting I 20 Newly diagnosed GBM Safety and immunogenicity of personalized genomic vaccine and tumor

treating fields (TTFields) to treat GBM

NCT02766699 Recruiting I 20 Recurrent GBM A study to evaluate the safety, tolerability and immunogenicity of

EGFR(V)-EDV-Dox in subjects With recurrent GBM (CerebralEDV)

NCT02010606 Active, not recruiting I 39 Newly diagnose &

recurrence GBM

Phase I study of a dendritic cell vaccine for patients with either newly

diagnosed or recurrent GBM

NCT02502708 Recruiting I 115 Malignant brain tumor Study of the IDO pathway inhibitor, indoximod, and temozolomide for pediatric

patients with progressive primary malignant brain tumors

NCT03619239 Recruiting I / II 18 Newly diagnosed GBM Dose-escalation study to evaluate the safety and tolerability of GX-I7 in

patients with GBM

(Continued)

Frontiers in Immunology | www.frontiersin.org 10 February 2020 | Volume 11 | Article 205

www.clinicaltrials.gov
www.clinicaltrials.gov
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Mohme and Neidert T Cell Activation in Brain Tumors

TABLE 1 | Continued

NCT

identifier

Status (01/2020) Phase Estimated

enrollment

Tumor type Study title

NCT03382977 Recruiting I / II 38 Recurrent GBM Study to evaluate safety, tolerability, and optimal dose of candidate GBM

vaccine VBI-1901 in recurrent GBM subjects

NCT03657576 Recruiting I 24 Recurrent GBM Trial of C134 in patients with recurrent GBM (C134-HSV-1)

NCT03043391 Recruiting I 12 Malignant glioma

(children)

Phase 1b Study PVSRIPO for recurrent malignant glioma in children

NCT03576612 Recruiting I 36 Newly diagnosed HGG GMCI, nivolumab, and radiation therapy in treating patients with newly

diagnosed high-grade gliomas (GMCI)

NCT03152318 Recruiting I 108 Recurrent malignant

glioma

A Study of the treatment of recurrent malignant glioma with rQNestin34.5v.2

(rQNestin)

NCT03911388 Recruiting I 15 Recurrent cerebellar

brain tumors

HSV G207 in children with recurrent or refractory cerebellar brain tumors

NCT03058289 Recruiting I / II 110 Multiple cancers A phase 1/2 safety study of intratumorally dosed INT230-6 (IT-01)

NCT02457845 Recruiting I 18 Recurrent supratentorial

brain tumor

HSV G207 alone or with a single radiation dose in children with progressive or

recurrent supratentorial brain tumors

NCT00634231 Active, not recruiting I 12 Malignant glioma or

recurrent ependymoma

A phase I study of AdV-tk + prodrug therapy in combination with radiation

therapy for pediatric brain tumors

Only trials with the following status are listed: early phase I, phase I, recruiting, not yet recruiting, active not recruiting and enrolling by invitation. Please refer to clinicaltrials.gov and the

official identifier for detailed information on each clinical trial.

options, including peptide vaccines, tumor lysates, RNA vaccines,
DC vaccines, oncolytic viruses, autologous cell transfer, CAR
T cells, NK cells and others, will provide the basis to elicit
an immune response which specifically targets tumor cells.
However, these treatment approaches will need to be combined
with additional adjuvants that are able to support the formation
and execution of a tumor-specific immune response (point 2) in
order to overcome the immunosuppressive microenvironment,
metabolic challenges, immune dysfunction, and exhaustion as
well as peripheral immunosuppression. Such adjuvants can
be ceckpoint inhibitors, inhibitors of local immunosuppressive
pathways and other stimulants of the immune system such as
cytokines or TLR ligands. Molecular profiling of the tumor
microenvironment, expressional- and mutational subgroups, as
well as urgently needed studies on the interaction of tumor-
specific immune treatment approaches with the current standard
therapy regiments, i.e., radio- and chemotherapy, will further
improve the knowledge of the complex immune dynamics
in malignant brain tumors and subsequently the efficacy of
upcoming tumor-specific immunotherapy.

CONCLUSION

Taken together, our review highlights the current obstacles
to determine the optimal path to therapeutically mount a
tumor-specific immune response for patients with malignant
brain tumors. Recent advances in antigen discovery and
personalization will be supported by the increasing use of
checkpoint inhibition, potentially leading to a breakthrough of
tumor vaccines.
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