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Objective. This paper presents the results obtained using a protocol based on special types of artificial neural networks (ANNs)
assembled in a novel methodology able to compress the temporal sequence of electroencephalographic (EEG) data into spatial in-
variants for the automatic classification of mild cognitive impairment (MCI) and Alzheimer’s disease (AD) subjects. With reference
to the procedure reported in our previous study (2007), this protocol includes a new type of artificial organism, named TWIST.
The working hypothesis was that compared to the results presented by the workgroup (2007); the new artificial organism TWIST
could produce a better classification between AD and MCI. Material and methods. Resting eyes-closed EEG data were recorded in
180 AD patients and in 115 MCI subjects. The data inputs for the classification, instead of being the EEG data, were the weights
of the connections within a nonlinear autoassociative ANN trained to generate the recorded data. The most relevant features were
selected and coincidently the datasets were split in the two halves for the final binary classification (training and testing) performed
by a supervised ANN. Results. The best results distinguishing between AD and MCI were equal to 94.10% and they are considerable
better than the ones reported in our previous study (∼92%) (2007). Conclusion. The results confirm the working hypothesis that
a correct automatic classification of MCI and AD subjects can be obtained by extracting spatial information content of the resting
EEG voltage by ANNs and represent the basis for research aimed at integrating spatial and temporal information content of the
EEG.

Copyright © 2007 Massimo Buscema et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

The electroencephalogram (EEG), since its introduction,
was considered the only methodology allowing a direct
and online view of the “brain at work.” At the same
time, abnormalities of the “natural” aging of the brain
have yet been noticed in different types of dementias.
The introduction of different structural imaging technolo-
gies in the 1970’s and 1980’s (computed tomography and

magnetic resonance imaging) and the good results in the
study of brain function obtained with techniques dealing
with regional metabolism, glucose and oxygen consump-
tion, and blood flow (single-photon emission computed to-
mography, positron emission tomography, functional mag-
netic resonance imaging) during the following two decades
closet the role of EEG in a secondary line, particularly in
the evaluation of Alzheimer’s dementia (AD) and related
dementias.
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Lately, EEG computerized analysis in aged people has
been enriched by various modern techniques able to man-
age the large amount of information on time-frequency pro-
cesses at single recording channels (wavelet, neural networks,
etc.) and on spatial localization of these processes [2–10].
The results have encouraged the scientific community in ex-
ploring electromagnetic brain activity, which changes by ag-
ing and can greatly deteriorate, through the different stages of
the various forms of dementias. The use of neural networks
represents an alternative and very promising attempt to make
EEG analysis suitable for clinical applications in aging—
thanks to their ability in extracting specific and smooth char-
acteristics from huge amounts of data. Computerized pro-
cessing of a large quantity of numerical data in wakeful re-
laxed subjects (“resting” EEG) made easier the automatic
classification of the EEG signals, providing promising results
even using relatively simple linear classifiers such as logis-
tic regression and discriminant analysis. Using global field
power (i.e., the sum of the EEG spectral power across all elec-
trodes) as an input, some authors reached an accurate differ-
ential diagnosis between AD and MCI subjects with accu-
races of 84% and 78%, respectively[11, 12]. Using evaluation
of spectral coherence between electrode pairs (i.e., a measure
of the functional coupling) as an input to the classification,
the correct classification reached 82% when comparing the
AD and normal aged subjects [13, 14].

Spatial smoothness and temporal fluctuation of the EEG
voltage are considered as measures of the synaptic impair-
ment, along with the notion that cortical atrophy can affect
the spatiotemporal pattern of neural synchronization gener-
ating the scalp EEG. These parameters have been used to suc-
cessfully discriminate the respective distribution of probable
AD and normal aged subjects [15]. The interesting new idea
in that study [15] was the analysis of resting EEG potential
distribution instant by instant rather than the extraction of a
global index along periods of tens of seconds or more.

Table 1 summarizes the results of a higher preclassifica-
tion rate with ANN’s analysis than with standard linear tech-
niques, such as multivariate discriminatory analysis or the
nearest-neighbour analysis [16]. Some authors [17] devel-
oped a system consisting of recurrent neural nets processing
spectral data in the EEG. They succeeded in classifying AD
patients and non-AD patients with a sensitivity of 80% and
a specificity of 100%. In other studies, classifiers based on
ANNs, wavelets, and blind source separation (BSS) achieved
promising results [18, 19]. In a study from the same work-
group of this paper, we used a sophisticated technique based
on blind source separation and wavelet preprocessing devel-
oped by Vialatte et al. [18] and Cichocki et al. [20–22] re-
cently, whose results appear to be the best in the field when
compared to the literature. We named this method BWB
model (blind source separation + wavelet + bumping mod-
eling), [1]. The results obtained in the classifications tasks,
comparing AD patients to MCI subjects, using the BWB
model, ranged from 78.85% to 80.43% (mean = 79.48%).

The aim of this study is to assess the strength of a novel
parallel nonlinear EEG analysis technique in the differential
classification of MCI subjects and AD patients, with a high
degree of accuracy, based on special types of artificial neural

networks (ANNs) assembled in a novel methodology able to
compress the temporal sequence of electroencephalographic
(EEG) data into spatial invariants. The working hypothesis
is that this new approach to EEG based on nonlinear ANNs-
based methods can contribute to improving the reliance of
the diagnostic phase in association with other clinical and in-
strumental procedures. Compared to the results already pre-
sented by the workgroup [1], the included new artificial or-
ganism TWIST could produce a better classification between
AD and MCI.

2. MATERIAL AND METHODS

The IFAST method includes two phases.

(1) A squashing phase: an EEG track is compressed in or-
der to project the invariant patterns of that track on
the connections matrix of an autoassociated ANN. The
EGG track/subject is now represented by a vector of
weights, without any information about the target (AD
or MCI).

(2) “TWIST” (training with input selection and testing)
phase: a technique of data resampling based on the ge-
netic algorithm GenD, developed at Semeion Research
Center. The new dataset which is composed by the
connections matrix (output of the squashing phase),
plus the target assigned to each vector, is splitted into
two sub samples, each one for five times with a similar
probability density function, in order to train, test, and
validate the ANN models.

2.1. The IFAST method

2.1.1. General philosophy

The core of this new methodology is that the ANNs do not
classify subjects by directly using the EEG data as an input.
Rather, the data inputs for the classification are the weights of
the connections within a recirculation (nonsupervised) ANN
trained to generate the recorded EEG data. These connec-
tion weights represent a model of the peculiar spatial features
of the EEG patterns at the scalp surface. The classification,
based on these weights, is performed by a standard super-
vised ANN.

This method, named IFAST (acronym for implicit func-
tion as squashing time), tries to understand the implicit
function in a multivariate data series compressing the tem-
poral sequence of data into spatial invariants and it is based
on three general observations.

(1) Every multivariate sequence of signals coming from
the same natural source is a complex asynchronous dy-
namic highly nonlinear system, in which each chan-
nel’s behavior is understandable only in relation to all
the others.

(2) Given a multivariate sequence of signals generated
from the same source, the implicit function defin-
ing the above-mentioned asynchronous process is
the conversion of that same process into a complex
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Table 1: EEG automatic classification (∗ = severe AD ∗∗ = mild AD; S. no. = Sample; N. aged = normal aged; ANN = artificial neural
networks; LDA = linear discriminant analysis; ACC = accuracy (%); SE = sensibility; SP = specificity).

Author year S. no. AD N. aged MCI Length (s)
Classificators

ACC SE SP
ANN LDA

Pritchard et al. (1994) 39 14 25 nd x x 85 nd nd

Besthorn et al. (1997) nd nd nd nd x x 86.60

Huang et al. [6, 11] 93 38 24 31 nd x 81 84 78

Knott et al. (2001) 65 35 30 nd x 75

Petrosian et al. [17] 20 10 10 120 x 90 80 100

Cichocki et al. [20] 60 38 22 20 x 78.25 73 84

Melissant et al. [16] 36 15∗ 21 40 x 94 93 95

Melissant et al. [16] 38 28∗∗ 10 40 x 82 64 100

hypersurface, representing the interaction in time of
all the channels’ behavior.

(3) The 19 channels in the EEG represent a dynamic sys-
tem characterized by asynchronous parallelism. The
nonlinear implicit function that defines them as a
whole represents a metapattern that translates into
space (hypersurface) that the interactions among all
the channels create in time.

The idea underlying the IFAST method resides in think-
ing that each patient’s 19-channel EEG track can be syn-
thesized by the connection parameters of an autoassociated
nonlinear ANN trained on the same track’s data.

There can be several topologies and learning algorithms
for such ANNs; what is necessary is that the selected ANN be
of the autoassociated type (i.e., the input vector is the target
for the output vector) and that the transfer functions defin-
ing it benon linear and differentiable at any point.

Furthermore, it is required that all the processing made
on every patient be carried out with the same type of ANN,
and that the initial randomly generated weights have to be
the same in every learning trial. This means that, for every
EEG, every ANN has to have the same starting point, even if
that starting point is random.

We have operated in two ways in order to verify this
method’s efficiency.

(1) Different experiments were implemented based on the
same samples. By “experiment,” we mean a complete
application of the whole procedure to every track of
the sample.

(2) The second way is using autoassociated ANNs with
different topologies and algorithms on the entire sam-
ple in order to prove that any autoassociated ANN can
carry out the task of translating into the space domain
the whole EEG track through its connections.

2.1.2. The squashing phase

The first application phase of the IFAST method may be de-
fined as “squashing.” It consists in compressing an EEG track

1 2 N· · ·

1 2 N· · ·

Input
X(n)

Connection matrix Wi, j

Wi, j = 0

Output
X(n + 1)

Autoassociative backpropagation with two layers

Figure 1: Autoassociative backpropagation ANN with Wj, j = 0, as
the connections on the main diagonal are not present.

in order to project the invariant patterns of that track on the
connections of an auto-associated ANN.

More formally
if

Fi() = implicit function of the i-th EEG track

Xi =matrix of the values of the i-th EEG

W∗
i j,k = trained matrix of the connections of the i-th

EEG (∗ = objective of the squashing)

W0 j,k = random starting matrix, the same for all EEGs
then in the case of a two-layered autoassociated ANN

Xi = Fi(Xi,W∗
i j,k ,W0 j,k ); conW0 j, j = 0.

Wij, j = 0 means that every ith EEG track is pro-
cessed by the two-layered autoassociated ANN in
which Wj, j = 0, as the connections on the main di-
agonal are not present (see Figure 1).

It is possible to use different types of autoassociated
ANNs to run this search for spatial invariants in every
EEG.

(1) A backpropagation without a hidden unit layer and
without connections on the main diagonal (for short,
AutoBp):
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1 2 N· · ·

1 2 N· · ·
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New recirculation network

Figure 2: New recirculation network (NRC), with one connection
matrix and four layers of nodes: one input layer, one output layer,
and two layers of hidden nodes.

This is an ANN featuring an extremely simple learning
algorithm:

Outputi = f

( N∑
j

Input j·Wi, j + Biasi

)

= 1

1 + e−(ΣNj Input j·Wi, j+Biasi)
, Wi,i = 0;

δi =
(
Inputi −Outputi

)· f ′(Outputi
)

= (Inputi −Outputi
)·Outputi·

(
1−Outputi

)
;

ΔWi, j = LCoef·δi·Input j , LCoef ∈ [0,1],

ΔBiasi = LCoef·δi.
(1)

AutoBP is an ANN featuring N2 − N internode connections
and N bias inside every exit node, for a total of N2 adaptive
weights. This algorithm works similarly to logistic regression
and can be used to establish the dependency of variables from
each others.

The advantage of AutoBP is due to its learning speed,
in turn due to the simplicity of its topology and algorithm.
Moreover, at the end of the learning phase, the connec-
tions between variables, being direct, have a clear conceptual
meaning. Every connection indicates a relationship of faded
excitement, inhibition, or indifference between every pair of
channels in the EEG track of any patient.

The disadvantage of AutoBP is its limited convergence
capacity, due to that same topological simplicity. That is to
say, complex relationships between variables may be approx-
imated or ignored (for details, see [23, 24]).

(2) New recirculation network (for short, NRC) is an orig-
inal variation [25] of an ANN that has existed in the
literature [26] and was not considered to be useful to
the issue of autoassociating between variables.

The topology of the NRC which we designed includes
only one connection matrix and four layers of nodes: one
input layer, corresponding to the number of variables; one
output layer whose target is the input vector; two layers of
hidden nodes with the same cardinality independent from
the cardinality of the input and output layers. The matrix
between input-output nodes and hidden nodes is fully con-

nected and in every learning cycle, it is modified both ways,
according to the following equations:

Hidden1i = f

( N∑
j

Input j·Wi, j + BiasHiddeni

)

= f
(
NetHidden1

i

) = 1

1 + e−NetH1
i

;

Output j = R·Input j + (1− R)

· f
( M∑

i

Hidden1i·Wj,i + BiasOutput j

)

= R·Input j + (1− R)· f (Net
Output
j

)
= R·Input j + (1− R)· 1

1 + e−Net
Output
j

;

R ∈ [0, 1]/∗Projection Coefficient∗ /

Hidden2i = R·Hidden1i + (1− R)

· f
( N∑

j

Output j·Wi, j + BiasHiddeni

)

= R·Hidden1i + (1− R)· f (NetHidden2
i

)
= R·Hidden2i + (1− R)· 1

1 + e−NetHidden2
i

;

ΔWj,i = LCoef·(Input j −Output j
)·Hidden1i;

ΔBiasOutput j = LCoef·(Input j −Output j
)
;

LCoef ∈ [0, 1]/∗Learning Coefficient∗ /

ΔWi·i = LCoef·(Hidden1i −Hidden2i
)·Output j ;

ΔBiasHiddeni = LCoef·(Hidden1i −Hidden2i
)
.

(2)

NRC then features N2 internode adaptive connections and
2·N intranode adaptive connections (bias). The advantages
of NRC are its excellent convergence ability on complex
datasets and, as a result, an excellent ability to interpolate
complex relations between variables.

The disadvantages mainly have to do with the vector cod-
ification that the hidden units run on the input vectors mak-
ing the conceptual decoding of its trained connections diffi-
cult.

(3) Autoassociative multilayer perceptron (for short,
AMLP) may be used with an auto-associative purpose
(encoding)— thanks to its hidden units layer, that de-
composes the input vector into main nonlinear com-
ponents. The algorithm used to train the MLP is a typ-
ical backpropagation algorithm [27].

The MLP, with only one layer of hidden units, features
two connection matrices and two intranode connection vec-
tors (bias), according to the following definitions:

N = number of input variables
= number of output variables;

M = number of nodes in the hidden layer;
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Figure 3: Multilayer perceptron; its hidden units layer decomposes
the input vector into main nonlinear components.

C = total number of internode and intranode connec-
tions (bias);

C = 2·N·M + N + M. (3)

The advantages of MLP are its well-known flexibility and
the strength of its backpropagation algorithm. Its disadvan-
tages are the tendency to saturate the hidden nodes in the
presence of nonstationary functions, and the vector codifica-
tion (allocated) of the same hidden nodes.

(4) Elman’s hidden recurrent [28] can be used for autoas-
sociating purposes, again using the backpropagation
algorithm (for short, autoassociative hidden recurrent
AHR, see Figure 4). It was used in our experimentation
as a variation for MLP with memory set to one step. It
is not possible to call it a proper recurring ANN in this
form, because the memory would have been limited to
one record before. We used this variation only to give
the ANN an input vector modulated at any cycle by the
values of the previous input vector. Our purpose was
not to codify the temporal dependence of the entrance
signals, but rather to give the ANN a “smoother” and
more mediated input sequence. The number of con-
nections in the AHR BP is the same as an MLP with
extended input, whose cardinality is equal to the num-
ber of hidden units:

C = 2·N·M + N + M + M2. (4)

The software IFAST (developed in Borland C) [29] pro-
duces the squashing phase through the training operated by
these four networks; in the “MetaTask” section the user can
define the whole procedure by selecting

(i) the files that will be processed (in our case every com-
plete EEG),

Input (n)

Hidden

Output

Input (n− 1)

State units

· · ·

· · ·

· · ·

Autoassociative hidden recurrent

Figure 4: Elman’s hidden recurrent ANN for auto-associating pur-
poses using the backpropagation algorithm.

(ii) the type of network,
(iii) the sequence of the records for every file (generally

random),
(iv) the number of epochs of training,
(v) a training stop criterion (number of epochs or mini-

mum RMSE),
(vi) the number of hidden nodes of the autoassociated net-

work, which determines the length of the output vec-
tor of the file processed

(vii) the number of matrices, depending on the type of the
autoassociated network selected,

(viii) the learning coefficient and delta rate.

2.2. TWIST

From this phase, the procedure is completely different from
the one described in our precedent work [1]. The choice of
following a different methodology was due to the will of im-
proving the classification results and removing causes of loss
of information.

In the former study, the dataset coming from the squash-
ing phase was compressed by another autoassociated ANN,
in the attempt of eliminating the invariant pattern, codified
from the previous ANN, relating to specific characteristic of
the brain (anxiety level, background level, etc.) which is not
useful for the classification, leaving the most significant ones
unaltered. Then the new compressed datasets were split into
two halves, (training and test) using T&T [30] evolutionary
algorithm, for the final binary classification.

Rather in this work, the elimination of the noisiest fea-
tures and the classification run parallel to each other. We
will show that the new procedure has obtained better per-
formances.

First of all, a new dataset called “Diagnostic DB” was cre-
ated for easier understanding. The diagnostic gold standard
has been established, for every patient, in a way that is com-
pletely independent of the clinical and instrumental exami-
nations (magnetic resonance imaging, etc.) carried out by a
group of experts whose diagnosis has been also reconfirmed
in time.
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The diagnoses have been divided into the following two
classes, based on delineated inclusion criteria:

(a) elderly patients with “cognitive decline” (MCI);
(b) elderly patients with “probable Alzheimer” (AD);

We rewrote the last generated dataset, adding to every Hns

vector the diagnostic class that an objective clinical examina-
tion had assigned to every patient. The Hms vectors represent
the invariant traits s as defined by the squashing phase for ev-
ery m-th subject EEG track, that is, the columns number of
the connections matrix depending on the specific autoasso-
ciated network used.

Then the dataset is ready for the next step. This new phase
is called TWIST [31] and includes the utilization of two sys-
tems T&T and IS [30], both based on a genetic algorithm,
GenD, developed at Semeion Research Centre [32].

T&T systems are robust data resampling techniques able
to arrange the source sample into subsamples, each one with
a similar probability density function. In this way the data
split into two or more subsamples in order to train, test, and
validate the ANN models more effectively.

The IS system is an evolutionary system for feature selec-
tion based on a wrapper approach. While the filter approach
looks at the inner properties of a dataset providing a selec-
tion that is independent of the classification algorithm to be
used afterwards, in the wrapper approach various subsets of
features are generated and evaluated using a specific classifi-
cation model using its performances as a guidance to opti-
mization of subsets.

The IS system reduces the amount of data while con-
serving the largest amount of information available in the
dataset. The combined action of these two systems allows us
to solve two frequent problems in managing artificial neural
networks:

(1) the size and quality of the training and testing sets,
(2) the large number of variables which, apparently, seem

to provide the largest possible amount of information.
Some of the attributes may contain redundant infor-
mation, which is included in other variables, or con-
fused information (noise) or may not even contain any
significant information at all and be completely irrele-
vant.

Genetic algorithms have been shown to be very effective
as global search strategies when dealing with nonlinear and
large problems.

The “training and testing” algorithm (T&T) is based on
a population of n ANNs managed by an evolutionary sys-
tem. In its simplest form, this algorithm reproduces several
distribution models of the complete dataset DΓ (one for ev-
ery ANN of the population) in two subsets (d[tr]

Γ , the train-

ing set, and d[ts]
Γ , the testing set). During the learning pro-

cess each ANN, according to its own data distribution model,

is trained on the subsample d[tr]
Γ and blind-validated on the

subsample d[ts]
Γ .

The performance score reached by each ANN in the test-
ing phase represents its “fitness” value (i.e., the individual
probability of evolution). The genome of each “network in-

dividual” thus codifies a data distribution model with an as-
sociated validation strategy. The n data distribution models
are combined according to their fitness criteria using an evo-
lutionary algorithm. The selection of “network individuals”
based on fitness determines the evolution of the population,
that is, the progressive improvement of performance of each
network until the optimal performance is reached, which is
equivalent to the better division of the global dataset into
subsets. The evolutionary algorithm mastering this process,
named “genetic doping algorithm” (GenD for short), created
at Semeion Research Centre, has similar characteristics to a
genetic algorithm [33–37] but it is able to maintain an in-
ner instability during the evolution, carrying out a natural
increase of biodiversity and a continuous “evolution of the
evolution” in the population.

The elaboration of T&T is articulated in two phases.
In a preliminary phase, an evaluation of the parameters

of the fitness function that will be used on the global dataset
is performed. The configuration of a standard backpropaga-
tion network that most “suits” the available dataset is deter-
mined: the number of layers and hidden units, some possi-
ble generalizations of the standard learning law, the fitness
values of the population’s individuals during evolution. The
parameters thus determined define the configuration and
the initialization of all the individual networks of the pop-
ulation and will then stay fixed in the following computa-
tional phase. The accuracy of the ANN performance with
the testing set will be the fitness of that individual (i.e., of
that hypothesis of distribution into two halves of the whole
dataset).

In the computational phase, the system extracts from the
global dataset the best training and testing sets. During this
phase, the individual network of the population is running,
according to the established configuration and the initializa-
tion parameters.

Parallel to T&T runs “Input Selection” (IS), an adaptive
system, based on the same evolutionary algorithm GenD,
consisting of a population of ANN, in which each one car-
ries out a selection of the independent and relevant variables
on the available database.

The elaboration of IS, as for T&T, is developed in two
phases. In the preliminary phase, a standard backpropaga-
tion ANN is configured in order to avoid possible over fitting
problems. In the computational phase, each individual net-
work of the population, identified by the most relevant vari-
ables, is trained on the training set and tested on the testing
set.

The evolution of the individual network of the popula-
tion is based on the algorithm GenD. In the I.S. approach,
the GenD genome is built by n binary values, where n is the
cardinality of the original input space. Every gene indicates
if an input variable is to be used or not during the evalua-
tion of the population fitness. Through the evolutionary al-
gorithm GenD, the different “hypotheses” of variable selec-
tion, generated by each ANN of the population, change over
time, at each generation; this leads to the selection of the best
combination of input variables. As in the T&T systems, the
genetic operators crossover and mutation are applied on the
ANNs population; the rates of occurrence for both operators
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are self-determined by the system in an adaptive way at each
generation.

When the evolutionary algorithm no longer improves its
performance, the process stops, and the best selection of the
input variables is employed on the testing subset.

The software based on TWIST phase algorithm (devel-
oped in C-Builder [31]) allows the configuration of the ge-
netic algorithm GenD:

• the population (the number of individual networks),
• number of hidden nodes of the standard BP,
• number of epochs,
• the output function SoftMax,
• the cost function (classification rate in our case).

The generated outputs are the couple of files SetA and
SetB (subsets of the initial db defined by the variables se-
lected) that will be used in the validation protocol (see
Section 2.3).

2.3. The validation protocol

The validation protocol is a fundamental procedure to ver-
ify the models’ ability to generalize the results reached in the
Testing phase of each model. The application of a fixed proto-
col measures the level of performance that a model can pro-
duce on data that are not present in the testing and/or train-
ing sample. We employed the so-called 5× 2 cross-validation
protocol (see Figure 6) [38]. This is a robust protocol that
allows one to evaluate the allocation of classification errors.
In this procedure, the study sample is randomly divided ten
times into two subsamples, always different but containing a
similar distribution of cases and controls.

The ANNs’ good or excellent ability to diagnostically
classify all patients in the sample from the results of the con-
fusion matrices of these 10 independent experiments would
indicate that the spatial invariants extracted and selected
with our method truly relate to the functioning quality of
the brains examined through their EEG.

2.4. Experimental setting

2.4.1. Subjects and diagnostic criteria

The population study included

(a) 180 AD patients (gender: 50 males/130 females; age:
mean = 77 ± 6.78 SD, range from 54 to 91; MMSE:
mean = 19.9, ± 4.89 SD, range from 5 to 30);

(b) 115 MCI subjects (gender: 49 males/66 females; age:
mean = 76 ± 6.37 SD, range from 42 to 88; MMSE:
mean = 25.2, ± 2.35 SD, range from 17.3 to 29).

The samples were matched for age, gender, and years of
education. Part of the individual data sets was used for pre-
vious EEG studies [2–4]. In none of these studies we ad-
dressed the specific issue of the present study. Local institu-
tional ethics committees approved the study. All experiments
were performed with the informed and overt consent of each
participant or caregiver.

The present inclusion and exclusion criteria for MCI
were based on previous seminal studies [39–46] and de-
signed for selecting elderly persons manifesting objective
cognitive deficits, especially in the memory domain, who did
not meet criteria for a diagnosis of dementia or AD, namely,
with, (i) objective memory impairment on neuropsycho-
logical evaluation, as defined by performances ≥ 1.5 stan-
dard deviation below the mean value of age and education-
matched controls for a test battery including memory rey
list (immediate recall and delayed recall), Digit forward and
Corsi forward tests; (ii) normal activities of daily living as
documented by the patient’s history and evidence of inde-
pendent living; (iii) clinical dementia rating score of 0.5; (iv)
geriatric depression scale scores < 13.

Exclusion criteria for MCI were: (i) mild AD, as di-
agnosed by the procedures described above; (ii) evidence
of concomitant dementia such as frontotemporal, vascular
dementia, reversible dementias (including pseudodepressive
dementia), fluctuations in cognitive performance, and/or
features of mixed dementias; (iii) evidence of concomitant
extrapyramidal symptoms; (iv) clinical and indirect evidence
of depression lower than 14 as revealed by GDS scores; (v)
other psychiatric diseases, epilepsy, drug addiction, alcohol
dependence, and use of psychoactive drugs including acetyl-
cholinesterase inhibitors or other drugs enhancing brain cog-
nitive functions; (vi) current or previous systemic diseases
(including diabetes mellitus) or traumatic brain injuries.

Probable AD was diagnosed according to NINCDS-
ADRDA criteria [47]. Patients underwent general medical,
neurological, and psychiatric assessments and were also rated
with a number of standardized diagnostic and severity in-
struments that included MMSE [48], clinical dementia rat-
ing scale [49], geriatric depression scale [50], Hachinski is-
chemic scale [51], and instrumental activities of daily living
scale [52]. Neuroimaging diagnostic procedures (computed
tomography or magnetic resonance imaging) and complete
laboratory analyses were carried out to exclude other causes
of progressive or reversible dementias, in order to have a ho-
mogenous probable AD patient sample. The exclusion cri-
teria included, in particular, any evidence of (i) front tem-
poral dementia diagnosed according to criteria of Lund and
Manchester groups [53]; (ii) vascular dementia as diagnosed
according to NINDS-AIREN criteria [54] and neuroimaging
evaluation scores [55, 56]; (iii) extra pyramidal syndromes;
(iv) reversible dementias (including pseudo dementia of de-
pression); (v) Lewy body dementia according to the criteria
by McKeith et al. [57]. It is important to note that benzodi-
azepines, antidepressant, and/or antihypertensive drugs were
withdrawn for about 24 hours before the EEG recordings.

2.4.2. EEG recordings

EEG data were recorded in wake rest state (eyes-closed),
usually during late morning hours from 19 electrodes po-
sitioned according to the international 10–20 system (i.e.,
Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3,
Pz, P4, T6, O1, O2; 0.3–70 Hz filtering band passes). A
specific reference electrode was not imposed to all record-
ing units of this multi-centric study, since any further data
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Figure 5: The structure and the operators of the evolutionary algorithm GenD.
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Figure 6: 5 × 2 validation protocol for the independent identifica-
tion of the spatial invariants of EEGs.

analysis was carried out after EEG data were rereferenced
to a common average reference. The horizontal and verti-
cal electrooculogram was simultaneously recorded to mon-
itor eye movements. An operator controlled, online, the sub-
ject and the EEG traces by alerting the subject any time there
were signs of behavioural and/or EEG drowsiness in order to
keep the level of vigilance constant. All data were digitized
(5 minutes of EEG; 0.3–35 Hz band pass 128 Hz sampling
rate).

The duration of the EEG recording (5 minutes) allowed
the comparison of the present results with several previous
AD studies using either EEG recording periods shorter than
5 minutes [58–62] or shorter than 1 minute [7, 8]. Longer
resting EEG recordings in AD patients would have reduced
data variability, but they would have increased the possi-
bility of EEG “slowing” because of reduced vigilance and
arousal.

EEG epochs with ocular, muscular, and other types of
artefact were preliminarily identified by a computerized
automatic procedure. Those manifesting sporadic blinking
artefacts (less than 15% of the total) were corrected by an
autoregressive method [63].

The performances of the software package on EOG-EEG-
EMG data related to cognitive-motor tasks were evaluated
with respect to the preliminary data analysis performed by
two expert electroencephalographists (gold standard). Due
to its extreme importance for multicentric EEG studies, we
compared the performances of two representative “regres-
sion” methods for the EOG correction in time and frequency
domains. The aim was the selection of the most suitable
method in the perspective of a multicentric EEG study. The
results showed an acceptable agreement of approximately
95% between the human and software behaviors, for the de-
tection of vertical and horizontal EOG artifacts, the mea-
surement of hand EMG responses for a cognitive-motor
paradigm, the detection of involuntary mirror movements,
and the detection of EEG artifacts. Furthermore, our re-
sults indicated a particular reliability of a “regression” EOG
correction method operating in time domain (i.e., ordinary
least squares). These results suggested the use of the software
package for multicentric EEG studies.

Two independent experimenters—blind to the diag-
nosis— manually confirmed the EEG segments accepted for
further analysis. A continuous segment of artefact-free EEG
data lasting for 60 seconds was used for subsequent analyses
for each subject.
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Figure 7: Procedure’s scheme: from the squashing phase applied to EEG signal, the TWIST phase, to the final classification phase by ANNs.

2.4.3. Preprocessing protocol

The entire sample of 466 subjects was recorded at 128 Hz for
1 minute. The EEG track of each subject was represented by
a matrix of 7680 sequential rows (time) and 19 columns (the
19 channels).

The squashing phase was implemented using the four au-
toassociative ANNs described [29]:

(a) an autoassociative BP with 2 layers (ABP);

(b) a new recirculation ANN (NRC);

(c) an autoassociative multilayer perceptron with 3 layers
(AMLP);

(d) an autoassociative hidden recurrent (AHR).

Every autoassociative ANN independently processed ev-
ery EEG of the total sample in order to assess the different
capabilities of each ANN to extract the key information from
the EEG tracks.

After this processing, each EEG track is squashed into
the weights of every ANN resulting in 4 different and inde-
pendent datasets (one for each ANN), whose records are the
squashing of the original EEG tracks and whose variables are
the trained weights of every ANN.

After TWIST processing, the most significant features for
the classification were selected and at the same time the train-
ing set and the testing set with a similar function of proba-
bility distribution that provides the best results in the classi-
fication were defined.

The validation protocol 5x2CV was applied blindly to
test the capabilities of a generic supervised ANN to correctly
classify each record (the number of inputs depending on the
number of variables selected by IS).

A supervised MLP was used for the classification task,
without hidden units. In every experimentation, in fact, we
were able to train perfectly the ANN in no more than 100
epochs (root mean square error (RMSE) < 0.0001). That

means that in this last phase, we could have used also a linear
classifier to reach up the same results.

3. RESULTS

The experimental design consisted in 10 different and inde-
pendent processing for the classification AD versus MCI. Ev-
ery experiment was conducted in a blind and independent
manner in two directions: training with subsample A and
blind testing with subsample B versus training with subsam-
ple B and blind testing with subsample A.

Table 3 shows the mean results summary for the classifi-
cations of AD versus MCI, compared to the results obtained
in the experimentations reported in a previous study [1],
based on a different protocol (without the TWIST phase).

Regarding the protocol IFAST-TWIST, the ABP and AHR
achieved the best results comparing AD with MCI subjects
(94.10% and 93.36%), but all the performances are consid-
erably better than those obtained in the previous study.

Tables 4, 5, 6 and 7 show the details of the results obtained
by each autoassociated ANN, where

SE = sensibility,

SP = specificity,

VP+ = positive predictive value,

VP− =negative predictive value,

LR+ = likelihood ratio for positive test results (bench-
mark value ≥ 2),

LR− = likelihood ratio for negative test results (bench-
mark value ≤ 0.2),

AUC = area under ROC curve (average ROC curve cal-
culated by the threshold method),

Figures 8, 9, 10, and 11 show the respective average Roc
curves.
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Table 2: Autoassociative ANN types and parameters used during the processing.

ANN parameters type AbP NRC AMLP AHR

Number of inputs 19 19 19 19

Number of outputs 19 19 19 19

Number of state units 0 0 0 10

Number of hidden units 0 19 10 10

Number of weights 361 399 409 509

Number of epochs 200 200 200 200

Learning coefficient 0.1 0.1 0.1 0.1

Projection coefficient Null 0.5 Null Null

Table 3: Summary and comparison of AD results versus MCI.

Blind classification AD versus MCI

Type of input vector Sensitivity Specificity Accuracy

ABP 90.73 97.46 94.1

NRC 89.27 93.32 91.29

AMLP 92.42 94.14 93.28

AHR 92.11 92.61 92.36

Table 4: Details of the ABP results.

ABP results (%)

ANN SE SP A.MeanAcc. W.MeanAcc. Errors VP+ VP− LR+ LR− AUC

FF Bp(ab) 97.14 94.92 96.03 96.12 5 95.77 96.55 19.1 0.03 ∼ 0.98

FF Bp(ba) 84.31 100 92.16 89.87 16 100 77.78 + Inf 0.16 ∼ 0.928

Mean results 90.73 97.46 94.1 93 10.5 97.88 87.17 + Inf 0.1 ∼ 0.948
∗

Average ROC curve calculated by the threshold method.

Table 5: Details of the NRC results.

NRC results (%)

ANN SE SP A.MeanAcc. W.MeanAcc. Errors VP+ VP− LR+ LR− AUC

FF Bp(ab) 84.16 96.15 90.16 88.24 18 97.7 75.76 21.88 0.16 ∼ 0.898

FF Bp(ba) 94.37 90.48 92.42 92.54 10 91.78 93.44 9.91 0.06 ∼ 0.932

Mean results 89.27 93.32 91.29 90.39 14 94.74 84.6 15.90 0.11 ∼ 0.926

Table 6: Details of the AMLP results.

AMLP results (%)

ANN SE SP A.MeanAcc. W.MeanAcc. Errors VP+ VP− LR+ LR− AUC

FF Bp(ab) 93.26 92.19 92.72 92.81 6 94.32 90.77 11.94 0.07 ∼ 0.930

FF Bp(ba) 91.57 96.08 93.82 93.28 7 97.44 87.5 23.35 0.09 ∼ 0.935

Mean results 92.42 94.14 93.28 93.05 6.5 95.88 89.14 17.65 0.08 ∼ .933

Table 7: Details of the AHR results.

AHR results (%)

ANN SE SP A.MeanAcc. W.MeanAcc. Errors VP+ VP− LR+ LR− AUC

FF Bp(ab) 97.22 89.23 93.23 93.43 9 90.91 96.67 9.03 0.03 ∼ 0.940

FF Bp(ba) 87 96 91.5 90 15 97.75 78.69 21.75 0.14 ∼ 0.904

Mean results 92.11 92.62 92.37 91.72 12 94.33 87.68 15.39 0.09 ∼ 0.926
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Figure 9: The average ROC curve of the NRC performance (thresh-
old method).

4. DISCUSSION

Various types of nonreversible forms of dementias represent
a major health problem in all those countries where the av-
erage life span is progressively increasing. There is a growing
amount of scientific and clinical evidences that brain neural
networks rearrange their connections and synapses to com-
pensate neural loss due to neuro degeneration [64]. This pro-
cess of plasticity maintains brain functions at an acceptable
level before clear symptoms of dementia appear. The length
of this presymptomatic period is currently unknown but, in
the case of AD, often preceded by MCI, it lasts several years.
Despite the lack of an effective treatment, able to block pro-
gression and/or to reverse the cognitive decline, it is generally
agreed that early beginning of the available treatment (i.e.,
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Figure 10: The average ROC curve of the AMLP performance
(threshold method).
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Figure 11: The average ROC curve of the AHR performance
(threshold method).

inhibitors of anticholinesterase drugs) provides the best re-
sults [65]. A significant advancement in the fight against de-
mentias would be to have in our hands a non-invasive, easy-
to-perform, and low-cost diagnostic tool capable of screen-
ing with a high rate of positive prognostication a large at-risk
population sample (i.e., MCI, subjects with genetic defects
and a family history of dementias or other risk factors). To
test this issue, we performed automatic classification of MCI
and AD subjects extracting with ANNs the spatial content of
the EEG voltage. The results showed that the correct auto-
matic classification rate reached 94.10% for AD versus MCI,
better than the classification rate obtained with the more ad-
vanced currently available nonlinear techniques. These re-
sults confirm the working hypothesis that this EEG approach
based on ANNs can contribute to improve the precision of
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the diagnostic phase in association with other clinical and
instrumental procedures.

The present results suggest that the present variant of
IFAST procedure (TWIST) could be used for a large screen-
ing of MCI subjects under control, to detect the first signs of
conversion to AD for triggering further clinical and instru-
mental evaluations crucial for an early diagnosis of AD (this
is invaluable for the beginning of cholinergic therapies that
are generally carried out only in overt AD patients due to
gastro intestinal side effects). Indeed, the actual percentage
of correct discrimination between MCI and probable AD is
around 94%. This rate is clearly insufficient for the use of the
IFAST procedure for a diagnosis, due to 6% of misclassifica-
tions. The present results prompt future studies on the pre-
dictive value of cortical EEG rhythms in the early discrimina-
tion of MCI subjects who will convert to AD. This interest-
ing issue could be addressed by a proper longitudinal study.
MCI subjects should be divided into “converted” and “sta-
ble” subgroups, according to final out-come as revealed by
followup after about 5 years (i.e., the period needed for con-
version of all MCI subjects fated to decline over time based
on the mentioned literature). That study should demon-
strate that the spatial EEG features at baseline measurement
as revealed by the IFAST procedure might be discriminated
between MCI converted and MCI stable subjects. Further-
more, baseline values of spatial EEG features in individual
MCI subjects should be successfully used as an input by
the IFAST procedure to predict the conversion to demen-
tia. This intriguing research perspectives are the sign of the
heuristic value of the present findings. However, apart from
clinical perspectives, the present findings have an intrinsic
value for clinical neurophysiology. They provided further
functional data from a large aged population to support the
idea that spatial features of EEG, as a reflection of the corti-
cal neural synchronization, convey information content able
to discriminate preclinical stage of dementia (MCI) from
probable AD.

Furthermore, the evaluation of that diagnostic contribu-
tion may motivate future scientific studies probing its use-
fulness for prognosis and monitoring of AD across temporal
domain.

Although EEG would fulfil up all the previous require-
ments, the way in which it is currently utilized does not guar-
antee its ability in the differential diagnosis of MCI, early
AD, and healthy nonimpaired aged brains. The neurophys-
iologic community always had the perception that there is
much more information about brain functioning embedded
in the EEG signals than those actually extracted in a routine
clinical context. The obvious consideration is that the gener-
ating sources of EEG signals (cortical postsynaptic currents
at dendritic tree level) are the same ones as those attacked
by the factors producing symptoms of dementia. The main
problem is that usually in the signal-to-noise ratio the latter
is largely overcoming the former.

This paper suggests that the reasons why the clinical use
of EEG has been somewhat limited and disappointing with
respect to early diagnosis of AD and identification of MCI—
despite the progresses obtained in recent years—are due to
the following, erring, general principles:

(A) identify and synthesizing the mathematical compo-
nents of the signal coming from each individual
recording site, considering the EEG channel as explor-
ing only one, discrete brain area under the exploring
electrode, and suming up all of them in attempt to re-
construct the general information;

(B) focusing on the time variations of the signal coming
from each individual recording site,

(C) mainly employing linear analysis instruments.

The basic principle which is proposed in this work is very
simple; all the signals from all the recording channels are
analyzed together—and not individually—in both time and
space. The reason for such an approach is quite simple; the
instant value of the EEG in any recording channel depends,
in fact, upon its previous and following values, and upon
the previous and following values of all the other recording
channels.

We believe that the EEG of each individual subject is de-
fined by a specific background signal model, distributed in
time and in the space of the recording channels (19 in our
case). Such a model is a set of background invariant features
able to specify the quality (i.e., cognitive level) of the brain
activity, even in so a called resting condition. We all know
that the brain never rests, even with closed eyes and if the
subject is required to relax. The method that we have applied
in this research context completely ignores the subject’s con-
tingent characteristics (age, cognitive status, emotions, etc.).
It utilized a recurrent procedure which squeezes the signif-
icant signal and progressively selects the features useful for
the classification.

5. CONCLUSIONS

We have tested the hypothesis that a correct automatic clas-
sification of MCI and AD subjects can be obtained extract-
ing spatial information content of the resting EEG voltage by
ANNs. The spatial content of the EEG voltage was extracted
by a novel step-wise procedure. The core of this procedure
was that the ANNs did not classify individuals using EEG
data as an input; rather, the data inputs for the classification
were the weights of the connections within an ANN trained
to generate the recorded EEG data. These connection weights
represented a useful model of the peculiar spatial features
of the EEG patterns at scalp surface. Then the new system
TWIST, based on a genetic algorithm, processed the weights
to select the most relevant features and at the same time to
create the best subset, training set, and testing set, for the
classification. The results showed that the correct automatic
classification rate reached 94.10% for AD versus MCI. The
results obtained are superior to those obtained with the more
advanced currently available nonlinear techniques. These re-
sults confirm the working hypothesis and represent the basis
for research designed to integrate EEG-derived spatial and
temporal information content using ANNs.

From methodological point of view, this research shows
the need to analyze the 19 EEG channels of each person as
a whole complex system, whose decomposition and/or lin-
earization can involve the loss of many key information.
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The present approach extends those of previous EEG
studies applying advanced techniques (wavelet, neural net-
works, etc.) on the data of single recording channels; it also
complements those of previous EEG studies in aged people,
evaluating the spatial distributions of the EEG data instant by
instant and the brain sources of these distributions [2–10].

With complex systems, it is not possible to establish a pri-
ori which information is relevant and which is not. Nonlin-
ear autoassociative ANNs are a group of methods to extract
from these systems the maximum of linear and nonlinear as-
sociations (features) able to explain their “strange” dynamics.

This research also documents the need to use different
architectures and topologies of ANNs and evolutionary sys-
tems within complex procedures in order to optimize a spe-
cific medical target. This study’s EEG analysis used

(1) different types of nonlinear autoassociative ANNs for
squashing data;

(2) a new system, TWIST, based on a genetic algorithm,
which manages supervised ANNs in order to select the
most relevant features and to optimize the distribution
of the data in training and testing sets;

(3) a set of supervised ANNs for the final patterns recog-
nition task.

It is reasonable to conclude that ANNs and other adaptive
systems should be used as cooperative adaptive agents within
a structured project for complex, useful applications.

NOTE

IFAST is a european patent (application no. EP06115223.7—
date of receipt 09.06.2006). The owner of the patent is Se-
meion Research Center of Sciences of Communication, Via
Sersale 117, Rome 00128, Italy. The inventor is Massimo
Buscema. For software implementation, see [53]. Dr. C. D.
Percio (Associazione Fatebenefratelli per la Ricerca) orga-
nized the EEG data cleaning.
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