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A B S T R A C T   

In this study, we jointly modeled longitudinal CD4 count data and survival outcome (time-to-first occurrence of 
composite outcome of death, cardiac tamponade or constriction) in other to investigate the effects of Myco
bacterium indicus pranii immunotherapy and the CD4 count measurements on the hazard of the composite outcome 
among patients with HIV and tuberculous (TB) pericarditis. In this joint modeling framework, the models for 
longitudinal and the survival data are linked by an association structure. The association structure represents the 
hazard of the event for 1-unit increase in the longitudinal measurement. Models fitting and parameter estimation 
were carried out using R version 4.2.3. The association structure that represents the strength of the association 
between the hazard for an event at time point j and the area under the longitudinal trajectory up to the same time 
j provides the best fit. We found that 1-unit increase in CD4 count results in 2 % significant reduction in the 
hazard of the composite outcome. Among HIV and TB pericarditis individuals, the hazard of the composite 
outcome does not differ between of M.indicus pranii versus placebo. Application of joint models to investigate the 
effect of M.indicus pranii on the hazard of the composite outcome is limited. Hence, this study provides infor
mation on the effect of M.indicus pranii on the hazard of the composite outcome among HIV and TB pericarditis 
patients.   

1. Introduction 

In some studies design, it is required that study subjects be followed 
over a specified period of time in order to study the dynamics or evo
lution of the outcome of interest. Such study design requirement is 
common in Biostatistics and medical research and study design of such 
nature is referred to as longitudinal study design [1–4]. In longitudinal 
study design, which often occur in repeated measures designs, mea
surements are recorded repeatedly on a response variable of interest for 
each patient at some selected scheduled visits or time points. In addition 
to the longitudinal measurements, it is common in most medical 
research settings to also record data on time to first occurrence of an 
event such as time to death, recovery from a disease, progression to a 
disease, etc. The time to event data are often referred to as survival data. 

Longitudinal and survival data can be modeled separately and 
methods for such separate analysis are well established in the literature, 
where the mixed-effects models [5] are used for modeling the 

longitudinal part of the data and the Cox proportional hazards (PH) 
models [6] are used for the time-to-event data (survival data). However, 
evolution or dynamics of the repeated measurements of the response 
variable, on the same subject, is most likely to be influenced by the event 
occurrence, making them endogenous [7,8]. This gives an indication 
that the measurement value at a given time point provides information 
about the future occurrence or non-occurrence of the event of interest 
[8]. Also, the response profiles of subjects are influenced by the occur
rence of the event. 

Consequently, separate analyses of the longitudinal data and the 
survival data would not be able to account for this relationship between 
the two outcomes and would not able to provide information about the 
strength of the association between the two outcomes. One solution to 
this problem to use estimated parameters from the mixed-effects models 
as covariates in the survival model. However, this approach has been 
shown to produce invalid statistical inferences as it suffers from 
increased bias in estimation of parameter estimates and loss of efficiency 
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[9,10]. This problem is avoided by joint modeling of longitudinal and 
time-to-event data [9–13] since this reduces bias in parameter estima
tion and increases the efficiency of parameter estimates. Joint modeling 
simultaneously estimate both longitudinal and survival components and 
they shown to provide better estimates because they estimate jointly the 
relative risk of the time-to-event outcome taking into account the lon
gitudinal outcome [14–18]. A joint model is made up of two sub-models, 
a model for the longitudinal data and a model for the survival data, 
linked by an association structure [19]. The most commonly used joint 
modeling framework is the shared-parameter modeling framework, 
where it is assumed that the two sub-models are linked through or 
shared common random effects. These random effects accounts for the 
association between the two sub-models and also the correlation be
tween the repeated measurements. 

Joint modeling has received much attention in biostatistics and 
medical research [11,20–27]. For instance, Abdi et al. [20] investigated 
the association between longitudinal exposure to mycophenolic acid 
(MPA) and acute rejection (AR) risk in the first year after renal trans
plantation using the joint modeling framework. These authors adjusted 
for risk factors such as monitoring strategy (fixed-dose versus 
concentration-controlled) and age of the recipient. Other authors [22] 
applied the joint model and Multistate Markov for the analysis of the 
association between Red blood cell distribution width (RDW) as an in
dependent predictor for adverse outcome (all-cause mortality and 
occurrence of anemia) in patients with heart failure (HF). 

Also, separate and joint models has been developed under the 
Bayesian modeling framework for longitudinal measurements and time 
to death event data of HIV/AIDS patients, where the linear mixed effects 
model (LMEM) [5], assuming homogeneous and heterogeneous CD4 
variances, is used for modeling the CD4 counts and a Weibull survival 
model is used for describing the time to death event [25]. Serrat et al. 
[26] described and implemented frequentist and Bayesian shared- 
parameter joint models on longitudinal measurements of prostate- 
specific antigen (PSA) and the risk of prostate cancer (PCa), where the 
results showed that PSA is highly associated with the risk of being 
diagnosed with PCa and that there is an age-varying effect of PSA on PCa 
risk. The authors revealed that both the frequentist and Bayesian para
digms produced similar parameter estimates as well 95 % confidence 
and credibility intervals. Long et al. [28] study applied a multivariate 
joint model on several longitudinal observational studies of Hunting
ton’s disease and then examined external validity performance where 
they computed individual-specific predictions for characterizing disease 
progression. 

Joint models can also be applied in other disciplines. For instance, 
various authors have applied joint models in behavioral studies to 
evaluate the associations between the longitudinal measurements and 
the survival data [29–31]. That is, Ghisletta [30] simultaneously fitted a 
multivariate, multilevel longitudinal model and a Weibull survival 
model to investigate whether individual performance and change in 
speed and fluency predict survival, adjusting risk factors such as con
trolling for retest effects, initial age, gender, overall health, socioeco
nomic status, and sensory functioning. Ghisletta et al. [29] used 
statistical model that combines longitudinal and survival components to 
evaluate the influence of level and change in cognition on age at death in 
old and very old individuals. In their study, the longitudinal models on 
cognition adjusted for dementia diagnosis and retest effects, whereas the 
survival models on age at death adjusted for age, sex, socioeconomic 
status, sensory and motor performance, and broad personality 
characteristics. 

In other to model trajectories of visuospatial reasoning measured 
using Kohs Block Design test under realistic missing data assumptions 
and evaluate their association with hazard of death, Muniz et al. [31] 
used a joint model for the longitudinal measurements and time to event 
data to estimate trajectories of visuospatial reasoning under a missing 
not at random assumption and conduct Sensitivity analyses to missing 
data assumptions [32–34]. Using prose recall scores from the Swedish 

OCTO-Twin Longitudinal Study of Aging, Terrera et al. [35] imple
mented a joint longitudinal-survival model to investigate the association 
between risk of mortality and individual differences in rates of change in 
memory with the mized effects model [5] assumed for the change in 
memory scores as following an accelerating decline trajectory and a 
Weibull survival model for the time to event. Cekic et al. [8] are of the 
view that lack of an accessible and clear guidance on how to implement 
joint models continue to hinder non-expert users from using such models 
appropriately or not using them. These authors have provided expla
nation on the basic features of the joint modeling framework for longi
tudinal and time-to-event data for users who are familiar with mixed- 
effects and survival models and there is a step by step guidance for 
readers to understand the basic concepts of joint modeling and expla
nation on how to apply this methodology to their own research data [8]. 

In this study, we used the joint modeling framework [10–13] to 
jointly model continuous longitudinal CD4 count measurements and 
time to first composite outcome of death, cardiac tamponade or 
constrictive pericarditis in patients with TB pericarditis [36–38]. The 
aim is to evaluate the effect of the longitudinal CD4 count measurements 
on the time-to-first occurrence of composite outcome of death, cardiac 
tamponade or constrictive pericarditis adjusting for risk factors of the 
survival outcome (outcome). For the dropout component of the joint 
model, we assume that the data are missing at random (MAR) [34,39]. 
One may also investigate the impact of the missing data on statistical 
inferences about the outcome by formulating sensitivity analysis to non- 
random dropout mechanism [2,3,40]. Sensitivity analysis to missing 
data is not the aim of this study since it has been demonstrated using 
various sensitivity analyses methods [2,3,40] that the CD4 count mea
surements are missing at random. The key hypotheses that derive this 
study are (1) there is a strong association between CD4 count mea
surements and the hazard of the outcome (2) treatment increases CD4 
count level and CD4 count level also improves survival and (3) there is 
no interaction between M.indicus pranii injection and ART treatments. 

2. Methods 

In this section, we presented a brief overview of the joint model for 
longitudinal and survival data [12,13,41,42]. We then discussed the 
IMPI trial and presented description of the longitudinal and survival 
outcomes. We also discussed parameter estimation, models comparison 
and selection. 

2.1. Joint modeling framework for longitudinal and survival data 

Let Ti represents the observed event time for the i th subject (i = 1,⋯,

N). We define Ti as the minimum of the true event time Tt
i and the 

censoring time Ci, expressed as Ti = min
(
Tt

i ,Ci
)
. Additionally, denote 

the event indicator as δi = I
(
Tt

i ≤ Ci
)
, where I(⋅) is the indicator function 

that equals 1 if the condition Tt
i ≤ Ci holds, and 0 otherwise. Conse

quently, the observed data for the time-to-event outcome comprise the 
pairs {(Ti, δi), i = 1,⋯,N }. Given the longitudinal responses, let yi(j),
where j = 1,2,⋯, n, represent the longitudinal measurements. 

The primary goal is to link the true and unobserved value (mi(j)) of 
the longitudinal outcome at time j with the event outcome Tt

i . It is crucial 
to emphasize that mi(j) differs from yi(j), with mi(j) representing the 
longitudinally observed outcome at time j subject to measurement error. 
In this case, the model for the longitudinal measurements can be written 
as [13,41–45] 

yi(j) = mi(j) + εi(j) == x⊤i (j)β + z⊤i (j)bi + εi(j), εi(j) ∼ N
(
0, σ2) (1)  

where, β represents the vector of unknown fixed-effects parameters, bi is 
a vector of random effects, xi(j) and zi(j) are row vectors of the design 
matrices for the fixed and random effects, respectively. Additionally, 
εi(j) is the measurement error term, assumed to be independent of bi, 
with a variance of σ2. The joint for the survival and longitudinal out
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comes can be expressed as: 

hi(j|Mi(j),ωi) = h0(j)exp{γ⊤ωi + α1μi(j) } (2)  

where Mi(j) = {mi(u),0 ≤ u < j} represents the history of the true un
observed longitudinal process up to time point j, and ωi is a vector of 
baseline covariates with a corresponding vector of regression co
efficients γ for the baseline covariates in the survival model, μi(j) =
xi(j)β+zi(j)bi +εi(j) is the model (1) for the longitudinal model and α1 
linked the two model two models and represents the hazard ratio of the 
event for every one-unit increase in the current value μi(j) [7,8,44] 

We can also consider a joint model which assumes that the hazard of 
experiencing the event at time j is associated both with the current rate 
of change μ′

i(j) (i.e., slope) at time j and can be written as 

hi(j|Mi(j),ωi) = h0(j)exp
{

γ⊤ωi +α2μ′
i(j)

}
(3) 

Alternatively, one can also assume that the hazard of experiencing 
the event at time j is associated both with the true value μi(j) of the 
longitudinal process at time j and its current rate of change μ′

i(j) (i.e., 
slope) at time j. In this case, the model (2) can be written as 

hi(j|Mi(j),ωi) = h0(j)exp
{

γ⊤ωi +α1μi(j)+ α2μ′
i(j)

}
,

(4)  

where α2 represents the association parameter for the current rate of 
change for the longitudinal process. 

However, the assumption that the risk for an event at any time j is 
associated with the current value μi(j) and current slope μ′

i(j) of the 
longitudinal process at the same time point may not always be realistic, 
as these models do not consider the longitudinal history of the CD4 
count. Reparametrized the joint model to account for the realistic 
structure of the longitudinal process may yield more accurate estimates 
of the event hazard [46]. In this case, the model (2) can be expressed 
[41,47] 

hi(j|M i(j)) = h0(j)exp

{

γ⊤wi(j)α3

∫ j
0 μi(u)du

j

}

(5) 

The model (5) indicates that for any given time j, the association 
parameter α3 measures the strength of the association between the 
hazard for an event at time point j and the area under the longitudinal 
trajectory up to the same time j. 

On the other hand, the joint model may be specified such that the 
hazard of the event at time j is associated with the current value μi(j), its 
current rate of change μ′

i(j) (slope) at time j and the area under the 
longitudinal trajectory up to the same time j. In this case, the model (2) 
can be written as 

hi(j|M i(j)) = h0(j)exp

{

γ⊤wi(j)+α1μi(j)+α2μ′
i(j) +α3

∫ j
0 μi(u)du

j

}

(6)  

To ease communication in our write-up, we refer to joint models (2), (3), 
(4), (5), and (6) as JM1,JM2,JM3,JM4, and JM5 respectively. 

2.1.1. Parameter estimation and models comparison 
There are several available joint-modeling packages (JMbayes, 

joineR, lcmm, frailtypack, rstanarm and bamlss) in the open-source R 
environment for statistical computing (RCore Team, 2017) for esti
mating parameters from the joint model [8]. However, the JMbayes2 
package [10,11,42] is the most comprehensive, extensible, and flexible 
for such joint modeling. Joint modeling can also be carried out in other 
standard statistical software such as SAS/STAT, Stata, WinBUGS, and 
JAGS [16]. In this paper, we used the JMbayes2 package with JM 
function [7,8,11,12] to estimate parameters in the joint model. 

We compared the joint models using the compare_jm() function from 
JMbayes2 package to select the best fitting joint model (JM). The 

compare_jm() function compares fitted joint models using the deviance 
information criterion (DIC) [48] and Watanabe-Akaike information 
criterion (WAIC) [49], which is the generalized version of the Akaike 
information criterion (AIC). The model with the lowest DIC and WAIC is 
selected as the best fitting model. 

2.2. Description of the IMPI trial data 

In this section, we present discussion on the IMPI trial and then 
described the longitudinal and the survival data. This is because the 
longitudinal and survival outcomes would be used in the joint model. 

In this paper, we used data from the IMPI trial [38,50]. The IMPI trial 
was a multicentre international randomized doubled-blind placebo- 
controlled 2 × 2 factorial study [38,50]. The IMPI trial investigated the 
effects of two TB treatments, prednisolone and Mycobacterium indicus 
pranii (M. indicus pranii) immunotherapy, in patients with TB pericar
ditis (TBP) patients in Africa. TBP is a TB that occurs in the heart and is 
an important complication of tuberculosis, which diagnosis can be 
difficult to establish and is often delayed or missed, resulting in late 
complications such as composite outcome (death, cardiac tamponade or 
pericardial constriction) and increased mortality [51]. Patient who met 
the inclusion criteria, defined in the IMPI trial study, were randomized 
into four treatment arms. Randomized patients received combination of 
either M+P+or M+P- or M- P+or M- P-, where M+ and M- denote the M. 
indicus pranii and its corresponding placebo arm and P+ and P- denote 
prednisolone and its corresponding placebo arm. In the IMPI trial, a 
sample size of 1400 patients with definite probable tuberculosis peri
cardial effusion, from 9 African countries in 19 centres were enrolled in 
the four-year trial. Patients who meet the inclusion criteria were ran
domized to receive oral pill prednisolone for 6 weeks and M. indicus 
pranii or placebo for 3 months. In general, after randomization at 
baseline week 0, patients were followed up at weeks 2, 4, and moths 3 
and 6 during the intervention period and 6-monthly thereafter for up to 
4 years [50]. Randomized patients discontinue M. indicus pranii treat
ment after 3 months due to side effect [50,52] and hence analysis of data 
associated with M.indicus pranii is restricted to weeks 0, 2, 4 and 3 
months data. 

For the comparison of prednisolone with placebo, 706 patients were 
assigned to receive prednisolone and 694 to receive placebo. For the 
comparison of M. indicus pranii with placebo, 625 were assigned to 
receive M. indicus pranii and 625 to receive placebo. The trial was 
powered for a rate of non-adherence of 10 % in the active-treatment 
groups. This rate was almost achieved (with non-adherence rate of 11 
%) in the prednisolone group and non-adherence rate was higher in the 
M. indicus pranii group (21 %), owing mainly to injection-site side ef
fects [50]. Also, there was approximately 133(18.8 %) and 115 (16.6 %) 
all causes of deaths for prednisolone and placebo respectively [50,52]. 

The IMPI trial aim was to assess the effectiveness and safety of oral 
pill prednisolone and M.w injection in reducing the time to first occur
rence of the primary composite outcome of death, pericardial constric
tion, or cardiac tamponade requiring pericardial drainage in patients 
with TB pericardial effusion [50,52]. These authors have revealed that 
there is no interaction between the two TB treatments and hence M. 
indicus pranii and its corresponding placebo arm as well as prednisolone 
and its corresponding placebo arm were analyzed separately [50,52]. 

For the longitudinal outcome, we used CD4 count measurements. 
This study restricted the analysis to patients who have at least two CD4 
count values observed. We considered analysis of M. indicus pranii 
versus placebo arms. The analysis of CD4 count data is restricted to the 
mandated periods for CD4 count measurements; baseline week 0, week 
2 (0.5 months), months 1 and 3. In this study, we implemented the joint 
model to the monotone missing CD4 count data and time to composite 
outcome of death, cardiac tamponade or pericardial constriction as a 
survival outcome. For monotone missing data, if the ith patient is 
missing at schedule visit time j, then this same patient will be missing at 
the next scheduled visit time j + 1. This means that, if the ith patient’s 
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value is missing at a particular scheduled visit time point, then such 
patient’s values would be missing in the remaining schedule visit times. 
However, analysis can be repeated for the non-monotone and both an
alyses have shown to produce identical statistical inferences [2]. 

2.2.1. Description of the monotone CD4 count data 
Out of the 584 HIV + patients, the monotone data consist of 126 HIV 

+ patients with 55 were in the placebo arm and 71 in the M.indicus 
pranii arm. Some patients dropped out at month 0.5 or month 1 and 
some completed the study (clearly shown in the bottom panel of Fig. 1). 
The top-left panel of Fig. 1 showed the observed 

̅̅̅̅̅̅̅̅̅̅̅
CD4

√
count profiles 

plots for all subjects. The right panel of Fig. 1 displays the mean 
̅̅̅̅̅̅̅̅̅̅̅
CD4

√

count profiles plots by treatment arm and shows that CD4 count level 
increase across the measurement visits and M.indicus pranii arms and a 
linear trend in the CD4 count measurement in both the placebo and M. 
indicus pranii arms. 

The top-right panel of Fig. 1 showed possible interaction between 
treatment and time, so we included treatment and time interaction term 
in the fitted linear mixed model. Table 1 gives the number and pro
portion of patients remaining at each visit by treatment arms. There is a 
lower completion rate 37 (67 %) in the placebo arm, compared with 50 

(70 %) in the M.indicus pranii treatment arm. 
We have provided summaries of the main outcome 

̅̅̅̅̅̅̅̅̅̅̅
CD4

√
count) 

stratified per dropout patterns and treatment groups, as a function of 
time in Table 2. There are three dropout patterns and the Table 2 shows 
the mean 

̅̅̅̅̅̅̅̅̅̅̅
CD4

√
count for each of the patterns at each visit by treatment 

arm. The dropout patterns 3, 2 and 1 represent completers (those pa
tients who completed the study) and those who dropped out at months 3 
and 1 respectively. The distributions of the patterns of missingness be
tween the two treatment groups do not differ (chi-squared test statistic 
= 3.5, p = 0.825). 

Fig. 2 shows the profile plots of the mean 
̅̅̅̅̅̅̅̅̅̅̅
CD4

√
count of the three 

deviation patterns for patients in the placebo and M.indicus pranii 

Fig. 1. Individual profiles plots of the monotone 
̅̅̅̅̅̅̅̅̅
CD4

√
count data (top-left panel), the mean 

̅̅̅̅̅̅̅̅̅
CD4

√
count (top-right panel), and profiles plots of some selected 

subjects’ 
̅̅̅̅̅̅̅̅̅
CD4

√
count (bottom-left panel), by treatment arms. 

Table 1 
Percentage of patients remaining in the study at each visit.   

M.w Placebo 

Month N(%) N(%)

0 55(100) 71(100)
0.5 55(100) 71(100)
1 47(85) 63(89)
3 37(67) 50(70)
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groups. This figure gives an indication that the 
̅̅̅̅̅̅̅̅̅̅̅
CD4

√
count increases 

over time. Fig. 2 agrees with the mean profiles plot and Fig. 1 that there 
is slight increase in the 

̅̅̅̅̅̅̅̅̅̅̅
CD4

√
count among patients in the placebo arm 

compare with those in M.indicus arm. 

2.2.2. Description of the survival data 
The survival outcome in this study is time-to-first occurrence of 

composite outcome of death, constrictive pericarditis or cardiac tam
ponade. We have also noted previously that the main objectives of 
survival analysis are to derive and describe the distribution of survival 
times as well as investigate how survivals time is affected by covariates 
or risk factors. Both the life-table and Kaplan-Meier methods [53–55] 
can be used to estimate survival probabilities. However, the Kaplan- 
Meier method has advantage over the life-table [55]. We estimate the 
survival probabilities of the composite outcome in both treatment group 
(M.indicus pranii versus placebo) using the Kaplan-Meier method and 
then assess significance difference in the incidence of experiencing the 
event in both groups using the log-rank test presented in Fig. 3. 

The Kaplan-Meier curves crossed, an indication that there is no sig
nificant difference in the risk of composite outcome between M.indicus 
versus placebo groups. The log-rank Chi-square = 0.69, p-value =
0.4071) also confirm this conclusion of no significance difference in the 
risk of the composite outcome between the two treatment groups. 

3. Results 

This section, we analyzed and provide interpretation of results from 
the best fitting joint model. 

3.1. Analysis and results from the joint model for the longitudinal and 
survival data 

We considered a joint model (JM1-model (2)) where it is assumed 

Table 2 
Mean √CD4 count measurements at each visit by dropout pattern and treatment arm.  

Dropouta pattern Dropout time (months) N(%) 

0 0.5 1 3  

Placebo arm 
3 14.014 15.284 14.625 17.045 37(67)
2 9.835 11.664 12.006 – 10(85)
1 11.971 9.662 – – 8(1)
All patients mean (std) 12.957(5.237) 13.808(5.217) 14.068(5.355) 17.045(5.101) 55(100)

M.w arm 
3 13.238 14.171 14.292 16.696 50(70)
2 12.038 14.252 15.852 – 13(89)
1 9.04 12.546 – – 8(16)
All patients mean (std) 13.126(6.276) 14.003(5.785) 14.614(6.324) 16.696(5.072) 71(100)

a std is standard deviation, Dropout patterns: 3 = subjects who had all measurements up to 3 months (completers), 2 = subjects who had measurements up to 1 
month, 1 = subjects who had measurements up to 0.5 month. 

Fig. 2. Profile plots of the mean of the 
̅̅̅̅̅̅̅̅̅
CD4

√
count for each deviation pattern under the placebo arm (left panel) and the M.indicus pranii arm (right panel). Red 

pattern: group of patients who completed the study (completers); blue pattern: group of patients who dropped out after month 3; green pattern: group of patients who 
dropped out after month 1. 

Fig. 3. Survival time probabilities of time to composite outcome of death, 
cardiac tamponade or pericardial constriction. 
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that the hazard of experiencing the event at time j is associated with the 
current value μi(j) of the longitudinal process at time j. This joint model 
has the form 

Results from this joint model for the longitudinal sub-model (LsubM) 
and survival sub-model (SsubM) are shown in Table 3. The association 
parameter α1 suggests that CD4 count is significantly associated with the 
hazard of the composite outcome. That is, an increase in the level of CD4 
count results in approximately 11 % (95 % CI: [0.854, 0.904]) signifi
cant reduction in the hazard of the composite outcome. There is also 
considerable variability captured by the random effects in the longitu
dinal sub-model. 

The results showed that the hazard of the composite outcome 
decreased by 75 % among those in the M.indicus pranii arm relative to 
those in the placebo arm. The hazard of the composite outcome 
decreased by 85 % among those who were ever on ART during at study 
compared with those who were never. There was no significant M.indicu 
pranii and ART interaction effect with 6.5-fold increase in the hazard of 
the composite outcome. There is an increased hazard of the composite 
outcome among patients who are 46 years and above relative to those 
who are below 46 years. The joint model results also revealed that there 
is no baseline TB medication effect. However, there is 1.8-fold increased 
in the hazard of the composite outcome. Insignificant reduced hazard of 
the composite was observed among gender groups. 

Since the association parameter is significant and may results in 
changes in estimates and conclusions, we considered the different 
parametrization in models (3), (4), (5), and (6) and compared these 
models. The joint model (2), JM1, is already specified in model (7). The 
joint models (3), (4), (5) and (6), referred to as JM2, JM3, JM4, and 
JM5 are respectively specified in equations (A.1), (A.2), (A.3) and (A.4) 
in Appendix A. 

These models were fitted and compared using the deviance infor
mation criterion (DIC) and Watanabe Akaike information criterion 
(WAIC) presented in Table 4. It can be observer that, among the 

candidate models fitted, the model with the lowest DIC and WAIC is the 
JM4, making JM4 the best fitting joint model for the longitudinal CD4 
count measurements and the time to first occurrence of the composite 
outcome. 

4. Discussion 

In this paper, we investigated the impact of longitudinal CD4 count 
measurements on the hazard of time-to-first occurrence of composite 
outcome of death, cardiac tamponade or constriction [56]. We also 
investigated the effects of M.indicus pranii, ART, M.indicus pranii-ART, 
age, gender and baseline TB medication on the hazard of the composite 
outcome. This was achieved using a joint model for the longitudinal and 
survival outcomes. In this joint model, the linear mixed-effects model 
[5] was assumed for the longitudinal outcome and the Cox-proportional 
hazard model [6] for the survival outcome. These models were then 
modeled jointly, where the models were linked by an association 
structure which accounts for the association between the models 
[10–13,41,45]. 

Table 3 
Parameter estimates from separate models for longitudinal and survival out
comes and joint model for the sub-models.  

LsubM 

Variable Est. s.e 95% CI 

Intercept 14.80 1.288 (12.326,17.369)
Month − 2.50 0.920 ( − 4.353, − 0.987)
M.indicus pranii − 1.84 1.391 ( − 4.743,0.751)
M.indicus pranii × Month 4.37 1.192 (2.435,6.760)
ART 4.18 1.445 (1.521,7.246)
M.indicus pranii × ART − 2.25 1.710 ( − 5.838,0.924)
Age − 1.07 1.875 ( − 4.714,2.661)
TBmed 1.02 1.683 ( − 2.354,4.254)
Gender − 1.21 1.033 ( − 3.229,0.815)
G δ   
G11(δ) 32.676   
G22(δ) 8.049   
SsubM    
Variable HR s.e 95% CI 
M.indicus pranii 0.254 0.947 (0.030,1.241)
ART 0.152 0.824 (0.028,0.754)
M.indicus pranii × ART 6.540 1.126 (0.798,70.105)
Age 1.368 0.666 (0.366,5.094)
TBmed 1.767 0.831 (0.375,9.346)
Gender 0.590 0.496 (0.224,1.606)
α1 0.992 0.0011 (0.989,0.993)

Table 4 
Joint models comparison using DIC and WAIC.  

JM Association Structure DIC WAIC 

JM1 α1μi(j) 1.710178e + 08 6.556393e + 18 
JM2 α2μ′

i(j) 6.257170e + 26 7.825283e + 55 
JM3 α1μi(j) + α2μ′

i(j) 3.277127e + 18 2.952213e + 39 
JM4 

α3

∫ j
0 μi(u)du

j 

4.769682e + 07 2.453573e + 17 

JM5 
α1μi(j) + α2μ′

i(j) + α3

∫ j
0 μi(u)du

j  

3.241171e + 13 5.412782e + 28 

Parameter estimates (Est.), hazard ratios (HR), standard errors (s.e) and 95 % 
confidence intervals (95 % CI), from the best fitting model JM4, specified in 
model (A.3), are presented in Table 5. The association parameter α3 indicates 
significant association between the hazard of the composite and longitudinal 
outcomes and results in approximately 1-exp(0.98) = 2 % (HR = 0.98, 95 % CI: 
[0.977, 0.986] significant reduction in the hazard of the composite outcome. 
The hazard of composite outcome reduced by 1-exp(0.98) = 74 % (HR = 0.0.26, 
95 % CI: [0.033, 1.229] among patients in the M.indicus pranii arm relative to 
those in the placebo arm. However, this reduction is not statistically significant. 
There is 1-exp(0.15) = 85 % significant reduction in the hazard (HR = 0.15, 95 
% CI: [0.024, 0.657] of the composite outcome among patients who received 
ART at each visit relative to those who did not. For M.indicus pranii-ART 
interaction, we observed 6.23-fold increase in the hazard (HR = 6.23, 95 % 
CI: [0.879, 77.751] of the composite outcome. However, the interaction effect is 
not statistically significant. The hazard (HR = 1.34, 95 % CI: [0.323, 4.968] of 
the composite outcome increased by approximately 34 % among patients who 
are 46 years and above compared with those who are below 46 years. There is a 
reduced hazard of the composite outcome among those who are males compared 
with those who females. However, this effect was not statistically significant. A 
considerably higher variability in the longitudinal measurements has been 
captured by the joint model.  

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yi(j) =mi(j)+ εi(j)̅̅̅̅̅̅̅̅̅̅̅̅
CD4ij

√
=(β0 +b0i)+(β1 +b1i)tij +β2M.indicusi +β3

(
M.indicui × tij

)
+β4ARTij

+β5
(
M.indicui ×ARTij

)
+β6 agegrp i +β7 TBmedi +β8 gender i +∊ij,

hi(t)= h0(t)exp{β1 M.indicui +β2 ART i +β3( M.indicui × ART i)+β4 agegrp i }

×exp{β5 TBmed i +β7 gender i +α1μi(j)}.

(7)   
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Parameters in the joint model were estimated using the JM function 
from JMbayes2 package in Rsoftware [8,11–13,41] For the joint model, 
different joint models, differed by the association structures, we fitted, 
compared and best model selected. The best fitting joint model JM4, 
model (A.3) assumes that for any given time j, the association structure 
represents the strength of the association between the hazard for an 
event at time point j and the area under the longitudinal trajectory up to 
the same time j. This finding agrees with the finding by et al. [57]. It is 
important to note there is no one particular parameterization or asso
ciation structure of the joint model that provides best fit to data than the 
other. This is because, performance of such joint models, measured by 
the different paramterization of the the association structure, depends 
on the study or trial design. For instance, the JM1 does not differentiate 
among subjects who, at a particular time, share an identical longitudinal 
score but exhibit varying rates of change in this score [7,8,11,12,41]. 
That is, one subject may have an increasing trajectory while another 
displays a decreasing trajectory in the longitudinal score. This means 
that the JM1would provide a worse fit of the data in a study where most 
subjects have identical longitudinal scores and vice versa. 

The results of the best fitting model JM4 are presented in Table 5. 
The results indicate a significant connection between the hazard of the 
composite outcome and longitudinal outcome. This correlation led to a 
considerable decrease in the hazard of the composite outcome, meaning 
that every 1-unit increase in the longitudinal outcome results in a sig
nificant reduction in the hazard of the composite outcome. This finding 
aligns with previous research findings. For instance, Mchunu et al. [57] 
observed in their study on TB/AIDS patients that an increase in CD4 
count is associated with a decrease in the risk of survival outcome 
(mortality). In a cohort study conducted by various authors [58] 
involving patients commencing antiretroviral therapy, it was noted that 
lower CD4 count values were linked to an elevated risk of mortality. 
Similarly, Temesgen et al. [59] identified a noteworthy association be
tween longitudinal CD4 count measurements and survival outcomes 
among HIV/TB co-infected individuals. 

The results revealed no significance difference in the hazard of the 
composite outcome between those who received M. indicus pranii 
versus those who received placebo. This finding agrees with the primary 
results from trial [50]. Research [60] conducted through a randomized 
trial, employing M. indicus pranii as supplementary therapy in Category 
II pulmonary tuberculosis, revealed significant implications for disease 
control. Given that live bacteria are the primary drivers of sustained TB 

incidence, the potential of M. indicus pranii in eradicating bacilli sug
gests far-reaching effects in limiting disease spread. Our analysis 
revealed that patients consistently receiving ART during each visit 
exhibit a notable decrease in the hazard of experiencing the composite 
outcome compared to those who do not receive it regularly. This 
observation aligns with the results reported by Gebrerufael et al. [61] 
and Luvanda et al. [62], indicating that poor adherence to ART is 
associated with an increased risk of patient mortality. 

Patients who are over 46 years demonstrated an increased hazard of 
the composite outcome compared to those who are 46 years and below. 
Similar finding has been revealed by various authors [62], indicating 
that increase in age was associated with an increased risk of death 
among HIV/AIDS patients. In contrast, findings from a study [57] 
involving HIV/TB patients indicated that age was linked to a decreased 
risk of mortality. Our results also revealed no significant reduction in the 
hazard of death among males compared to females among the study 
population. On the contrary, a study [62], among HIV/AIDS patients 
population, revealed that being male was associated with higher risk of 
death compared to females. Those who were on TB medication before 
randomization also exhibited an increased hazard of the composite 
outcome. 

While the interaction between M.indicus pranii and ART did not 
exhibit statistical significance, it resulted in a 6.23-fold increase in the 
hazard of the composite outcome. CD4 count level is significant pre
dictor of the composite outcome (death, cardiac tamponade, or 
constrictive pericarditis) and hence measures that increase CD4 count 
level have the potential to decrease the hazard of the composite 
outcome, there by improving patient condition. Improving TB pericar
ditis patients’ condition is central to increasing patient’s CD4 count level 
since the trial medication has no significant effect on the composite 
outcome. Trial medication (M.indicus pranii) and standard of care, anti- 
retroviral therapy (ART), does not interact and hence there is no way 
such combination of treatment can significantly influence the benefit of 
the trial medication. 

Although analyses for joint modeling in these study are based on 
JM1-JM5, one may also consider alternative parameterization of the 
joint model. For instance, one may parameterized the joint model by 
assuming that the longitudinal process and the survival process shared 
common random effects, where these random effects account for the 
association between longitudinal measurement and the hazard of the 
event as well as the correlation between the longitudinal measurements. 
Also, the joint model can be parametrized such that the hazard of an 
event at j is associated with the level of the longitudinal outcome at a 
previous time point. These parameterization can also be considered for 
application to the data used in this study and other studies with similar 
data structures. 

5. Conclusion 

Among individuals with HIV and tuberculous pericarditis, the 
administration of M. indicus pranii did not yield any significant differ
ence in reducing the hazard of the composite outcome of death, cardiac 
tamponade, or constrictive pericarditis. This is true even after adjusting 
for the effect of CD4 count level and other covariates such as age, 
gender, baseline TB medication, M.indicus pranii-ART interaction, and 
ever on ART during the study. Application of joint models to investigate 
the effect of M.indicus pranii on the hazard of the composite outcome of 
death, cardiac tamponade and constriction is limitted. Hence this study 
provides information on the effect of M.indicus pranii on the hazard of 
the composite outcome among HIV and TB pericarditis patients. 
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Table 5 
Parameter estimates from separate models for longitudinal and survival out
comes and joint model for the sub-models.  

LsubM 
Variable Est. s.e 95% CI 

Intercept 14.80 1.329 (12.269,17.535)
Month − 2.47 1.197 ( − 5.409, − 0.706)
M.indicus pranii − 1.84 1.458 ( − 4.903,0.838)
M.indicus pranii × Month 4.30 1.602 (1.925,8.273)
ART 4.21 1.601 (1.459,7.932)
M.indicus pranii × ART − 2.26 1.862 ( − 6.515,0.991)
Age − 1.03 1.867 ( − 4.688,2.635)
TBmed 0.96 1.724 ( − 2.523,4.255)
Gender − 1.21 1.025 ( − 3.215,0.801)
G δ   
G11(δ) 32.492   
G22(δ) 8.054   
SsubM    
Variable HR s.e 95% CI 
M.indicus pranii 0.26 2.464 (0.033,1.229)
ART 0.15 2.320 (0.024,0.657)
M.indicus pranii × ART 6.23 3.153 (0.879,77.751)
Age 1.34 1.994 (0.323,4.968)
TBmed 1.86 2.306 (0.384,10.308)
Gender 0.61 1.648 (0.234,1.672)
α3 0.98 1.002 (0.977,0.986)
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Appendix A. Specification of JM2, JM3, JM4 and JM5 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi(j) = mi(j) + εi(j)
̅̅̅̅̅̅̅̅̅̅̅̅
CD4ij

√
= (β0 + b0i) + (β1 + b1i)tij + β2 M.indicusi + β3

(
M.indicusi × tij

)
+ β4ARTij

+β5
(
M.indicusi × ARTij

)
+ β6agegrpi + β7TBmedi + β8genderi + ∊ij,

hi(t) = h0(t)exp{β1M.indicusi + β2ARTi + β3M.indicusi × ARTi) + β4agegrpi }

×exp
{

β5TBmedi + β7genderi + α2μ′
i(j)

}
.

(A.1)  
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi(j) = mi(j) + εi(j)
̅̅̅̅̅̅̅̅̅̅̅̅
CD4ij

√
= (β0 + b0i) + (β1 + b1i)tij + β2M.indicusi + β3

(
M.indicusi × tij

)
+ β4ARTij

+β5
(
M.indicusi × ARTij

)
+ β6agegrpi + β7TBmedi + β8genderi + ∊ij,

hi(t) = h0(t)exp{β1 M.indicusi + β2ARTi + β3(M.indicusi × ARTi) + β4agegrpi }

×exp
{

β5 TBmedi + β7 genderi + α1μi(j) + α2μ′
i(j)

}
.

(A.2)  
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi(j) = mi(j) + εi(j)
̅̅̅̅̅̅̅̅̅̅̅̅
CD4ij

√
= (β0 + b0i) + (β1 + b1i)tij + β2 M.indicusi + β3

(
M.indicusi × tij

)
+ β4ARTij

+β5
(

M.indicusi × ARTij
)
+ β6 agegrp i + β7 TBmed i + β8 gender i + ∊ij,

hi(t) = h0(t)exp{β1 M.indicusi + β2ARTi + β3( M.indicusi × ARTi) + β4 agegrp i }

× exp

{

β5 TBmed i + β7 gender i + α3

∫ j
0 μi(u)du

j

}

, 0 ≤ u < j.

}

.

(A.3)  
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi(j) = mi(j) + εi(j)
̅̅̅̅̅̅̅̅̅̅̅̅
CD4ij

√
= (β0 + b0i) + (β1 + b1i)tij + β2 M.indicusi + β3

(
M.indicusi × tij

)
+ β4ARTij

+β5
(

M.indicusi × ARTij
)
+ β6 agegrp i + β7 TBmed i + β8 gender i + ∊ij

hi(t) = h0(t)exp{β1 M.indicusi + β2ARTi + β3(M.indicusi × ART i) + β4 agegrp i }

×exp

{

β5 TBmed i + β7 gender i + α1μi(j) + α2μ′
i(j) + α3

∫ j
0 μi(u)du

j

}

(A.4)  
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