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Abstract
The extracellular matrix (ECM) has been demonstrated to facilitate angiogenesis. In particu-

lar, fibronectin has been documented to activate endothelial cells, resulting in their transition

from a quiescent state to an active state in which the cells exhibit enhanced migration and

proliferation. The goal of this study is to examine the role of polymerized fibronectin during

vascular tubulogenesis using a 3 dimensional (3D) cell-derived de-cellularized matrix. A

fibronectin-rich 3D de-cellularized ECM was used as a scaffold to study vascular morpho-

genesis of endothelial cells (ECs). Confocal analyses of several matrix proteins reveal high

intra- and extra-cellular deposition of fibronectin in formed vascular structures. Using a

small peptide inhibitor of fibronectin polymerization, we demonstrate that inhibition of fibro-

nectin fibrillogenesis in ECs cultured atop de-cellularized ECM resulted in decreased vascu-

lar morphogenesis. Further, immunofluorescence and ultrastructural analyses reveal

decreased expression of stromal matrix proteins in the absence of polymerized fibronectin

with high co-localization of matrix proteins found in association with polymerized fibronectin.

Evaluating vascular kinetics, live cell imaging showed that migration, migration velocity, and

mean square displacement, are disrupted in structures grown in the absence of polymer-

ized fibronectin. Additionally, vascular organization failed to occur in the absence of a poly-

merized fibronectin matrix. Consistent with these observations, we tested vascular

morphogenesis following the disruption of EC adhesion to polymerized fibronectin, demon-

strating that block of integrins α5β1 and αvβ3, abrogated vascular morphogenesis. Overall,

fibronectin deposition in a 3D cell-derived de-cellularized ECM appears to be imperative for

matrix assembly and vascular morphogenesis.
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Introduction
Angiogenesis is a hallmark of tumor formation, supplying the tumor mass with the oxygen and
nutrients necessary for meeting its voracious metabolic demands. In addition, angiogenesis is a
requisite for the successful transplantation of tissue engineered scaffolds, where the delivery of
oxygen and nutrients is imperative for cell growth and thus restoration of the damaged tissue.
In this manner, a better understanding of the mechanisms regulating angiogenesis is necessary
for targeted disruption of angiogenesis in tumors and enhancement of angiogenesis in trans-
planted tissues. While numerous factors participate in angiogenesis, recent efforts have focused
on the role of the ECM in pathological and non-pathological angiogenesis. Of particular inter-
est is the ECM protein fibronectin.

Fibronectin is a large glycoprotein which plays an essential role in development, wound
healing, tumorigenesis and angiogenesis. With regard to angiogenesis, the absence of fibronec-
tin in mice was reported to be lethal [1, 2]. In these studies, mice lacking fibronectin presented
with deformed embryonic vessels and die during embryogenesis as a result of severe cardiovas-
cular defects [1, 2], supporting a crucial role for fibronectin in vascular morphogenesis. More
recent studies have specifically shown that fibronectin participates in angiogenesis via its role
in promoting EC activation, survival, migration, proliferation and elongation [3–6], crucial
steps in the angiogenic cascade. Work in our lab has shown that patterned fibronectin surfaces
guided the attachment and elongation of endothelial progenitor cells[7]. Others have demon-
strated that a 3D fibrin-rich matrix promoted vascular morphogenesis of ECs, with EC-derived
fibronectin reported to play a critical role in regulation of this process [8]. Fibronectin has also
been reported to play a role in vascular remodeling. Specifically, Chiang et al [9] showed that
application of a pluronic gel complexed with a peptide inhibitor of fibronectin polymerization
reduced vascular wall thickening in mice which had undergone surgical ligation of the left
carotid artery [9]. In-vivo studies have found that teratocarcinomas derived from embryonic
stem cells null for α5 integrin, a receptor promoting cellular attachment to fibronectin,
expressed significantly fewer vascular structures in comparison to α5 integrin-expressing cells
[10], further supporting a role for fibronectin in angiogenesis These results highlight the
important role of fibronectin in directing vascular cell behaviors and angiogenic activities.

Fibronectin is produced by several cell types including fibroblasts [11–13] and is a compo-
nent of the ECMmilieu of several organs. Here, we describe for the first time, the use of a
completely biological 3D de-cellularized ECM [11, 14] rich in fibronectin for analyses of vascu-
lar morphogenesis and matrix assembly. Using this 3D matrix as a culture platform, we tested
the hypothesis that both fibronectin polymerization in the matrix and fibronectin deposition
by ECs participate in vascular morphogenesis of ECs on the de-cellularized ECM. We demon-
strate that matrix fibronectin was indispensable for vascular morphogenesis and matrix assem-
bly as interference of EC attachment to fibronectin abrogated vascular morphogenesis and loss
of a polymerized fibronectin matrix in the de-cellularized ECM not only prevented vascular
organization, but markedly reduced deposition of other matrix proteins. Furthermore, our data
point to a role for a polymerized fibronectin matrix in EC migration where its presence in the
matrix was found to decrease EC migration patterns during vascular morphogenesis. Utilizing
a completely biological system, our results support a novel role for fibronectin in vascular mor-
phogenesis and matrix assembly in-vitro. Combined, these results have important implications
for understanding the mechanisms whereby fibronectin may direct vascular morphogenesis
and matrix assembly, results which are applicable to the fields of both regenerative medicine
and cancer biology.
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Materials and Methods

Cell Lines and Culture
TheMDA231 (MDA) breast cancer cell line was a gift from the Physical Sciences-Oncology Bior-
esource Core Facility (PBCF, ATCC; Manassas, VA) and were originally obtained through the
laboratory of Dr. Thea Tlsty (University of California San Francisco, San Francisco, CA). The
human neonatal foreskin fibroblast (NuFF) cell line was obtained from Global Stem (Rockville,
MD; #GSC-3002) at passage 9. Human Umbilical Vein Endothelial Cells (HUVECs) were
obtained from Promocell (Heidelberg, Germany). MDA231 cells were cultured in DMEM (Life
Technologies, Grand Island, NY) supplemented with 10% vol/vol FBS (Atlanta Biologicals).
NuFF cell were cultured in DMEM supplemented with 10% vol/vol heat inactivated FBS (Life
Technologies) and HUVECs were cultured in EGMmedia (Promocell) supplemented with 2%
FBS (Promocell). Media was exchanged every 2–3 days and cells were passaged after reaching
80–90% confluency using 0.25% trypsin EDTA (Sigma, Allentown, PA) or 0.05% typsin EDTA
(for HUVECs) (Sigma). All cell lines were maintained at 37°C in a humidified atmosphere con-
taining 5% CO2.

Antibodies
Primary antibodies include: rabbit anti-human fibronectin, mouse anti-human collagen I,
mouse anti-human collagen IV, rabbit anti-human laminin, mouse anti-human tenasin-C,
mouse anti-human CD31 and phalloidin 488 or 546. Secondary antibodies include: goat anti-
mouse Cy3, goat anti-mouse FITC and goat anti-rabbit alexa fluor 488. Refer to S1 Table for
information on all antibodies including dilutions and suppliers. Blocking antibodies utilized in
the study include: β1 (clone Mab13, BD Biosciences; San Jose, CA), α5 (clone IIa1, BD Biosci-
ences), and αvβ3 (Clone LM609, Millipore, Billerica, MA). IgG isotype control antibodies were
mouse IgG1 κ (clone MOPC-21, BD Biosciences) and rat IgG2a κ (Clone R35-95, BD
Biosciences).

Peptides
The fibronectin inhibitor peptide pUR4B and control III-11C peptide (kindly provided by Dr.
Jane Sottile, Rochester University) were obtained from cloning into Escherichia Coli and iso-
lated as previously described [9]. Endotoxin was removed from peptides and residual levels
measured as previously described [9].

GFP transduction
A lentiviral vector was used for GFP transduction of ECs. Plasmids pMD2.G, CMV 11904, and
iDUET 11426 were kindly provided by Dr. Linzhao Cheng (Johns Hopkins University). Meth-
ods used for transformation and transfection were based off of methods described by [15]. In
brief, 10pg to 100ng of plasmids were transformed into OneShot Stlb3 cells (Life Technologies)
according to the manufacturer’s instructions. A volume of 25μl of the transformed cells was
plated on LB agar plates containing 100μg/ml of ampicillin and allowed to grow overnight at
37°C. The next day, colonies were selected and grown overnight in 5ml of LB medium contain-
ing 100μg/ml of ampicillin in a shaker incubator set at 37°C. The Qiagen Spin Miniprep Kit
was used to isolate bacterial DNA (Qiagen, Germantown, MD). For transfection, Hek293t3
cells (ATCC, Manassas, VA) were plated at 500,000 cells in a 6 well and allowed to attach over-
night. The next day, the media was exchanged to 1% serum and HEK293 cells were transfected
with the following concentrations of plasmids: 2μg of CMV, 0.5μg of PMD.G, and 1μg of
iDUET in lipofectamine (Life Technologies). Methods were based off of manufacturer’s
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instructions. After two days of transfection, the supernatant was collected and the virus con-
centrated using an Amicon Ultracentrifugal filter (Millipore) and subsequently stored at -80°C.
For transduction, HUVECs (at passage 1) were plated in a 6-well plate at 100,000 cells/well.
The virus was added at a ratio of 1:100 (vol/vol) virus to HUVEC medium and incubated at
37°C, 5% CO2 in a humidified atmosphere for 24 hours. The media was changed after the
24-hour viral incubation. The cells were gently scraped from the wells, spun down at 800 rpm
for 3 minutes, and suspended in 300μl of 1X PBS. This suspension was filtered using a 40-um
mesh strainer (BD Biosciences) and transferred in 5 ml FACs tubes for sorting. HUVECs
expressing a high level of GFP were sorted and isolated using FACS Aria II Sorter with a
488nm laser at the Ross Research Flow Cytometry Core Facility (Johns Hopkins University
School of Medicine, Baltimore, MD).

Co-cultures
NuFF (passages 18–28) were co-cultured with MDA breast cancer cells for establishment of
cell-derived ECM. Both cell lines were seeded on the same day in a 1:1 ratio in 4 well Nunc Lab-
Tek II Chamberslides (Sigma) using methods previously described [11, 14]. In brief, co-cul-
tures were maintained in one-half NuFF media and one-half MDAmedia with a final
concentration of 10% fetal bovine serum (FBS). In some instances, chamberslides were coated
with 5ug/well human fibronectin (Sigma) for 1 hour at 37°C, 5% CO2 in a humidified atmo-
sphere prior to cell seeding. Media was exchanged every 2–3 days and co-cultures were main-
tained for 7–9 days before de-cellularization.

Matrix de-cellularization and seeding of HUVECs
Isolation of cell-derived ECM and subsequent seeding of HUVECs for vascular morphogenesis
were based off of methods described in prior published reports [11, 14]. HUVECs were used at
passages 4–5 for all analyses of vascular morphogenesis on de-cellularized ECM and were cul-
tured in EGMmedia containing 2% serum.

Inhibition of fibronectin polymerization
NuFF/MDA co-cultures were incubated in 250nM of pUR4B or control III-11C peptides.
Fresh inhibitor and control peptides were added every day along the culture period. For analy-
sis of the contribution of HUVEC-derived fibronectin to vascular morphogenesis, HUVECs
were seeded on intact, de-cellularized ECM in the presence of 500nM of pUR4B or control III-
11C peptides. NuFF/MDA co-cultures and vascular structures on de-cellularized ECM were
evaluated for fibronectin expression using qRT-PCR and western blot as described below.

Inhibition of collagen synthesis
NuFF cells were seeded at 45,000 cells/well in Nunc LabTek II Chamberslides and were incu-
bated in media with or without 100nM of halofuginone (Sigma) for 24 hours. Serum concen-
trations were adjusted to 2.5% serum or 5% serum. Cells were fixed and evaluated using
immunofluorescence (described below) for collagen I, fibronectin and tenascin-C matrix
expression.

Immunofluorescence staining and imaging of ECM and vascular
structures
De-cellularized NuFF/MDA ECM and vascular structures were fixed and prepared as previ-
ously described [11, 14]. The de-cellularized ECM was stained with fibronectin and collagen I
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or IV, laminin or tenasin-C. Vascular structures were stained with either CD31, phalloidin or
one of each of the ECM proteins: fibronectin, collagens I or IV, laminin or tenasin-C. ECM
and vascular structures were incubated in secondary antibodies Refer to S1 Table for informa-
tion on all antibodies used including dilutions and suppliers. Cellular nuclei were visualized
using DAPI at a dilution of 1:1,000 (Life Technologies). All immunolabeled samples were
mounted and imaged as previously described [11, 14].

Confocal and time-lapse imaging
Live cell time-lapse images were taken from hour 7 to hour 12 following GFP-HUVEC seeding
on ECM using a Zeiss LSM 510 Meta Confocor 3 (Carl Zeiss; Integrated Imaging Center; Johns
Hopkins University). Fluorescent z-stack images of step size 2–3 μMwere taken with a 20x
objective (Zeiss) every 15 minutes for 5 hours. An argon (488nm) laser was used to obtain the
fluorescent images. Multi-Time 4.0.31 (Zeiss) was used to set up the time-lapse and Zen (Zeiss)
was used to set up the image configurations. During time-lapse imaging, the cells were cultured
and incubated using previously mentioned conditions. Fixed, immunolabeled vascular struc-
tures were evaluated for the presence of lumens and evidence of vascular organization. A step
size of 0.70μMwas used and images were acquired at 40 and 63x magnification.

Scanning electron microscopy
Scanning electron microscopy was performed as previously described [11, 14]. Three coverslips
each containing de-cellularized ECM deposited from pUR4B and control III-11C treated
NuFF/MDA co-cultures were evaluated for the extent of ECM expression.

Real-time quantitative RT-PCR
Two-step RT-PCR was performed on cDNA from NuFF/MDA co-cultures or vascular struc-
tures from HUVECs grown for 24 hours on de-cellularized NuFF/MDA ECM. NuFF/MDA
co-cultures were treated daily with 250nM of pUR4B or control III-11C or were left untreated
for a period of 9 days. HUVECs were treated with 500nM of pUR4B or control III-11C for a
period of 24 hours or were left untreated. Total RNA was extracted, quantified, and reverse
transcribed into cDNA as previously described [11, 14]. The TaqMan Universal PCRMaster
Mix and Gene Expression Assay (Applied Biosystems, Foster City, CA) were used for analyses
of fibronectin and the following matrix metalloproteases (MMPs): MMP1, MMP2, MMP9 and
MT1-MMP (Applied Biosystems) according to the manufacturer’s instructions. The TaqMan
PCR step was performed with an Applied Biosystems StepOne Real-Time PCR System
(Applied Biosystems), following the manufacturer’s instructions. The relative expression of
fibronectin and MMPs was normalized to the amount of β-actin or GAPDH (Applied Biosys-
tems) in the same cDNA through use of the standard curve method described by the manufac-
turer. For each primer set, the comparative computerized tomography method (Applied
Biosystems) was used to calculate amplification differences between untreated, control III-11C
and pUR4B treated samples. The values for experiments were averaged and graphed with stan-
dard deviations.

Enzyme Zymography
HUVECs at passage 5 were grown on de-cellularized ECM from NuFF/MDA co-cultures.
After 12 hours in EGMmedia supplemented with 2% serum, the media was exchanged to
serum free EGMmedia for the remaining 12 hours of vascular assembly. Supernatant was col-
lected, stored long term at -80°C and thawed on ice during experimental analyses. The
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supernatant was diluted 1:1 with Laemmli buffer without addition of reducing agents. A vol-
ume of 40μl was loaded on a 12% casein gel (Life Technologies) for MMP1 or a 10% gelatin gel
(Life Technologies) for MMPs 2 and 9. The gels were run at 150V for 1.5 hours in SDS running
buffer, followed by a series of four 15 minute washes in 1X Renaturation buffer (Life Technolo-
gies). The gels were transferred to 1X Denaturation Buffer (Life Technologies) for 15 minutes
with gentle shaking and then placed at 37°C for incubation overnight. The following day, the
gels were fixed in a solution containing 50% methanol and 10% acetic acid for 30 minutes and
stained in 0.02% Coomassie (Sigma) in 50% methanol and 10% acetic acid for 2 hours. The
gels were de-stained in 20% methanol, 10% acetic acid solution for 1–2 hours and transferred
to deionized H2O and imaged using ChemiDocTM XRS+ System (Biorad, Hercules, CA).
Images were acquired using Biorad Quantity OneTM software. Differences between MMPs 2
and 9 on gelatin zymograms were distinguished based on known molecular weights where ~90
kDa corresponds to proMMP9 and ~72 kDa and ~62 kDa correspond to the pro and active
forms, respectively, for MMP2 [16, 17].

Western Blot
NuFF/MDA co-cultures or vascular structures from HUVECs grown on de-cellularized co-
culture ECM were utilized for western blot analyses. NuFF/MDA co-cultures were treated
daily with 250nM of pUR4B or control III-11C or were left untreated for a period of 9 days.
HUVECs were treated with 500nM of pUR4B or control III-11C or were left untreated for a
period of 24 hours. Cells were lysed and protein was quantified as previously described [11,
14]. A concentration of 20–30μg of protein was loaded per well into a 4–20% SDS PAGE gel
(BioRad) and run under reducing conditions. Proteins were transferred to nitrocellulose
membranes (Biorad), blocked for 1 hour in 3% non-fat milk (Biorad), and incubated over-
night at 4°C/constant shaking with the following antibodies: anti-MT1-MMP, anti-fibro-
nectin and GAPDH. Membranes were washed, incubated in secondary antibodies and
imaged as previously described [11, 14]. Refer to S1 Table for dilutions and suppliers for all
antibodies.

Cell proliferation
NuFF/MDA co-cultures were treated with 250nM of pUR4B or control III-11C or were left
untreated for 48 hours. After 48 hours, cell proliferation was assessed using the XTT assay
(Sigma) according to the manufacture’s specifications.

ECM co-localization with fibronectin
The percent ECM co-localized with fibronectin was analyzed from 40x magnification images
acquired from an Olympus BX60 microscope. Images of ECM co-localization were taken from
3–4 non-overlapping images from a total of 2–3 wells. The percent overlap for each ECM pro-
tein with fibronectin was obtained using the Co-localization tool in Metamorph version 6.1
(Universal Imaging Co., Downingtown, PA), a plugin which provides quantitative information
regarding the overlap of two fluorescent signals in an image pair. To analyze co-localization,
the images were thresholded so the positively stained regions were highlighted. Thresholded
images were compared to the original image to ensure accuracy of thresholding. The area of
overlap in the entire image pair was then analyzed. The percentage of overlap in one image ver-
sus the other (e.g. collagen overlap with fibronectin) was recorded and expressed as the percent
co-localization.
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Blocking integrins α5β1 and αvβ3 on HUVECs
To inhibit vascular cell interaction with fibronectin, HUVECs were seeded in the presence of
20μg/ml each of the following blocking integrins: α5, β1, and αvβ3 [18]. To address the contri-
bution of αvβ3 to vascular cell interaction with fibronectin, HUVECs were seeded with 20 μg/
ml of αvβ3 with and without 20 μg/ml each of α5 and β1 [18]. IgG isotype control antibodies
were utilized at 20μg/ml. Vascular structures were maintained for 24 hours in culture, prior to
fixation and staining as described above.

Vascular quantification
Vascular structures were quantified from non-overlapping high magnification phalloidin
stained images using the threshold function in ImageJ. Using this tool, images were first con-
verted to a 16 bit gray scale image, were automatically threshoIded, and analyzed for the per-
cent area covered by capillary-like structures (CLS) [14]. To illustrate the differences in pixel
intensities of luminal CLS as opposed to planar sheets of ECs, we have calculated the average
pixel intensities of regions with and without CLS. This analysis was conducted on 3 non-over-
lapping regions in each of 11 to 12 images from control III-11C and pUR4B treated ECs,
respectively. To confirm that the brighter structures were indeed CLS, we used confocal imag-
ing to generate z stacks. Analyzing z stacks of at least 15 confocal images, we documented the
presence of lumens in these brighter structures and the lack of lumens in the dimmer sheets of
planar ECs. This approach proved to be sufficient to determine the presence of luminal CLS
and served for the purpose of this study [11, 14]. For studies on the effect of Fn inhibition dur-
ing vascular morphogenesis, eight to twelve non-overlapping images were taken from each well
in two wells in a total of three slides. For studies on the effect of anti-integrins on vascular mor-
phogenesis, 9–12 non-overlapping images from each condition were evaluated.

Particle tracking
GFP-HUVEC cell migration was tracked using the Manual Tracking plugin (Fabrice P. Cor-
dières, Institut Curie, France) in ImageJ (NIH). The x/y calibration was set to 0.877 μm/pixel.
The center of the cell was used as a reference point for each cell in each frame. Cells that
entered or exited the field of view during the 5-hour tracking time interval were excluded. Cells
that underwent apoptosis or proliferation were also disregarded during the tracking process.
Between 60 and 100 cells were tracked per condition per experiment. Each experiment was
repeated three times and each condition was in duplicate. The time interval was 15 minutes for
a total of 5 hours.

Cell migration parameters
The cell migration parameters were calculated using a customMatlab (The Mathworks, Natick,
MA) code. The XY coordinates and the distance of each particle per frame retrieved by Manual
Tracking were imported into Matlab. The migration parameters calculated were total distance
traveled (of 5 hours), velocity between each frame, average velocity (of 5 hours), total displace-
ment (of 5 hours), and mean square displacement. The total distance traveled per cell was cal-
culated by summing the interval distances,

Dtotal ¼
XN
i¼1

Di

where Dtotal represents the total distance traveled, N is the number of distances, i represents
each individual frame, and Di is the distance traveled for each frame.
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The velocity was calculated by dividing the interval distances by the interval time of 15 min-
utes,

Vi ¼
Di

4t

where Vi is the interval velocity, and Δt represents the time interval (15 minutes). The following
equation was used to calculate the average velocity,

Vavg ¼
1

N

XN
i¼1

Vi

where Vavg represents the average velocity and N represents the number of total velocities. The
total displacement was calculated using the following equation,

dnet ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxf � xiÞ2 þ ðyf � yiÞ2

q

where dnet represents the net displacement of a cell, xf is the final x position, xi is the initial x
position, yf is the final y position, and yi is the initial y position. Mean square displacement is a
parameter often used to characterize the motility of cells along with the previously mentioned
parameters. It was calculated using the following equation,

MSD ¼ h½rðt þ tÞ � rðtÞ�2i
where MSD presents the mean square displacement, r(t) is the position of the particle at time t,
τ is the lag time between the two positions.

Statistical Analyses
Statistical analysis was performed using GraphPad Prism 4.02 (GraphPad Software Inc., La
Jolla, CA). GraphPad Prism 4.02 was used to perform ttests, One Way ANOVA with Turkey’s
posttest, and TwoWay ANOVA with Bonferroni’s posttest. Significance levels were set at
�p�0.05, ��p�0.01, and ���p�0.001. Unless otherwise indicated, all graphical data are reported
±SD.

Results

Presentation of matrix proteins following vascular morphogenesis on
ECM
ECs were seeded on de-cellularized ECM deposited from co-cultures of dermal fibroblasts
(NuFF) with the human breast cancer cell line MDA231 (hereafter co-cultures) and allowed to
form vascular structures over a 24 hour period [11, 13, 14]. We elected to employ this co-cul-
ture approach as we have previously shown that this culture setup yielded an ECM that was
uniformly distributed throughout the culture area, was rich in fibronectin, and supported
robust vascular morphogenesis[11]. The average thickness of these de-cellularized matrices
was 4.9 ± 0.96μM, a result similar to that reported by Soucy et al [13]. Resulting vascular struc-
tures grown on these de-cellularized matrices were fixed and stained for ECM proteins fibro-
nectin, collagens I and IV, tenascin-C and laminin. Out of all ECM proteins evaluated, we
found that fibronectin was highly deposited following EC culture atop the de-cellularized
matrix, with distinct fibrils located extra-cellularly, bridging the newly formed vascular struc-
tures (Fig 1). Deposition of collagen I was negligible, collagen IV was present albeit minimal
and laminin was abundant and appeared to be localized to vascular lumens (Fig 1). Tenascin-C
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was sparsely localized extra-cellularly (Fig 1). Results from these analyses are representative of
3–6 samples for each ECM protein. Low magnification images of vascular structures, illustrat-
ing the overall presentation of these ECM proteins following EC culture atop the de-

Fig 1. Vascular structures on de-cellularized matrix express high fibronectin.Confocal images of vascular structures illustrate the localization of ECM
proteins following vascular morphogenesis of ECs cultured atop de-cellularized co-culture ECM. Images of vascular lumens, indicative of the 3D nature of the
structures, were rendered from confocal z stacks. The dashed line indicates the corresponding position of the lumen. Scale bars for cross sectional lumens
are 10μM.

doi:10.1371/journal.pone.0147600.g001

Fibronectin and Angiogenesis

PLOS ONE | DOI:10.1371/journal.pone.0147600 January 26, 2016 9 / 27



cellularized matrix, are shown in (S1 Fig). These results indicate that patterns of ECM protein
localization and deposition, following growth and organization of ECs on the de-cellularized
matrices, are unique in comparison to one another.

MMPs are increased following culture of ECs on de-cellularized ECM
Matrix metalloproteinases (MMPs) play a key role in angiogenesis [19]. Given our observations
in which collagens I and IV were negligibly or minimally expressed, respectively, following cul-
ture of ECs atop de-cellularized matrices, we elected to evaluate MMPs 1,2, and 9, MMPs
which have been shown to degrade collagens 1 and IV [19]. In addition, we also evaluated
MT1-MMP, a membrane associated MMP, which activates MMP-2 [20, 21]. We observed up-
regulated mRNA expression for all MMPs in ECs cultured for 24 hours on de-cellularized
ECM (Fig 2A). While western blot did not reveal differences in MT1-MMP expression between
control ECs and vascular structures (Fig 2Bi), zymography demonstrated the presence of
MMP-9 and activated forms of MMP-2 in the supernatant collected from vascular structures
(Fig 2Bii). Zymography for MMP-1 revealed the presence of several faint, active forms of the
enzyme in the supernatant from vascular structures (Fig 2Biii). A faint band representing an
active form of MMP-1 was also visible in the supernatant from control ECs cultured on tissue
culture plastic dishes (Fig 2Biii). As these analyses were directed at evaluating the presence of
the active and inactive forms of the MMPs following culture of ECs on de-cellularized matrices,

Fig 2. Vascular structures on de-cellularized matrix express active MMPs. (A) qRT-PCR illustrated up-regulated expression of MMPs in CLS (ECs on
ECM) as compared to ECs cultured on tissue culture plastic. Significance was assessed based on the following p values: *p�0.05; **p�0.01; ***p�0.001.
(Bi)Western blot did not detect differences in the expression of MT1-MMP between control ECs and CLS. (Bii) Enzyme zymography revealed the
expression of the active form of MMP2 and the pro-form of MMP9 in CLS. (Biii) Active forms of MMP1 were observed in control ECs and CLS although CLS
contained additional bands of active forms.

doi:10.1371/journal.pone.0147600.g002

Fibronectin and Angiogenesis

PLOS ONE | DOI:10.1371/journal.pone.0147600 January 26, 2016 10 / 27



subtle differences in cell number, a result of differences in cell proliferation, were not antici-
pated to contribute to any observed differences. Taken together, these results indicate that
active MMPs 1,2, and 9, reported by others to degrade collagens I and IV [22–24], are
expressed in the supernatant from vascular structures grown atop de-cellularized ECM.

Fibronectin fibrillogenesis from ECs contributes to vascular
morphogenesis
Given the MMP expression analyses, implicating degradation of collagens I and IV in the
matrix, and the abundance of fibronectin fibrils from ECs cultured atop de-cellularized matri-
ces, we asked whether EC deposition of fibronectin was responsible for driving patterns of vas-
cular morphogenesis. Prior to these analyses, we investigated the relative abundance of
fibronectin in non-cell conditioned media as the serum present in these may be an important
source of deposited fibronectin driving vascular morphogenesis. S2A Fig illustrates the abun-
dance of fibronectin in co-culture and EC media. Following these analyses, we sought to inhibit
fibronectin fibrillogenesis by ECs during vascular formation. In order to accomplish this, we
utilized a small peptide inhibitor of fibronectin polymerization (pUR4B) to inhibit the extracel-
lular assembly of fibronectin from ECs during vascular morphogenesis on de-cellularized co-
culture ECM [9, 25]. pUR4B inhibits fibronectin fibrillogenesis by preventing the binding of
fibronectin to matrix assembly sites on the surface of cells [25]. As a control, the III-11C pep-
tide, which has no demonstrated activity against fibronectin fibrillogenesis [9, 25], was utilized.
We first validated that pUR4B did not decrease fibronectin expression in ECs grown atop de-
cellularized co-culture ECM, a result which may otherwise confound our findings. In this man-
ner, ECs were seeded on de-cellularized co-culture ECM and treated with 500nM of pUR4B or
control III-11C for 24 hours. After this time, vascular structures were evaluated for changes in
fibronectin mRNA and protein expression using qRT-PCR and western blot, respectively. Sig-
nificant changes in fibronectin mRNA and protein expression were not observed between
pUR4B, control III-11C and untreated (e.g. no treatment with pUR4B or III-11C) ECs (S2B
and S2C Fig). We then tested whether 250 and 500nM of pUR4B inhibited vascular morpho-
genesis of ECs on de-cellularized ECM. In this assay, ECs seeded on de-cellularized co-culture
ECM were treated with pUR4B or III-11C for 24 hours prior to assessment of luminal capillary
like structures (CLS). Immunofluorescence demonstrated reduced CLS following addition of
250nM (data not shown) and 500nM pUR4B to ECs during vascular morphogenesis (Fig 3A).
Since luminal CLS were observed to have a higher intensity of pixels than planar sheets of ECs,
we were able to quantify the percentage of formed CLS using the threshold function in ImageJ.
The average pixel intensity of CLS in III-11C and pUR4B treated ECs was 30.3 ± 5.5 while that
of non-CLS was 10.9 ± 2.5. Using this strategy, background fluorescence from sheets of ECs
was eliminated, highlighting the CLS which allowed us to quantify percent area occupied by
CLS. To confirm that the brighter structures were indeed CLS, we used confocal imaging to
generate z stacks. Analyzing z stacks from several confocal images, we documented the pres-
ence of lumens in some CLS having higher pixel intensities and the lack of lumens in the dim-
mer sheets of planar ECs. Quantification of vascular structures revealed a significantly greater
percentage of CLS in control, III-11C treated versus pUR4B treated structures (Fig 3B). Repre-
sentative images from control III-11C and pUR4B treated structures depict the thresh-holding
used to quantify the percent CLS (S2D Fig). In an effort to determine whether software
equipped to analyze CLS yielded similar findings, we used a previously established method and
analyzed CLS formation from III-11C and pUR4B treated ECs grown atop de-cellularized
ECM using the angiogenesis function in Metamorph [26–31]. However, results from this anal-
ysis yielded inconclusive findings as the software was not sensitive enough to detect the extent

Fibronectin and Angiogenesis

PLOS ONE | DOI:10.1371/journal.pone.0147600 January 26, 2016 11 / 27



of observed vascular formation. This was evidenced by the presence of extensive nodes (green
regions) (S3 Fig). Such regions are not classified as vascular structures, but are rather junctions
between vascular structures. The presence of vascular structures (white regions) did not appear
to correlate with CLS in images thresholded with ImageJ (S3 Fig) that were confirmed to be
luminal structures by confocal imaging.

Analysis of extracellular fibronectin revealed a marked decrease in fibronectin expression
from pUR4B treated vascular structures as compared to III-11C control (S4 Fig), demonstrat-
ing that at the concentration tested, pUR4B reduced fibronectin fibrillogenesis. Despite the

Fig 3. Fibronectin inhibition during vascular morphogenesis reduces CLS formation. (A) Representative immunofluorescence images of vascular
structures treated with 500μM pUR4B or control, III-11C peptides at the time of EC seeding on ECM. Corresponding high magnification images are shown as
insets. Arrows indicate the presence of CLS in high magnification merged inset images. Images for fibronectin were acquired using the same exposure
settings. (B)Quantification of CLS showed a significantly higher percentage of CLS in structures treated with control III-11C versus pUR4B. (C) Confocal
images of reconstructed z stacks illustrate the presence of lumens indicative of the 3D nature of the CLS in both control III-11C and pUR4B treated vascular
structures. The dashed line indicates the corresponding position of the lumen. Scale bars for cross sectional lumens are 10μM. *p�0.05; **p�0.01;
***p�0.001.

doi:10.1371/journal.pone.0147600.g003
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reduced number of CLS in pUR4B treated structures, re-constructed z stacks revealed the pres-
ence of vascular lumens in pUR4B-treated ECs (Fig 3C), demonstrating that the formed struc-
tures were 3D in nature. Taken together, these results suggest that inhibition of fibronectin
fibrillogenesis during EC culture atop de-cellularized matrices reduces, but does not eliminate
vascular network formation on de-cellularized ECM.

pUR4B inhibits cellular deposition of a polymerized fibronectin matrix
To address the role of a deposited polymerized fibronectin matrix on vascular morphogenesis,
we next asked whether inhibiting fibronectin polymerization in the de-cellularized matrix
would alter vascular kinetics and morphogenesis. In order to accomplish this, we utilized
pUR4B to inhibit fibronectin polymerization in the de-cellularized co-culture ECM [9, 25].
Co-cultures were treated daily with 250μM of pUR4B or control III-11C over a 9 day period.
Representative phase contrast images of pUR4B treated and untreated co-cultures prior to de-
cellularization are shown in S5A Fig. The resulting ECM was evaluated for the expression of a
polymerized fibronectin matrix. We found that 250μM of pUR4B resulted in complete elimina-
tion of a polymerized fibronectin matrix (S5B Fig). In order to exclude the influence of the
pUR4B inhibitor on fibronectin expression, we evaluated fibronectin mRNA and protein levels
in treated and untreated co-cultures. Results did not reveal a decrease in fibronectin mRNA
and protein expression in pUR4B treated co-cultures (S5C and S5D Fig). We further verified
that pUR4B did not result in decreased cellular proliferation (S5E Fig). These results illustrate
that pUR4B eliminates deposition of a polymerized fibronectin matrix by co-cultures, an obser-
vation which is not the result of changes in fibronectin expression or cell proliferation.

Inhibition of fibronectin fibrillogenesis decreases the deposition of matrix
proteins
We then evaluated whether inhibiting fibronectin polymerization would alter the deposition of
other ECM proteins. As described above, co-cultures were treated daily with 250μM of pUR4B
or control III-11C over a 9 day period and the resulting ECM evaluated for matrix protein
deposition. We observed the absence of ECM proteins collagen I and tenascin-C, matrix pro-
teins known to interact with fibronectin [32], in the de-cellularized matrix from pUR4B treated
co-cultures but not from control III-11C treated co-cultures (Fig 4A). These results were not
due to alterations in collagen I assembly in the matrix, suggested to be an important factor for
fibronectin fibrillogenesis [33], as treatment of NuFF cells with 100nM of halofuginone for 24
hours resulted in the absence of collagen I in regions containing fibronectin fibrils (S6A Fig).
Interestingly, we also observed the absence of tenascin-C in control, untreated NuFF cultures
despite the presence of extracellular fibronectin fibrils (S6B Fig), suggesting that tenascin-C
matrix assembly does not precede fibronectin fibrillogenesis in the matrix. We further evalu-
ated the de-cellularized matrix from pUR4B treated co-cultures using scanning electron
microscopy, a measure allowing us to observe all deposited matrix proteins. Results revealed
little ECM deposited from pUR4B treated co-cultures in comparison to control co-cultures
(Fig 4B), confirming that the absence of a polymerized fibronectin matrix markedly reduces
the assembly of other matrix proteins. These results suggest that a polymerized fibronectin
matrix serves as a substrate from which other ECM proteins bind.

Matrix proteins are highly co-localized with the fibronectin matrix
Intrigued by the results wherein the loss of a polymerized fibronectin matrix led to a concomi-
tant loss in collagen I and tenascin-C and marked reduction in general matrix expression, we
further investigated the degree to which several matrix proteins are co-expressed with
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fibronectin in the matrix. We noticed that collagens I and IV, tenascin-C and laminin were
highly co-localized to the fibronectin matrix deposited by untreated co-cultures (Fig 5A). Simi-
lar to observations from pUR4B treated co-cultures, we observed that in regions lacking a poly-
merized fibronectin matrix, there was a concomitant absence of additional matrix protein
expression (data not shown). While each of the ECM proteins tested were highly co-localized
with fibronectin, the greatest degree of co-localization was observed for tenascin-C (Fig 5B). In

Fig 4. Fibronectin inhibition reduces the deposition of matrix proteins from co-cultures. (A) Representative immunofluorescence images of de-
cellularized matrix from pUR4B and control III-11C treated co-cultures reveal the absence of collagen I and tenascin-C in co-culture ECM lacking a
polymerized fibronectin matrix. (B) Ultrastructural high magnification images of ECM deposited by pUR4B and control III-11C treated co-cultures illustrate a
marked reduction in the matrix of co-culture ECM lacking a polymerized fibronectin matrix.

doi:10.1371/journal.pone.0147600.g004

Fibronectin and Angiogenesis

PLOS ONE | DOI:10.1371/journal.pone.0147600 January 26, 2016 14 / 27



order to determine whether these results were not due to affects from culture conditions (e.g.
co-culturing), we evaluated co-localization of ECM proteins with fibronectin deposited by

Fig 5. Matrix proteins are highly co-localized with a polymerized fibronectin matrix. (A) Representative
immunofluorescence images of matrix proteins co-localized with the polymerized fibronectin matrix show co-
localization of collagens I and IV, laminin and tenascin-C with fibronectin. (B)Quantification of matrix proteins
co-localized with the polymerized fibronectin matrix. Fn: fibronectin; Ten-C: tenascin-C; Col I, IV; collagens I
or IV. *p�0.05; **p�0.01; ***p�0.001.

doi:10.1371/journal.pone.0147600.g005
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NuFF cells. Similarly, we observed a high degree of ECM protein co-localization with the poly-
merized fibronectin matrix deposited by NuFF cells (data not shown). These data not only con-
firm prior reports of collagen I and tenascin-C interaction with a fibronectin matrix [32], but
additionally suggest that fibronectin may serve as a scaffold directing the assembly of several
matrix proteins.

ECs exhibit altered migration in the absence of a polymerized fibronectin
matrix
To assess how the polymerized fibronectin matrix affects vascular kinetics, we cultured GFP
transfected ECs (S7A Fig) atop ECM from pUR4B treated (pUR4B-ECM), control III-11C
treated (III-11C-ECM) and un-coated chamberslides (Chambers) at hour 0. A schematic of
this set up is shown in Fig 6A. All analyses were performed on ECs cultured in media contain-
ing 2% serum. Live cell time-lapse images were used to track EC migration and were taken at
15-minute intervals following their attachment. We obtained the coordinates of the positions
of the cells at each time point where the center of the tracked cells was used as a reference point
for each frame. Cells that entered or exited the field of view during the 5-hour tracking time
interval were excluded and cells that underwent apoptosis or proliferation were also disre-
garded during the tracking process. Between 60 and 100 cells were tracked per condition per
experiment. Each experiment was repeated three times and each condition was performed in
duplicate. S7B Fig shows the trajectories of ECs in each of the tested conditions after 5 hours of
imaging. Of all tested conditions, ECs seeded on the Chambers migrated the greatest distance
(180.9μm) while the ECs on III-11C-ECM traveled the least distance (100.9 μm) (Fig 6B).
Interestingly, ECs on pUR4B-ECMmigrated a mean distance of 130.8 μm, a value which was
significantly less than ECs on Chambers, but significantly greater than ECs on III-11C-ECM
(Fig 6B).

In addition to the total distance migrated, we also calculated the net displacement of ECs
during the 5 hour imaging period. Net displacement is the measurement of the distance from a
cell’s original position at t = 0 to its final position at t = 300 minutes. This parameter only takes
into consideration the first and last positions, whereas the total distance traveled takes into
consideration all distances traveled by a cell between t = 0 to t = 300 minutes. Similar to the
previous results, EC net displacement was greatest on the Chambers with a mean value of
67.00 μm (Fig 6C). Similarly, ECs on pUR4B-ECM had a net displacement of 58.93μm (Fig
6C). These values are significantly greater than the net displacement of ECs on III-11C-ECM
(50.79μm) (Fig 6C).

Another kinetic parameter we quantified was the average velocity of ECs on each of the
tested conditions. Fig 6D shows the average velocity of the ECs on each of the tested conditions
for the 5 hour imaging period. ECs migrated at the highest rate on the Chambers with an aver-
age velocity of 0.603μm/min (Fig 6D). The second highest velocity was observed from ECs on
pUR4B-ECM, which migrated at a rate of 0.436μm/min (Fig 6D). These values were signifi-
cantly higher than ECs on III-11C-ECM, which had an average velocity of 0.336 μm/min (Fig
6D).

Finally, we measured the mean square displacement (MSD) of ECs on each of the tested
conditions. This parameter permits a better understanding of how cell migration dynamics
relate to the mechanical properties of the substrate[34]. Fig 6E depicts the MSD for each tested
condition and represents data collected for the 5 hour imaging period. ECs on the Chambers
exhibited the highest MSD with a value of 115.5 μm2 (Fig 6E). This was followed by ECs on
pUR4B-ECM, which had a MSD of 61.91 μm2 (Fig 6E). MSDs for the Chamber and pUR4-
B-ECM were significantly higher in comparison to III-11C-ECM, which exhibited a MSD of
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41.34 μm2 (Fig 6E). Our data suggest that a polymerized fibronectin matrix modulates vascular
kinetics.

Fig 6. Vascular kinetics is altered following culture of GFP+ ECs atop pUR4B or III-11C ECM. (A)GFP+ ECs were seeded on Chambers, III-11C-ECM
and pUR4B-ECM and were assessed for differences in vascular kinetics between hours 7 and 12 post-seeding. Graphs depict (B) total distance traveled, (C)
net displacement, (D) average velocity, and (E)mean square displacement of the GFP+ ECs. *p�0.05; **p�0.01; ***p�0.001. The error bars represent the
SEM.

doi:10.1371/journal.pone.0147600.g006
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Vascular organization is absent on ECMwithout a polymerized
fibronectin matrix
To address how polymerized fibronectin contributes to vascular morphogenesis, we cultured
ECs on de-cellularized co-culture ECM with or without a polymerized fibronectin matrix. In
this analysis, GFP-ECs were seeded on pUR4B-ECM, III-11C-ECM or Chambers as detailed
above. After 12 hours, ECs seeded on the Chambers exhibited no evidence of vascular organi-
zation, apparent as the cells have a sheet-like morphology with absence of any nuclear align-
ment into branched configurations (S8 Fig). A similar morphology was observed for ECs on
pUR4B-ECM, indicative of the absence of vascular organization (S8 Fig). In contrast, there was
some vascular organization observed for the ECs seeded on III-11C-ECM, evident from the
alignment of nuclei into branched configurations (S8 Fig). These data suggest that vascular
organization takes place on de-cellularized ECM in which a polymerized fibronectin matrix is
present.

Integrins α5β1 and αvβ3 are indispensable for vascular morphogenesis of
ECs on de-cellularized ECM
Since patterns of vascular kinetics and organization were altered on ECM lacking polymerized
fibronectin, we asked whether vascular morphogenesis would be disrupted in ECs, which could
not adhere to the fibronectin matrix. To address this question, we treated ECs with blocking
antibodies against the fibronectin integrins α5β1 and αvβ3 prior to seeding on de-cellularized
co-culture ECM. The combination of α5β1 and αvβ3 resulted in almost complete inhibition of
vascular morphogenesis (Fig 7Ai and 7B) while α5β1 block alone significantly reduced vascular
morphogenesis (Fig 7Aii and 7B) and αvβ3 block slightly retarded vascular morphogenesis (Fig
7Aiii and 7B) in comparison to IgG control (Fig 7Aiv and 7B). Evidence of vascular lumens
were seen for αvβ3 and control IgG treated ECs (Fig 7C), indicating that the structures assem-
bled into a 3D vascular network. Vascular lumens could not be identified for α5β1/αvβ3 and
α5β1 treated ECs on de-cellularized ECM (data not shown). These results indicate a role for a
polymerized fibronectin matrix in the directed assembly of vascular structures via integrins
α5β1 and αvβ3.

Discussion
A key aspect underlying both regenerative medicine and the field of cancer research is a more
complete understanding of how the cell’s microenvironment regulates angiogenesis. In this
manner, numerous groups have utilized 2D ECM coated surfaces or 3D matrices of natural
(e.g. fibrin or collagen) or synthetic sources of ECMmimetic materials to achieve these goals.
Undoubtedly, these studies have provided great depth of insight into how the composition of
the ECM in addition to its physical and mechanical attributes regulate cell behaviors. In this
study, we have attempted to gain a better understanding of how a purely biological, fibronec-
tin-rich matrix deposited from cells directs vascular morphogenesis. Overall, we found that
fibronectin is critical for vascular morphogenesis and matrix assembly in-vitro.

In an attempt to characterize fibronectin presentation in vascular structures formed atop
de-cellularized ECM, we utilized immunofluorescence and confocal imaging to detect the over-
all presentation of fibronectin in addition to other ECM proteins having known roles in angio-
genesis [35]. We observed negligible to minimal expression of collagens I and IV, respectively,
discovering increased expression of the collagenase MMP1 and the gelatinases MMPs 2 and 9
in ECs cultured atop de-cellularized matrices. Tenascin-C was primarily localized to the extra-
luminal surface of formed vascular structures, confirming a report by Berndt et al [36] who
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documented extra-luminal expression of tenascin-C in the vessels of tumors. While the func-
tional significance of this localization pattern is unknown, it is interesting to speculate that
tenascin-C may act to stabilize newly formed vessels. The ECM proteins most abundant follow-
ing culture of ECs atop de-cellularized matrices were fibronectin and laminin. Laminin was pri-
marily localized to the luminal surface of vascular structures, a puzzling observation as it is
predominantly localized in the basement membrane. Although unexpected, others have also
reported an apical expression of laminin. Wautier et al [37] reported localization of laminin α5
to the apical surface of HUVECs while Hillario et al [38] similarly observed localization of lam-
inin and the 67 kDa laminin receptor to the luminal surface of lung capillaries. It’s possible that
the luminal localization of laminin may help support vascular maturation, a function of

Fig 7. Inhibition of vascular integrin adhesion to a polymerized fibronectin matrix disrupts CLS formation. (A) Representative immunofluorescence
images of vascular structures treated with blocking antibodies to the fibronectin integrins α5β1;αvβ3, α5β1, and αvβ3 and control IgG. Top panel; low
magnification. Bottom panel; high magnification. Vascular structures are indicated with white arrows. (B)Quantification of CLS revealed near absent
vascular morphogenesis in ECs treated with anti-α5β1;αvβ3 antibodies while ECs treated with control IgG antibody possessed the greatest percentage of
CLS. (C) Vascular lumens were present in structures treated with anti-αvβ3 and IgG control antibody only. The dashed line indicates the corresponding
position of the lumen. Scale bars for cross sectional lumens are 10μM. *p�0.05; **p�0.01; ***p�0.001.

doi:10.1371/journal.pone.0147600.g007
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laminin reported by Thyboll et al [39]. Fibronectin, on the other hand, extensively enveloped
the newly formed vascular structures, implicating a potentially crucial role for this matrix pro-
tein in directing vascular network assembly. Unfortunately, we could not differentiate EC-pro-
duced fibronectin versus fibronectin pre-deposited in the de-cellularized matrix prior to
vascular morphogenesis. In future studies, it will be important to address the contributions
from each of these cell populations.

Vascular morphogenesis has previously been shown to be directed by fibronectin fibrillo-
genesis of ECs grown in 3D fibrin gels [8]. Given these results in addition to our observations,
we sought to determine whether fibronectin deposition by ECs cultured on ECM was similarly
responsible for directing vascular morphogenesis. To test this, we abolished fibronectin fibrillo-
genesis through use of a small peptide, pUR4B, which interferes with fibronectin polymeriza-
tion in the matrix [8, 9, 25]. We demonstrated that addition of pUR4B to ECs at the time of
seeding on de-cellularized ECM significantly decreased vascular morphogenesis in comparison
to control III-11C treated ECs. These results are in line with prior reports which indicate that
fibronectin fibrillogenesis is indispensable for neovessel formation in 3D fibrin gels [8]. While
pUR4B significantly disrupted vascular morphogenesis, it did not completely inhibit vascular
morphogenesis of ECs on ECM. It is unlikely that a higher concentration of pUR4B may have
achieved a greater effect on vascular morphogenesis as concentrations of 250 and 500nM gave
similar results. As a result, it’s reasonable to conclude that while pUR4B significantly disrupts
fibronectin fibrillogenesis resulting in reduced vascular morphogenesis of ECs cultured atop
de-cellularized ECM, the peptide may not completely block all fibronectin assembly. To deter-
mine whether our results were in line with data generated using commercially available soft-
ware, we utilized the angiogenesis function in Metamorph as previously reported [26–31].
Upon evaluating all images from pUR4B and III-11C treated ECs cultured atop de-cellularized
ECM, we observed that the sensitivity of this program to detect CLS in our culture setup was
low. This was apparent given the extensive presence of nodes or vascular junctions and regions
classified as vascular structures which did not correlate with the observed patterns of CLS orga-
nization in regions with higher pixel intensity. Given that the algorithm is best suited for ana-
lyzing CLS from ECs cultured on Matrigel or within a hydrogel matrix, a platform which yields
robust CLS, it’s likely that the software is not suitable for identifying CLS amongst other non-
CLS. In this manner, the complexity of CLS formed in our culture setup is not suitable for anal-
ysis using the angiogenesis function in Metamorph. While we believe that we can reliably char-
acterize CLS based on pixel intensity differences, we recognize that better imaging strategies
are necessary to identify and quantify CLS formed atop de-cellularized ECM. Together, these
results confirm an indispensable role for EC-produced fibronectin in vascular morphogenesis
of ECs cultured atop de-cellularized ECM. In future studies, it will be important to address dif-
ferences in vascular morphology, such as tube length and branching patterns, in structures
formed atop de-cellularized ECM in the presence and absence of pUR4B.

Given these findings, our next step was to address the role of the polymerized fibronectin
matrix on vascular morphogenesis. Previous work in our lab has demonstrated that co-cultures
of NuFF with MDA cells elaborated a rich fibronectin matrix [11]. With these former results in
mind, we treated co-cultures of NuFF and MDA cells with pUR4B and characterized the
deposited de-cellularized ECM for evidence of fibronectin polymerization. We observed absent
fibronectin polymerization in the matrix of co-cultures treated with pUR4B, but not in cultures
treated with control III-11C. The absence of fibronectin resulted in loss of tenascin-C and col-
lagen I fibers, two proteins known to interact with fibronectin [32]. Upon further examination
using ultrastructural analyses, we observed a marked decrease in matrix proteins in the de-cel-
lularized ECM from pUR4B treated co-cultures. Although the identities of these proteins are
unknown, they are most likely residual fibrillar proteins given their morphology. Importantly,
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we demonstrate that these results were not due to collagen I, reported to be a prerequisite for
fibronectin binding in the matrix [33]. Considering these observations, we evaluated the extent
to which other ECM proteins are co-deposited with a polymerized fibronectin matrix in the
de-cellularized ECM. Previously, it has been reported that fibronectin co-localizes with colla-
gen I, tenascin-C, fibrin and thrombospondin [12, 32]. Previous recent findings have reported
that fibronectin polymerization is necessary for assembly of collagen I [12, 40–42] and thro-
mospondin [12], highlighting the important role of fibronectin in matrix assembly. As
expected, we observed a high degree of co-localization of collagen I and tenascin-C with fibro-
nectin, collagen IV and laminin with fibronectin in co-culture ECM. Since binding sites for col-
lagen IV and laminin on fibronectin have not been reported, it’s possible that these proteins
may indirectly associate with fibronectin through other matrix proteins. Combined, these
results not only indicated that pUR4B inhibited fibronectin polymerization in the de-cellular-
ized matrix, but additionally pointed to a role for polymerized fibronectin in the directed
assembly of other matrix proteins.

Fibronectin has previously been shown to promote EC migration [5, 6, 43],[44, 45]. To
address the role of a biological, 3D polymerized fibronectin matrix on vascular kinetics, we
seeded ECs atop co-culture ECM lacking a polymerized fibronectin matrix. We discovered that
migration and velocity of migration were highest for ECs cultured in the absence of both an
intact ECM (e.g. Chambers) and a polymerized fibronectin matrix (e.g. pUR4B-ECM). EC
migration and velocity of migration were lowest on matrices containing a polymerized fibro-
nectin matrix (e.g. III-11C-ECM). Since our studies were performed using a 3D matrix as
opposed to a 2D matrix, we speculate that the presence and organization of the fibronectin
fibrils in the matrix may have played a role in these observations. However, given the marked
reduction of ECM from pUR4B treated co-cultures, we cannot rule out the possibility that
some of the observed effects of pUR4B-ECM on vascular behavior were a result of regions lack-
ing a polymerized matrix. In addition, given our observations where EC migration was greatest
in the absence of an intact ECM and on pUR4B-ECM and lowest on matrices containing poly-
merized fibronectin, it is likely that EC migration may be optimal at intermediate matrix con-
centrations and/or compositions. For example, Zaman et al [46] used a computational
approach to illustrate that cell migration is maximized in 3D matrices with intermediate stiff-
ness and ligand density. With regard to ECs, it was shown that EC attachment, spreading and
vascular network formation [47] and EC migration [48] is optimal on ECMmatrices of inter-
mediate density, observations which were subsequently validated computationally by Bauer
et al [49]. It is apparent that matrix density is an important feature regulating cell migration
and in future studies, it will be necessary to investigate whether the topographical and visco-
elasticity features of fibronectin relate to cell migratory behavior.

Previous work in our lab has shown that fibronectin patterning of 2D surfaces guided the
attachment and elongation of endothelial progenitor cells [7] while fibronectin patterning of
3D micropillars similarly promoted EC attachment and alignment [50]. To address the role of
a polymerized fibronectin matrix on patterns of vascular organization, we seeded ECs atop co-
culture ECM lacking a polymerized fibronectin matrix. We found that vascular organization,
evidenced as the presence of nuclear alignment and cellular organization, was absent for ECs
cultured on ECM lacking a polymerized fibronectin matrix. Vascular organization was, how-
ever, present on ECM containing a polymerized fibronectin matrix and were evident as early as
12 hours post-seeding. In all, these results support a role for polymerized fibronectin in the
directed assembly of vascular-like structures.

Integrins are transmembrane receptors which facilitate cellular interactions with the envi-
ronment. In particular, α5β1 and αvβ3 have not only been shown to bind to the fibronectin
matrix [4, 51–53], but have also been reported to facilitate EC activation and proliferation

Fibronectin and Angiogenesis

PLOS ONE | DOI:10.1371/journal.pone.0147600 January 26, 2016 21 / 27



through interactions with fibronectin [4]. As such, we evaluated whether vascular morphogen-
esis could be disrupted in ECs which could not bind to the fibronectin matrix. Using blocking
antibodies against α5β1 and αvβ3 integrins, we found that CLS from ECs cultured on de-cellu-
larized ECM was almost completely abolished. Blocking α5β1 and αvβ3 separately also signifi-
cantly reduced CLS, but not to the same extent as that observed for both α5β1 and αvβ3. These
results suggest that the combination of α5β1 and αvβ3 is crucial for vascular morphogenesis of
ECs on de-cellularized ECM and complement work by others who have reported that α5β1 and
αvβ3 were necessary for vascular morphogenesis of ECs suspended in a 3D fibrin gel [18]. We
do not believe our results stem from anti-integrin mediated effects on the interaction of ECs
with the de-cellularized matrix as no detectable differences in the presence of non-adhered
cells (e.g. cells floating in the media) were observed in anti-integrin treated ECs in comparison
to non-treated ECs. We recognize that αvβ3 also binds to vitronectin [54]. Although it will be
important to delineate a potential contribution for vitronectin in vascular morphogenesis of
ECs on de-cellularized ECM, we believe that fibronectin is the major player. Given our above
findings we speculate that both α5β1 and αvβ3 integrins facilitate vascular morphogenesis
through interactions with polymerized fibronectin in the de-cellularized ECM. Moreover, we
believe that αvβ3 may play a lesser role in vascular morphogenesis overall as blocking with α5β1
markedly reduced vascular morphogenesis. Considering our initial results, we propose that
ECs must first attach to a polymerized fibronectin matrix prior to vascular network assembly,
after which time EC-derived fibronectin fibrillogenesis helps drive vascular morphogenesis.

Conclusions
Overall, we report for the first time that a completely biological, cell derived polymerized fibro-
nectin matrix is indispensable for vascular morphogenesis and stromal matrix assembly. The
novelty of these studies lies in the use of a purely biological 3D cell-derived ECM, as opposed
to 2D cultures or 3D hydrogels of one protein (e.g. fibrin, collagen), from which to investigate
vascular morphogenesis and matrix assembly dynamics. As such, we have shown, using a small
peptide inhibitor of fibronectin fibrillogenesis, that we can de-couple the contribution of a
polymerized fibronectin matrix in vascular morphogenesis and matrix assembly from a myriad
of additional matrix proteins present in the de-cellularized 3D ECM. In this manner, we believe
these studies provide a more complete understanding of the micro-environmental factors regu-
lating vascular morphogenesis, knowledge that may be utilized for the construction of sophisti-
cated scaffolds designed to promote angiogenesis during tissue healing and regeneration. In
addition, these results may also translate to the field of cancer research. Since fibronectin is a
feature of solid tumors and their vessels [55–57], this research not only opens up opportunities
for investigation of a potential role for fibronectin in tumor initiation and angiogenesis, but
may additionally lead to the future development of agents which disrupt cancer and vascular
cell interactions with a fibronectin matrix during tumorigenesis. Finally, these studies promote
opportunities for better replicating the 3D in-vivo environment. For instance, future studies
could investigate how ECs, sandwiched between layers of ECM, undergo vascular morphogen-
esis in response to matrix cues presented to both the basal and apical surfaces of the ECs.

Supporting Information
S1 Fig. Vascular structures grown atop de-cellularized matrix express several ECM pro-
teins. Low magnification immunofluorescence images of vascular structures depict the overall
presentation of ECM proteins collagens I and IV, tenascin-C and fibronectin following vascular
morphogenesis of ECs on de-cellularized co-culture ECM.
(TIF)
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S2 Fig. Fibronectin inhibition does not significantly affect fibronectin gene and protein
expression in ECs following vascular morphogenesis. (A) Baseline fibronectin expression in
co-culture and EC media. Results show fibronectin expression in the absence of cell produced
fibronectin. (B) qRT-PCR and (C) western blot of fibronectin expression in ECs treated with
pUR4B and control III-11C peptides at the time of seeding on de-cellularized co-culture ECM.
�p�0.05; ��p�0.01; ���p�0.001. (D) Images of phalloidin-stained vascular structures before
and after threshold using ImageJ. Thresholded images were used for analysis of the percent
area occupied by CLS. Arrows indicate the presence of CLS in non-thresholded images.
(TIF)

S3 Fig. CLS analyses using the angiogenesis tool in Metamorph. Images of CLS were gener-
ated using the angiogenesis tool in Metamorph. Images are from pUR4B (inhibitor) and con-
trol III-11C treated ECs cultured for 24 hours atop de-cellularized ECMmatrices. The white
regions are indicative of vascular structures while the green regions are indicative of nodes or
vascular junctions. These nodes occupy a majority of the highlighted regions in both images.
For comparison, the same images are shown before (top panel) and after thresholding (bottom
panel), which was used to identify structures based on differences in pixel intensity.
(TIF)

S4 Fig. Fibronectin inhibition reduces the intensity of fibronectin expression in vascular
structures. Confocal images of vascular structures treated with pUR4B and control III-11C
peptides at the time of seeding on de-cellularized ECM. Images for pUR4B and control III-11C
illustrate fibronectin expression in the first and last 3 sets of z stacks for vascular structures.
Image 1 corresponds to the top of the well while image 6 corresponds to the bottom of the well.
The intensity of fibronectin expression was greatest for vascular structures treated with control
III-11C and lowest for vascular structures treated with the pUR4B inhibitor. Images were
obtained using the same microscope settings.
(TIF)

S5 Fig. Fibronectin inhibition eliminates fibronectin fibrillogenesis in the co-culture
matrix but does not alter fibronectin gene or protein expression. (A) Representative phase
contrast images of pUR4B treated and untreated NuFF/MDA231 co-cultures prior to de-cellu-
larization. (B) Representative immunofluorescence images of fibronectin in de-cellularized
ECM from untreated, control III-11C treated and pUR4B treated co-cultures. (C) qRT-PCR
and (D) western blot of fibronectin expression in control III-11C treated and pUR4B treated
co-cultures. (E) Analysis of cell proliferation in untreated, control III-11C treated and pUR4B
treated co-cultures. �p�0.05; ��p�0.01; ���p�0.001.
(TIF)

S6 Fig. Inhibition of collagen I deposition does not alter fibronectin fibril formation in co-
cultures. (A) Representative immunofluorescence images of NuFF cells treated with 100nM of
halofuginone for 24 hours. Collagen I fibrils are observed with fibronectin fibrils in control
NuFF cells, but are absent in halofuginone treated NuFF despite the presence of extracellular
fibronectin fibrils. (B) Immunofluorescence images of control NuFF cells illustrate the absence
of tenascin-C where fibronectin fibrils are observed. HF: Halofuginone.
(TIF)

S7 Fig. Final trajectories of GFP+ ECs seeded on the various treatment conditions. (A) ECs
were transduced with lentiviral GFP and were sorted into GFP+ and GFP- subpopulations.
Corresponding phase contract and fluorescence images were taken of both populations. These
images depict the high fluorescence observed for the GFP+ subpopulation and the lack of
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fluorescence observed for the GFP+ subpopulation. Scale bars = 100μM. (B) The migration of
the GFP+ ECs was monitored by tracking their positions every 15 minutes for a total of 5
hours. These images show the cells’ trajectories after the 5-hour time period. The top panel
depicts trajectories with cells and the bottom panel depicts trajectories without the cells. The
ECs are in grey scale while different colored lines represent the trajectories of random selected
cells. The 5-hour trajectories were used to determine the total distance traveled by the ECs on
each of the scaffolds.
(TIF)

S8 Fig. Inhibition of fibronectin fibrillogenesis in the de-cellularized matrix prevents vas-
cular organization. Confocal images were taken of GFP+ EC organization following growth
on Chambers, III-11C-ECM and pUR4B-ECM. All images were acquired 12 hours post-seed-
ing. Differences in vascular organization were evident from each of the tested conditions. ECs
on Chambers and pUR4B-ECM have a sheet-like morphology with no evidence of nuclear
alignment. ECs on III-11C-ECM exhibit vascular organization, evident by the presence of
nuclear alignment into branched-like structures. These organized structures are indicated with
white arrows. Scale bars = 100μM.
(TIF)

S1 Table. List of antibodies and dilutions used in study.
(DOCX)
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