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ABSTRACT
Bacterial gut communities might predispose children to develop asthma. Yet, little is known about 
the role of these micro-organisms in adult asthmatics. We aimed to profile the relationship between 
fecal microbiota and asthma in a large-scale, ethnically diverse, observational cohort of adults. Fecal 
microbiota composition of 1632 adults (172 asthmatics and 1460 non-asthmatics) was analyzed 
using 16S ribosomal RNA gene sequencing. Using extremely randomized trees machine learning 
models, we assessed the discriminatory ability of gut bacterial features to identify asthmatics from 
non-asthmatics. Asthma contributed 0.019% to interindividual dissimilarities in intestinal micro
biota composition, which was not significant (P = .97). Asthmatics could not be distinguished from 
non-asthmatics based on individual microbiota composition by an extremely randomized trees 
classifier model (area under the receiver operating characteristic curve = 0.54). In conclusion, there 
were no prominent differences in fecal microbiota composition in adult asthmatics when compared 
to non-asthmatics in an urban, large-sized and ethnically diverse cohort.
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Introduction

Asthma is one of the most common chronic respira
tory diseases, as over 300 million people have 
asthma-related symptoms.1 Emerging evidence indi
cates that intestinal microbiota are involved in devel
opment of asthma in children.1 For example, infants 
with an immature microbial composition have an 
increased risk of developing asthma at 5 years of age 
and disrupted neonatal gut microbiota might pro
mote CD4+ T-cell dysfunction thereby increasing 
susceptibility to childhood allergic asthma.2,3 

Although these findings provide clues that gut 
microbiota determine the risk of asthma develop
ment in children, little is known about the role of 
these micro-organisms in adult asthmatics. Gut 

bacteria might reconstitute in later life – having 
already produced life-long effects on the immune 
system during a ‘window of opportunity’ in early 
life – and may no longer be involved in adults. 
Results of the few studies addressing this role are 
conflicting, describing associations between adult 
asthmatics and specific gut bacteria that are not 
confirmed by others.4–9 These differences might be 
due to low sample size (the largest study included 
158 cases and several studies had less than 40 asth
matics), incomplete confounder analysis (e.g. ethni
city) or difficulties in analyzing microbiota data.10

In this study, we use data from the large and 
ethnically diverse Healthy Life in an Urban 
Setting (HELIUS) study,11,12 classical microbial 
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ecology and extremely randomized trees-based 
machine learning, and show that there is no evi
dence of an important relationship between indivi
dual differences in 16S rRNA gene sequencing- 
based microbiota composition and asthma in 
adults.

Results

The HELIUS study is a large multi-ethnic cohort 
study of Amsterdam (The Netherlands) residents 
who were randomly sampled, stratified by ethnic 
origin. By using a large, urban-based and ethnically 
diverse cohort, we were able to control for several 
important confounders including, among others, 
ethnicity and the recent use of antibiotics (see 
Patients and methods). After exclusion of partici
pants with a smoking history of more than 10 pack 
years to avoid potential confusion with chronic 
obstructive pulmonary disease or other smoking 
related complaints (n = 460), 1632 participants of 
the HELIUS study who donated stool samples were 
included in this study.11,12 Of 1632 participants, 
172 (10.5%) were considered asthmatics based on 
doctors’ diagnosis as self-reported. Participants 
without self-reported doctors’ diagnosis of asthma 
were considered non-asthmatics (n = 1460). There 
were no statistically significant differences between 
asthmatics and non-asthmatics in their age, smok
ing history, recent antibiotic or probiotic use or 
season of sample collection (Table 1).

To assess the impact of the used definition of 
asthma, we repeated all analyses using two different 
asthma definitions. First, a strict definition was 
used where participants were considered asth
matics solely based on medication use. Second, 
a broader definition was used and asthmatics were 
identified based on self-reported symptoms, medi
cation and/or doctors’ diagnosis. 94 participants 
(5.8%) had asthma based on their medication use. 
358 (21.9%) were considered asthmatics based on 
the broader definition.

Fecal microbiota composition was profiled by 
sequencing the 16S rRNA gene, V4 region (Patients 
and methods). As earlier described,12,13 Firmicutes 
and Bacteroidetes were the dominant phyla, and the 
most abundant families belonged to these phyla (e.g. 
Lachnospiraceae, Ruminococcaceae, Bacteroidaceae) 
(Supplementary Figure 1). Asthma contributed 

0.019% to interindividual dissimilarities in intestinal 
microbiota composition, which was not significant 
(P = .97; Table 2). Consequently, no distinct clusters 
were observed when visualizing ß-diversity by princi
pal coordinate analysis (Figure 1a,b). When we con
trolled for potential confounders (participant 
characteristics, recent antibiotic use, sample collection 
seasonality, dietary fiber/fat, usage of probiotics and 
corticosteroids) in a multivariable analysis, the var
iance explained by asthma was not meaningfully 
changed (R2 = 0.00016; Table 2). The contribution 
of asthma to interindividual dissimilarities was small 
compared to other determinants, as all tested variables 
together explained 7.2% of the interindividual dissim
ilarities in microbiota composition. Asthma contrib
uted only 0.22% to this total of 7.2% in interindividual 
dissimilarities (0.00016 from a total R2 of 0.072; Table 

Table 1. Baseline characteristics of included HELIUS participants.

Asthma
Non- 

asthmatics

(n = 172) (n = 1460) P value

Sex, no (%) <0.001
Men 56 (33) 630 (43)
Women 116 (67) 830 (57)
Age (yrs), mean (SD) 49.7 

(11.4)
50.1 (11.1) 0.490

Ethnicitya, no (%) <0.001
Dutch 26 (15) 262 (18)
Surinamese 70 (41) 603 (41)
Turkish 23 (13) 111 (8)
Moroccan 33 (19) 187 (13)
Ghanaian 20 (12) 293 (20)
Other 0 (0) 4 (0)
BMI, mean (SD) 28.7 (5.8) 27.4 (4.8) 0.001
Smoking status, no (%) 0.213
Yes 16 (9) 133 (9)
Never 125 (73) 1078 (74)
Stopped 31 (18) 249 (17)
Uses alcoholb, no (%) 76 (44) 723 (50) 0.340
Dietc

Total fatty acids (grams per day), mean 
(SD)

71.8 
(40.2)

79.0 (41.3) 0.016

Saturated fatty acids (grams per day), 
mean (SD)

25.4 
(17.4)

26.6 (15.8) 0.086

Fibers (grams per day), mean (SD) 23.6 
(10.1)

24.6 (11.2) 0.125

Recent antibioticsd, no (%) 18 (11) 129 (9) 0.450
Current use of probiotics, no (%) 7 (4) 78 (5) 0.227
Current use of corticosteroids, no 

(%)
20 (12) 66 (5) <0.001

Season of sample collection 0.323
Spring 31 (18) 290 (20)
Summer 55 (32) 464 (32)
Autumn 52 (30) 360 (25)
Winter 34 (20) 346 (24)

a. Based on country of birth: participants were considered of non-Dutch 
origin if they were born outside the Netherlands and had at least one 
parent who was born outside the Netherlands; or if they were born in the 
Netherlands but both parents were born outside the Netherlands. 

b. Use of alcoholic beverages in the past 12 months. 
c. Detailed information on diet was obtained from 47% of the participants. 
d. Use of antibiotics in the 3 months prior to fecal sample collection.
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Table 2. Univariable and multivariable analysis of associations between individual characteristics and gut microbiota β-diversity of 
asthmatics vs. non-asthmatics.

Weighted Unifrac Weighted Unifrac

Univariable – adonis Multivariable – PERMANOVA

Df R2 F P value Df R2 F P value Contribution to total inter-individual dissimilarities

Asthma 1 0.00019 0.312 0.965 1 0.00016 0.287 0.970 0.22%
Sex 1 0.02392 39.89 0.001 1 0.02289 40.54 0.001 31.60%
Age 1 0.00303 4.943 0.001 1 0.00179 3.162 0.016 2.47%
Ethnicity 5 0.05363 18.41 0.001 5 0.03089 10.94 0.001 42.64%
BMI 1 0.00872 14.33 0.001 1 0.00587 10.39 0.001 8.10%
Smoking status 2 0.00398 3.254 0.005 2 0.00191 1.695 0.082 2.64%
Alcohol use 1 0.00831 6.814 0.001 1 0.00115 1.017 0.388 1.59%
Total fatty acids 1 0.00454 7.430 0.001 1 0.00046 0.813 0.486 0.64%
Fibers 1 0.00416 6.797 0.002 1 0.00108 1.914 0.084 1.49%
Saturated fatty acids 1 0.00411 6.719 0.001 1 0.00036 0.629 0.700 0.50%
Recent antibiotics 1 0.00226 1.845 0.058 1 0.00193 1.712 0.058 2.66%
Use of probiotics 1 0.00150 1.222 0.239 1 0.00062 0.548 0.893 0.86%
Use of corticosteroids 1 0.00064 1.041 0.325 1 0.00055 0.982 0.362 0.76%
Season of sample collection 3 0.00366 1.991 0.019 3 0.00278 1.644 0.055 3.84%
Total 0.07244 100%

Analyses were performed by permutational multivariate analysis of variance (PERMANOVA) with the Weighted UniFrac distance. The multivariable model 
includes sex, age, ethnicity, BMI, smoking status, alcohol consumption, dietary variables (total fatty acids, saturated fatty acids and fibers), recent use of 
antibiotics (3 months prior to fecal sample collection), usage of probiotics and corticosteroids, and the season of sample collection. Df: degrees of freedom.

Figure 1. Marginal contribution of asthma to interindividual dissimilarities in microbiota composition. Differences in intestinal 
microbiota β-diversity with weighted (a) and unweighted Unifrac distance (b) of adult asthmatics (n = 172) compared to non- 
asthmatics (n = 1460). Receiver operating characteristic curve of the extremely randomized trees classifier showing asthmatics could 
not be distinguished from non-asthmatics based on individual microbiota composition (c). This was not changed with two alternative 
definitions for asthma: participants were considered asthmatics based on use of asthma medication (d) or based on self-reported 
symptoms, medication use and/or doctors’ diagnosis (e). ROC = receiver operating characteristic; AUC = area under the curve.
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2) while ethnicity contributed 42.6% and sex 31.6%, 
indicating that the gut microbiota of asthmatics is 
broadly similar to those of non-asthmatics. The use 
of stricter and broader definitions for asthma did not 
meaningfully impact these results (Supplementary 
Table 1). When we excluded participants with comor
bidities (diabetes mellitus, hypertension, cardiovascu
lar disease, chronic gastrointestinal disease, 
malignancy, stroke and rheumatic diseases), we 
found a comparable contribution of asthma to inter
individual differences in microbiota composition 
(0.058%, P = .71; Supplementary Table 2).

Next, to investigate if differences in intestinal 
microbiota composition existed on an individual 
bacterial taxon level, we used extremely rando
mized trees-based machine learning models 
(Patients and methods). Asthmatic participants 
could not be distinguished from non-asthmatic 
participants based on their individual microbiota 
composition by this model (area under the receiver 
operating characteristic curve (AUC-ROC) 
= 0.56 ± 0.04; Figure 1c). When we used other 
definitions for asthma, the AUC-ROC was not 
meaningfully changed (Figure 1d,e), nor did the 
use of two different machine learning approaches 
(random forest and support vector machines) alter 
our findings (Supplementary Figure 3).

In addition, no differential abundant taxa 
between asthmatics and non-asthmatic participants 
were identified (Holm corrected p-values ≥ 0.05) 
using a DESeq2 model both with and without cov
ariates (participant characteristics, recent antibiotic 
use, sample collection seasonality, usage of probio
tics and corticosteroids). Furthermore, there were 
no differences in microbiota richness or Shannon 
alpha diversity between asthmatic and non- 
asthmatic participants (Figure 2).

Following exclusion of participants with comor
bidities (diabetes mellitus, hypertension, cardiovas
cular disease, chronic gastrointestinal disease, 
malignancy, stroke and rheumatic diseases), our 
extremely randomized trees model had no capacity 
to discriminate asthmatics from non-asthmatics 
(AUC-ROC = 0.56 ± 0.04; Supplementary 
Figure 2), no differential abundant taxa between 
asthmatics and non-asthmatic participants were 
identified (Holm corrected p-values ≥ 0.05) and 
we found no differences in microbiota richness or 

Shannon alpha diversity between asthmatic and 
non-asthmatic participants (Supplementary 
Figure 2).

Finally, we asked if the composition of the intest
inal microbiota is associated with symptom control 
in asthma. We compared asthmatics with self- 
reported asthma complaints (attack of shortness 
of breath with wheezing) or use of asthma medica
tion in the past year (n = 101), to asthmatics with
out complaints or medication usage in the past year 
(n = 71). We observed no differences in microbiota 
richness (P = .99), α-diversity (P = .6) or β-diversity 
(P = .906) between these groups (Supplementary 
Figure 4). Thus, these results suggest that there is 
no relationship between the composition of the 
intestinal microbiota, based on 16S rRNA gene 
sequencing, and the reported control of asthma 
symptoms in adults.

Discussion

Despite multiple studies showing the involvement 
of intestinal microbiota in asthma development in 
children,1–3 little is known about the relationship 
between intestinal microbiota and asthma in adults. 
Here, we show that there are no prominent differ
ences in 16S rRNA gene sequencing-based fecal 
microbiota composition in adult asthmatics when 
compared to non-asthmatics in an urban, large- 
sized and ethnically diverse cohort.

Asthma contributed only 0.019% to interindivi
dual dissimilarities in gut microbiota composition 
which is marginal – especially when compared with 
other determinants such as sex (3.03%) and ethni
city (5.36%). Our extremely randomized trees had 
no capacity to discriminate asthmatics from non- 
asthmatics based on intestinal microbiota composi
tion, which is in line with an earlier described 
random forest classifier model that had little value 
in predicting asthma (AUC-ROC = 0.53),6 and 
further supports a negligible contribution of 
asthma to interindividual dissimilarities in 16S 
rRNA gene sequencing based microbiota 
composition.

Earlier studies provided conflicting results on 
differential abundant taxa in adult asthmatics. 
Hevia and colleagues5 reported a higher abundance 
of, among others, Faecalibacterium species in 
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asthmatics, while Wang et al4 reported lower abun
dances of these species. Gut bacteria might recon
stitute in later life -having already produced life- 
long effects on the immune system during 
a ‘window of opportunity’ in early life- and may 
no longer be involved in adults when the micro
biota and immune system have matured.14,15 In 
addition, fecal microbiota might not be the only 
culprit in asthma, as T-cells – which are related to 
asthma development16 – are trained by microbiota 
in the small intestine.17 Thus, further studies will 
have to show if small intestine microbiota are asso
ciated with asthma at different points in life.

To the best of our knowledge, this is the largest 
cohort study of its kind in the field which enabled 
us to control for several important confounders. 
However, our approach has limitations. First, 
asthmatics were not identified by demonstration 
of reversible airway obstruction using spirometry 
or airway hyperresponsiveness,18 which may have 
led to incorrect classification. However, addi
tional analyses with broader and more strict cri
teria for asthma did not alter our findings. 
Second, asthma is considered an umbrella term 
for different phenotypes that arise through differ
ent pathophysiologic pathways.1 We cannot fully 

Figure 2. Insignificant differences in microbiota richness and Shannon α-diversity between asthmatics and controls. No 
significant differences in Shannon diversity (a) and richness (b) between adult asthmatics (n = 172) and non-asthmatics (n = 1460). No 
differences in richness when participants were considered asthmatics based on use of asthma medication (stricter definition) (C) or 
based on self-reported symptoms, medication use and/or doctors’ diagnosis (broader definition) (D). In the box plots the central line 
shows the median, the box limits are the first and third quartile, and whiskers above and below the box.
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exclude a role of fecal bacteria in a certain phe
notype. Finally, the taxonomic resolution at spe
cies level of 16S rRNA gene sequencing is limited. 
Increasing the resolution using metagenomic 
sequencing might reveal differences in diversity 
and provide greater insight into functional capa
cities of the microbiome.

In conclusion, while emerging evidence indicates 
that shifts in intestinal microbiota composition influ
ence the risk of developing asthma in children, we 
found no prominent differences in fecal microbiota 
composition in adult asthmatics when compared to 
non-asthmatics in an urban, large-sized and ethnically 
diverse cohort. Future investigations should focus on 
the role of fecal bacteria in specific asthma phenotypes 
or on other potential mechanisms, such as an age- 
dependent effect of gut microbiota.

Patients and methods

Participants

Participants were recruited as part of the HELIUS 
study, a large multi-ethnic cohort study of 
Amsterdam residents (aged 18–70). Details of 
recruitment, dietary information, fecal sampling 
and microbiota sequencing have been previously 
published.11,12,19 In brief, the HELIUS study is 
a multi-ethnic cohort study conducted in 
Amsterdam, The Netherlands. Between 2011 and 
2015, subjects (aged 18–70) were randomly, strati
fied by ethnicity, selected from the municipal reg
istry of Amsterdam. Information on 
sociodemographic characteristics, lifestyle (includ
ing smoking, alcohol use, diet) and history of dis
eases was gathered through a questionnaire 
(including questions on asthma complaints), 
a physical examination (including, among other 
things, height and weight) and by bringing all cur
rently used medications to the research site.

Of 22165 participants who completed the ques
tionnaire and who took part in the physical exam
ination, 5927 provided stool samples. This study 
includes data obtained on the first 2170 feces sam
ples that were collected and processed.12 The sam
ple size was chosen based on a previously published 
analysis of gut microbiome variation and on earlier 
work by our study consortium where we also used 

data from the HELIUS study and observed numer
ous differences of small magnitude in microbiota 
composition that were significant.12,20

For the purposes of this study, participants with 
a smoking history of more than 10 pack years were 
excluded to avoid potential confusion with chronic 
obstructive pulmonary disease or smoking related 
complaints. Asthmatics were identified based on 
a self-reported doctors’ diagnosis of asthma (“Has 
a doctor ever diagnosed you with asthma?’). The 
reference group consisted of participants with 
a negative answer to this question.

To examine the influence of our definition of 
asthma, we repeated all analyses using two different 
definitions to identify asthmatics aimed at captur
ing a more strict and a broader group of asthmatics. 
First, participants were considered asthmatics if 
they used asthma (or COPD) medication (ATC- 
code R03) and the reference group consisted of 
those participants who did not use such medica
tion. Second, participants were considered asth
matics based on (1) a doctors’ diagnosis of asthma 
and/or (2) use of asthma (or COPD) medication 
(ATC-code R03) and/or (3) self-reported asthma 
symptoms (“Have you ever had an attack of short
ness of breath with wheezing (noisy breathing)?”). 
The reference group consisted of participants with 
a negative answer given to all of the three above 
mentioned questions.

Participants with missing information on doctors’ 
diagnosis of asthma, use of asthma medication or self- 
reported asthma symptoms were excluded (n = 16). 
The final study population consisted of 1632 
participants.

As previously described,12,21,22 detailed dietary 
information was collected on a subsample of 
HELIUS participants through ethnic-specific semi
quantitative food frequency questionnaires with 
a reference period of four weeks. Detailed dietary 
information was available for 47% of the participants 
included in the analyses of the current study (n = 767).

Written informed consent was obtained from all 
participants. Ethical approval for the HELIUS study 
was received from the Medical Ethics Committee of 
the Academic Medical Center (protocol number: 
10/100; amendment 10/100#10.17.1729; 
NL32251.018.10) and all research was conducted 
in accordance with the declaration of Helsinki.
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Microbiota sequencing and analysis

Stool sample collection and microbiota sequencing 
was performed as described in detail elsewhere.12,23 

Briefly, participants were asked to bring a ‘fresh’ 
stool sample to the research location within 6 hours 
after collection. If not possible, they were instructed 
to keep the stool sample in their freezer overnight 
and bring it in frozen to the research location the 
next morning. At the research location, samples 
were temporarily stored at −20°C until daily trans
portation and storage at −80°C. No information 
was recorded on whether samples arrived either 
frozen or fresh at the research location.

Stool samples were shipped to the Wallenberg 
Laboratory (Sahlgrenska Academy at University of 
Gothenburg, Sweden) to determine the fecal 
microbiota. DNA was extracted using a repeated 
bead beating method. To profile the composition 
of microbiota, the V4 region of the 16S rRNA 
gene was sequenced (Illumina MiSeq). Negative 
controls were included for each sample and gel 
electrophoresis was used to confirm the absence of 
detectable PCR products in these negative con
trols. Positive controls were not included in 
these runs but the protocol used to analyze the 
samples was optimized using mock samples. Raw 
sequencing reads were processed with USEARCH 
(v11.0.667).24 Paired-end reads were merged, 
allowing one expected error in the merged contig 
and a maximum of 30 differences in the overlap
ping region. We performed expected error-based 
read quality filtering as described by Edgar et al.25 

The remaining contigs were dereplicated and sub
sequently denoised to infer Amplicon Sequence 
Variants (ASVs) using the UNOISE3 
algorithm.25 A count table was produced by map
ping all merged reads against the resulting ASVs. 
ASVs not matching expected amplicon length 
(shorter than 250 bp or longer than 260 bp) 
were removed. The DADA2 package (function 
‘assignTaxonomy) and SILVA reference database 
(version 132) were used to assign taxonomy.26,27 

ASVs sequences were aligned using MAFFT with 
auto settings.28 A phylogenetic tree was con
structed from the resulting multiple sequence 
alignment using a generalized time-reversible 
model with the ‘double-precision’ build of 
FastTree (version 2.1.11).29 The ASV table was 

rarefied to 14894 counts per sample and inte
grated with the taxonomy and tree using the phy
loseq package.30

Statistical analysis

All analyses, except the extremely randomized 
trees classifier, were performed using R (version 
3.6.0). Two-tailed level of significance between 
groups was set at P < .05. β-diversity was assessed 
using the weighted and unweighted Unifrac dis
tance using principal coordinates analysis with 
the phyloseq package.30 PERMANOVA models 
(vegan package,31 functions Adonis and 
Adonis2, 999 permutations) were used to assess 
the contribution of asthma and the following 
potential confounders to interindividual dissimi
larities in intestinal microbiota composition (β- 
diversity using the weighted UniFrac distance 
which takes the bacterial phylogeny into account): 
sex, age, ethnicity, BMI, smoking status, alcohol 
consumption, dietary variables (total fatty acids, 
saturated fatty acids and fibers), recent use of 
antibiotics (3 months prior to fecal sample collec
tion), usage of (over-the-counter) probiotics and 
corticosteroids (ATC codes D07 plus specific 
codes), and the season of sample collection. 
These models decompose the dissimilarity matrix 
into ‘variance’ explained by each variable. The 
obtained R2 gives the proportion of variability 
explained by a certain variable, as percentage of 
the entire dissimilarity.

Extremely randomized trees classifier analysis 
was used to assess the value of the intestinal 
microbiota to distinguish asthmatic participants 
from non-asthmatics, using the sklearn package 
and python version 3.8.1.32 We used count data 
of ASVs that were present at greater than 10% of 
the sample population or a minimum abundance 
of 500 counts, which resulted in 1381 ASVs as 
input to the extremely randomized trees classifier 
analysis. We performed 100-iterations of 5-fold 
cross validation on 75% of the dataset, with sub
sequent testing on the remaining 25% of the 
samples, and subsequently assessed the perfor
mance of the microbiota by calculating the 
mean area under the receiver operating charac
teristic curve of all 20 shuffles.
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In addition, we used a random forest ensemble 
learning approach (randomForest package33) and 
Support Vector Machines as implemented in the 
caret34 and kernel35 packages with a polynomial 
kernel. For model creation, we used count data of 
ASVs that were present at present at greater than 
10% of the sample population. For the random 
forest models, we performed 20-fold random split
ting of the dataset into a training (75%) and valida
tion (25%) set and trained the models using the 
training data with 501 trees and the proximity 
parameter set to TRUE. Default settings were used 
for all other parameters. For the Support Vector 
Machines, we performed 5-fold splitting into 
a training (75%) and validation (25%) set, and 
trained the models with 5-fold cross validation. 
Hyperparameter tuning was automatically executed 
by caret via grid search (C: 0.01, 0.05, 0.1, 0.25, 0.5, 
0.75, 1.0, 1.25, 1.5, 1.75, 2, 5; Scale: 0.01, 0.03, 0.06, 
0.09; Degree: 0, 1, 2, 3, 4, 5). Subsequently, both the 
random forest models and Support Vector 
Machines models were tested by calculating the 
area under the receiver operating characteristic 
curve (AUC-ROC) using the pROC package on 
the remaining 25% of the samples.

Alpha diversity was assessed by calculating 
Observed Taxa Richness index and Shannon 
Diversity Index with the phyloseq package.30 The 
‘DESeq’ function in DESeq2 was used to test for 
differentially abundant taxa between asthmatics and 
non-asthmatics, with Holm correction for multiple 
comparisons.36 We restricted our DESeq analysis to 
ASVs that were present at greater than 10% of the 
sample population.
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