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Abstract: Cholestatic diseases can be caused by the dysfunction of transporters involved in hepato-
biliary circulation. Although pharmacological treatments constitute the current standard of care for
these diseases, none are curative, with liver transplantation being the only long-term solution for
severe cholestasis, albeit with many disadvantages. Liver-directed gene therapy has shown promis-
ing results in clinical trials for genetic diseases, and it could constitute a potential new therapeutic
approach for cholestatic diseases. Many preclinical gene therapy studies have shown positive results
in animal models of both acquired and genetic cholestasis. The delivery of genes that reduce apop-
tosis or fibrosis or improve bile flow has shown therapeutic effects in rodents in which cholestasis
was induced by drugs or bile duct ligation. Most studies targeting inherited cholestasis, such as
progressive familial intrahepatic cholestasis (PFIC), have focused on supplementing a correct version
of a mutated gene to the liver using viral or non-viral vectors in order to achieve expression of the
therapeutic protein. These strategies have generated promising results in treating PFIC3 in mouse
models of the disease. However, important challenges remain in translating this therapy to the clinic,
as well as in developing gene therapy strategies for other types of acquired and genetic cholestasis.
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1. Cholestatic Diseases

Cholestatic diseases are based on bile dysfunction due to defects affecting bile synthesis
or secretion. These processes involve a wide range of enzymes and membrane transporters
involved in hepatobiliary circulation. According to its origin, cholestasis can be classified
into two main groups: acquired cholestasis and genetic cholestasis [1].

1.1. Acquired Cholestasis

Most cholestatic diseases are acquired, presenting a dysregulation of the hepatobiliary
transporters as a consequence of an adaptive and protective response to bile acid (BA)
accumulation in the liver. This regulation is multifactorial, involving different elements
such as hormones, BAs, proinflammatory cytokines, and drugs. These different factors
mediate the activation of transcription factors that regulate the expression of export pumps,
which promote the reduction of intracellular BAs by their excretion in the urine, result-
ing in the detoxification of the liver [2]. Acquired cholestatic diseases include primary
biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), intrahepatic cholestasis of
pregnancy (ICP), biliary atresia, drug-induced cholestasis, and inflammation-mediated
cholestasis [1,3].

PBC and PSC are classified as autoimmune diseases of the hepatobiliary system, char-
acterized by the presence of antimitochondrial antibodies, portal inflammation, and an
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immune-mediated destruction of intra- and extra-hepatic bile ducts [4,5]. Clinical manifes-
tations vary widely, from asymptomatic to end-stage biliary cirrhosis. The pathogenesis of
the disease is multifactorial, involving genetic, epigenetic, and environmental factors [4,6].

ICP, which is the most common disorder of the hepatobiliary system, is characterized
by high serum BA levels in the third trimester of pregnancy that cause severe pruritus. In
the development of this cholestatic disorder, high levels of gestational hormones, such as
estrogen and progesterone, play a major causative role, while genetic factors may also be
involved. Although symptoms disappear after childbirth, the biliary disorder can often
recur during future pregnancies [7].

Biliary atresia is a rare liver disease affecting the bile ducts, resulting in the main
cause of neonatal cholestasis. The etiology of this biliary disorder is unknown. In some
cases, the origin is thought to be due to an exacerbated autoimmune response in the bile
duct epithelium as a consequence of a viral infection or due to toxin-induced injury after
birth [8]. In other cases, it is thought to be due to a malformation of the bile ducts during
gestation. However, it is known that an early diagnosis allows for better outcomes after
surgery [9].

Finally, drug- and inflammation-induced cholestasis are closely related. Both drugs
and proinflammatory agents can induce cholestasis following inhibition of hepatobiliary
transporters but rarely result in severe liver injury. These types of cholestasis have an
immunological origin mediated by proinflammatory cytokines directed against the bile
duct epithelium that can alter BA secretion [10].

1.2. Inherited Cholestasis

Genetic cholestasis, which represents a minority of all cholestatic disorders, includes
different types of progressive familial intrahepatic cholestasis (PFIC) associated with muta-
tions in relevant channel transporters of the hepatobiliary system. PFIC is a heterogeneous
group of autosomal recessively inherited monogenic disorders with a low incidence of
1:50,000–100,000 births worldwide, representing approximately 15% of all cases of neonatal
cholestasis [11]. These cholestatic syndromes are characterized by an early onset of the dis-
ease, usually in infancy, associated with clinical manifestations such as pruritus, jaundice,
malabsorption of fat and fat-soluble vitamins, and hepatomegaly [11]. PFIC is associated
with several liver complications, such as portal hypertension and cirrhosis, and can progress
to end-stage liver disease and liver failure between childhood and adulthood. Depending
on the type of PFIC, extrahepatic clinical manifestations or hepatocellular carcinoma (HCC)
may occur [12]. The most common biochemical features of this group of hepatobiliary
diseases are increased serum BAs and bilirubin [11]. Depending on their genetic origin,
PFICs can be classified into six types. Mutations in ATP8B1, ABCB11, ABCB4, tight junction
protein 2 (TJP2), NR1H4, and Myosin VB (MYO5B) genes are known to be the cause of
PFIC 1-6 types, respectively (Figure 1). In PFIC1, mutations in the familial intrahepatic
cholestasis 1 (FIC1) gene cause the loss of the asymmetric distribution of phospholipid
content in the canalicular membrane, leading to membrane destabilization and reduced BA
transport, resulting in their accumulation in hepatocytes, causing cholestasis. Mutations
in the ABCB11 gene can result in PFIC2 due to the absence of a functional bile salt export
pump (BSEP) protein, which also leads to toxic accumulation of BA in hepatocytes. In
PFIC3, mutations in ABCB4 cause multidrug resistance protein 3 (MDR3, ABCB4) defi-
ciency, which results in low levels of phosphatidylcholine (PC) in the bile, which is needed
to form micelles and neutralize the toxicity of hydrophobic BAs, resulting in damage to the
epithelium of bile canaliculi. Mutations in TJP2 lead to the misdistribution of claudin tight
junction in canaliculi, resulting in bile leakage and subsequently in PFIC4. PFIC5 is due to
mutations in the NR1H4 gene that cause deficiency in farnesoid X receptor (FXR), resulting
in a reduction of BSEP and ABCB4 expression and the accumulation of toxic BAs in the
hepatocytes. Finally, mutations in MYO5B interfere with the processing of normal intracel-
lular trafficking of BSEP, reducing its expression and activity at the canalicular membrane,
which results in the accumulation of toxic BAs in hepatocytes, giving rise to PFIC6 [13].
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Different disease characteristics such as the age of onset, severity, and the manifestation of
specific complications and serum markers vary between PFIC types [12,13].
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Figure 1. Genetic classification and pathogenesis of PFIC. The diagrams show the genes and functions
altered in each type of PFIC. The main deficient proteins for each type of PFIC are indicated by red
crosses, while derived alterations in other proteins or pathways are indicated by blue crosses. Damage
due to the abnormal accumulation of BAs is shown as yellow circles with orange lightnings.

The role of BSEP in the functioning of the hepatobiliary system is very important, as
mutations in different genes involved in BA metabolism and transport, such as ABCB11,
NR1H4, and MYO5B causing its deficiency, cause PFIC [14–16]. In addition, depending on
the severity of the disease, inherited intrahepatic cholestasis resulting from mutations in
ATP8B1 or ABCB11 can be classified as either PFIC1 or 2, respectively, or benign recurrent
intrahepatic cholestasis (BRIC) 1 or 2, respectively. Sometimes it is clinically difficult to dis-
cern between PFIC and BRIC because, in both cases, patients may present mild cholestasis
with long-term complications [17]. In addition, some missense mutations in less conserved
regions of the ABCB11 and ABCB4 genes promote the development of more moderate
variants of cholestasis such as BRIC2, ICP, cholesterol cholelithiasis, drug-induced cholesta-
sis, adult biliary cirrhosis, transient neonatal cholestasis, and others [18,19]. In addition,
mutations in cholangiocyte transporter genes (e.g., the cystic fibrosis transmembrane con-
ductance regulator (CFTR) gene) can cause cholestasis. In fact, a direct association between
cystic fibrosis and cholestatic conditions, such as bile duct complications, gallstones, and
primary sclerosing cholangitis, has been observed due to mutations in CFTR [20]. Other
genetic multisystemic diseases associated with cholestatic disorders include Alagille syn-
drome (ALGS) and cerebrotendinous xanthomatosis (CTX). ALGS arises due to mutations
in genes involved in the Notch signaling pathway, such as JAG1 and NOTCH2, and the
majority of patients present cholestasis and a deficiency of bile ducts [21]. CTX is caused by
mutations in the CYP27A1 gene, resulting in impaired BA biosynthesis and the accumula-
tion of toxic metabolites. Although liver damage is not common in all CTX patients, some
cases of severe infantile cholestasis have been reported [22].
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2. Current Treatments
2.1. Surgical Procedures: Hurdles and Limitations

Currently, therapeutic approaches for cholestatic disorders are limited, with liver
transplantation being the only curative strategy for the more severe syndromes [23,24].
However, liver transplantation has numerous limitations, such as organ failure, donor
shortage, limited organ viability, the requirement of life-long immunosuppression, and
immunological rejection [25]. For inherited diseases, such as some types of PFIC, liver
transplantation is considered for end-stage patients with severe complications, such as
hepatocellular carcinoma (HCC), hepatic steatosis, and liver cirrhosis. Orthotopic trans-
plantation successfully improves cholestasis and related symptoms in 3–5 years [12,26].
However, liver transplant has been shown to be associated with the development of circu-
lating anti-BSEP antibodies in a small fraction of transplanted PFIC2 patients, resulting in
the rejection of the transplanted organ [27,28]. Moreover, this approach is only partially
effective for cholestatic diseases with extrahepatic manifestations, such as PFIC1.

A therapeutic alternative prior to liver transplantation is surgical treatment aiming
to interrupt the enterohepatic circulation, including procedures, such as partial internal
biliary diversion (PIBD), ileal exclusion, and partial external biliary diversion (PEBD),
that lead to lower BA levels, less pruritus, and even reversal of hepatic fibrosis [29,30].
However, complications such as stoma bag-associated difficulties (e.g., dehydration or
leakage) have been reported [30]. For treatment of hereditary cholestatic diseases, biliary
diversion has been found to be more effective in PFIC2 patients with residual BSEP activity,
while for PFIC3 patients it is usually done late in the disease process, making it hard to
prevent disease progression [31,32]. Therefore, there is an urgent need to seek alternative
therapeutic approaches to liver transplants and surgical approaches. However, there is
room for hope since the increased understanding of the mechanisms leading to genetic
and acquired cholestatic diseases has opened the window to develop new drug and gene
therapies for the treatment of these disorders.

2.2. Pharmacological Therapies

Drug therapies are considered first-line treatments for cholestatic diseases. The main
strategies in the pipeline are based on FXR agonists and inhibitors of BA uptake transporters
in the enterohepatic circulation [33,34].

2.2.1. FXR Agonists

In recent years, the use of selective FXR agonists, such as ursodeoxycholic acid (UDCA),
has been the first option to treat cholestatic disorders. UDCA, a hydrophilic BA, reduces
the hydrophobic pool of toxic BAs in hepatocytes as well as the detergent properties of
bile in the bile canaliculi (Figure 2A). Currently, beneficial effects of UDCA have been
reported in patients with ICP, PBC, and PFIC3, especially at the early stages of these
diseases [35,36], although approximately 50% of the PFIC3 and PBC patients did not
respond or had an incomplete response [19,37]. It has also been observed that PFIC3
patients with milder forms of ABCB4 deficiency respond better to UDCA treatment [38].
In contrast, this treatment fails to offer any symptomatic improvement for the majority
of patients with PFIC2 or PSC [39,40]. On the other hand, UDCA-derived BAs such as
24-norursodeoxycholic acid (Nor-UDCA) or its taurine conjugate (TUDCA) have also
shown potential as therapeutic agents for these liver diseases [35]. Nor-UDCA has shown
improvement in serum disease biomarkers such as transaminases and alkaline phosphatase
(ALP) levels in patients with PSC [41], although larger studies are needed to establish its
real efficacy [42]. Currently, there is one clinical trial evaluating its use in PSC patients
(NCT01755507). A recent study has shown that TUDCA was able to normalize serum ALP
values in PBC patients [43]. Another FXR agonist with therapeutic potential in the treatment
of cholestatic diseases is the semi-synthetic BA, obeticholic acid (OCA). Two phase II studies
in PBC and PSC patients demonstrated the safety and beneficial effect of OCA in reducing
serum ALP levels [44,45] and, in fact, OCA has been approved as an alternative treatment
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for patients with PBC who do not respond to UDCA [46]. In addition, a recent study
showed that OCA was able to reduce liver damage in a mouse model of PFIC2 [47]. Despite
these promising results, its use in cholestatic patients has been associated with severe
pruritus, which would make it difficult to be approved as a therapy for PFIC, in which
pruritus is one of the main symptoms of concern [48]. Similarly, the non-steroidal FXR
agonist cilofexor, which has been reported to lead to significant improvements in cholestasis
markers in PSC patients [49], may cause pruritus in a dose-dependent manner as a side
effect and is not recommended for certain cholestatic disorders [50].
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Figure 2. Pharmacological treatments for cholestatic diseases. (A) Mechanisms of action of UDCA,
which favors the presence of hydrophilic BAs over hydrophobic BAs in bile, decreasing the toxic
effect of “detergent bile” in cholestatic patients. (B) NTCP transporter inhibitors block the entry of
BAs into hepatocytes. (C) ASBT inhibitors prevent the reabsorption of BAs in enterocytes, decreasing
their entrance into the enterohepatic recirculation. Inhibitions are indicated with blue crosses. BA,
bile acid (yellow circles).

Altogether, these data indicate that the identification and development of new and
more efficient FXR agonists represents a very interesting area of investigation for the
improved clinical management of cholestatic diseases (Table 1) [51,52].

2.2.2. Inhibitors of Bile Acid Uptake Transporters

Recently, there has been great interest in developing drugs that are able to interrupt
the enterohepatic circulation in a non-invasive manner for cholestatic disorders. The four
transporters that allow circulation of BAs between the liver and intestine are the apical
bile salt transporter (ASBT, also known as IBAT for ileal bile acid transporter), BSEP, the
sodium-taurocholate cotransporter polypeptide (NTCP) and the basolateral organic solute
transporter (OST) [1]. The inhibition of BSEP and OST transporters is not an option as
this would result in toxic accumulation of BAs in hepatocytes and enterocytes, respec-
tively [53,54]. In contrast, pharmacological inhibition of the hepatic transporter NTCP
results in a well-tolerated increase of BAs in plasma and a subsequent decrease in the
liver (Figure 2B) [55]. In fact, recent studies have shown the hepatoprotective effect of
NTCP inhibition, resulting in attenuation of cholestasis [56]. ASBT inhibitors prevent the
reabsorption of BAs in enterocytes and their recirculation to the liver, favoring their excre-
tion in feces (Figure 2C). ASBT antagonists currently being tested in clinical trials include
odevixibat (A4250, Albireo, Boston, MA, USA), maralixibat (LUM001, Mirum Pharmaceu-
ticals, Foster City, CA, USA), elobixibat (A3309, Albireo), linerixibat (GSK2330672, Glaxo
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Smith Kline, Brentford, United Kingdom) and volixibat (SHP626, Mirum Pharmaceuticals)
(Table 1) [57,58]. Several preclinical studies and clinical trials have shown high safety pro-
files for all these compounds with limited adverse effects outside the gastrointestinal tract
and a high specificity for ASBT when orally administered. The observed therapeutic effects
include a decrease of BAs in the liver and serum, reduction in pruritus, liver inflammation,
and liver fibrosis [57,58]. In 2021, odevixibat was approved for clinical use in PFIC patients
by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA).
Moreover, its safety and efficacy for treatment of other cholestatic diseases, such as ALGS,
are being evaluated [59]. Maralixibat has also been evaluated in PBC and PSC, but clinical
trials were discontinued because this treatment did not improve pruritus compared to
placebo [60]. Recently, maralixibat was approved for clinical use for ALGS patients by the
FDA [61]. However, its use for other cholestatic diseases, such as PFIC1-4, is currently
under evaluation by the EMA [62].

2.2.3. Other Pharmacotherapeutic Agents

Further additional pharmacotherapeutic approaches for the treatment of cholestatic
disorders are being explored. Peroxisome proliferator-activated receptor (PPAR) agonists
and fibroblast growth factor (FGF) analogues have been shown to be effective for diseases
such as PBC and PSC [63]. Activators of FXR transcriptional regulators, such as sirtuin 1,
have been shown to alleviate cholestatic liver injury in mice with BA-induced cholestasis by
increasing the hydrophilic character of the hepatic BA composition and decreasing plasma
BA concentration [64]. The use of antifibrogenic and anti-inflammatory therapeutic agents,
such as inhibitors of histone deacetylases and phosphodiesterase 5, led to reduced fibrosis
and liver damage in a PFIC3 mouse model [65]. Finally, ABC transporter enhancers, such
as ivacaftor, may rescue the functionality of canalicular membrane transporters implicated
in cholestatic disorders, including BSEP. Thus, PFIC2 patients may benefit from this type of
pharmacological treatment [66]. The use of fibrates, such as the PPAR agonists bezafibrate,
fenofibrate, and elafibranor (Table 1), could also be beneficial for the treatment of PBC
patients who do not respond to UDCA [67].

Table 1. Drug therapy for cholestatic diseases in clinical trials.

Drug Name Indication Current Status Clinical Trial Sponsor [Reference]

FXR
agonists

Bile acids

UDCA
(Actigall/Ursodiol/

Ursofalk)

ICP Phase III
Phase IV

NCT01576458
NCT01510860

Turku University
Hospital [68]

Pharma GmbH [69]

PBC
Approved

Sanofi-Synthelabo [70]

PFIC3 [71]

Nor-UDCA PSC Phase II NCT01755507 Pharma GmbH [41]

TUDCA
(Taurolite) PBC Phase III NCT01857284 Beijing Friendship

Hospital [43]

OCA
(INT-747/Ocaliva)

PBC Phase II
Phase III

NCT00570765
NCT01473524

Intercept
Pharmaceuticals

[44,45,72,73]PSC Phase II NCT02177136

Non-bile
acids

Cilofexor
(CILO) PSC Phase I/II NCT02943460 Gilead Sciences [49]

Tropifexor
(LJN452) PBC Phase II NCT02516605 Novartis

Pharmaceuticals [74]

EDP-305 PBC Phase II NCT03394924 Enanta
Pharmaceuticals
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Table 1. Cont.

Drug Name Indication Current Status Clinical Trial Sponsor [Reference]

ASBT
inhibitors

Odevixibat
(A4250)

ALGS Phase III NCT04674761
Albireo [75,76]

PFIC Approved

Maralixibat
(LUM001)

ALGS Approved Mirum
Pharmaceuticals, Inc.

[61]PFIC Phase III NCT02057718
NCT03905330

Linerixibat
(GSK2330672) PBC Phase III NCT02966834

NCT04167358
GlaxoSmithKline

[77,78]

Volixibat
(SHP626)

ICP
PBC
PSC

Phase II
NCT04718961
NCT05050136
NCT04663308

Mirum
Pharmaceuticals, Inc.

Other phar-
macothera-

peutic
agents

Aldafermin
(NGM282)

PBC
Phase II

NCT02026401 NGM
Biopharmaceuticals,

Inc. [79]PSC NCT02704364

Bezafibrate PBC Phase III NCT01654731 Hôpitaux de Paris [80]

Elafibranor PBC Phase II NCT03124108 Genfit [81]

Seladelpar
(MBX-8025) PBC Phase III NCT03602560 CymaBay Therapeutics,

Inc. [82]

Although the pharmacological strategies mentioned above significantly improved the
pathology of cholestatic diseases and the quality of life of the patients [63], they do not
represent a definitive cure for hepatobiliary dysfunction. For this reason, the development
of new strategies, such as cell and gene therapy, that allow stable, long-term correction of
these diseases is highly desired. In the following section, we will focus on gene therapy
strategies tested in preclinical models of cholestatic diseases.

3. Gene Therapy

Gene therapy involves the addition, removal, or modification of the genetic material
of an individual in order to treat a disease [83]. Its efficacy depends on successful delivery
to target cells, for which vectors (viral and non-viral) are utilized. Viral vectors are based on
modified viruses, such as adenoviruses (Adv), adeno-associated viruses (AAV), retroviruses,
and lentiviruses, among others, which have proven to be very effective for gene delivery,
although they present some drawbacks such as immunogenicity and limitations in cargo
size. Non-viral vectors, such as polymeric or lipid nanoparticles (LNP), unlike viral vectors,
do not achieve delivery to the cell nucleus and induce much more transient transgene
expression, but have a better safety profile, are not limited by packaging restrictions, and
offer several advantages in manufacturability and shelf-life. Recently, non-viral vectors
have shown a high degree of efficacy as demonstrated by the COVID-19 vaccines based on
messenger RNA (mRNA)-containing LNPs [84].

Gene therapy has emerged as a promising approach to achieve safe, stable, and efficient
long-term correction for a wide range of genetic diseases [85], including monogenic liver
disorders, for which liver transplantation remains the only cure [86], as well as acquired
liver diseases [87]. Viral and non-viral vectors have shown promising therapeutic results
in numerous clinically relevant animal models, as well as in a large number of clinical
trials [88,89]. The fact that more than a dozen gene therapy products have been approved
by the FDA and EMA, albeit only three for liver gene therapy, is a promising sign for the
future application of this technology for liver disorders [90,91].

3.1. Gene Therapy for Acquired Cholestasis

Since no definitive treatment has yet been developed for some acquired hepatic
cholestasis, such as PBC and PSC, there is a great need to identify novel therapeutic



Biomedicines 2022, 10, 1238 8 of 20

alternatives that can reduce fibrogenesis and potentially prevent the development of chronic
liver injury, making genetic-based treatments an attractive strategy to achieve sustained
long-term therapeutic effects.

To generate animal models of acquired cholestatic disorders, interventions including
bile duct ligation (BDL) and the induction of cholestasis by drugs, such as estrogens and
carbon tetrachloride (CCL4), have been utilized [92]. The development of cholestasis
involves several processes including: cellular apoptosis, production of proinflammatory
cytokines, and fibrogenesis that ultimately leads to biliary impairment [93].

Gene therapy approaches for acquired cholestasis have been addressed to mitigate
liver damage by reducing apoptosis and fibrosis and improving bile formation (Figure 3).
Next, we will describe the most relevant gene therapy strategies described so far.
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Figure 3. Gene therapy approaches for acquired cholestatic diseases. Different gene therapy strategies
have resulted in an alleviation of liver disorders according to their anti-apoptotic, anti-inflammatory,
and anti-fibrotic properties, respectively. Adv, adenoviral vector; AAV8, adeno-associated vector
with serotype 8; ACE2, angiotensin-converting enzyme; AQP-1, aquaporin; Cthrc-1, collagen triple
helix repeat containing-1; HNF4a, hepatocyte nuclear factor 4 alpha; IGF, insulin-like growth factor;
SOD, superoxide dismutase; uPA, urokinase-plasminogen activator. This figure was created using
BioRender.com.

3.1.1. Apoptosis Attenuation

One of the main targets for gene therapy of acquired liver disorders is the reduction of
hepatocyte apoptosis. Hydrodynamic-based gene delivery to the liver of an insulin-like
growth factor 1 (IGF-1)-expressing plasmid has demonstrated attenuation of hepatocellular
apoptosis and liver injury in rats with BDL. IGF-1 promotes amelioration of cholestatic
disease through activation of the phosphatidylinositol-3-kinase pathway, the inhibition
of glycogen synthase kinase-3 beta, and the blockade of caspase-9 cleavage. Additionally,
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inactivation of hepatic stellate cells has been observed, which may explain the notable
improvement in the degree of liver fibrosis [94].

3.1.2. Reduction of Mitochondrial Oxidative Stress

Reducing oxidative stress has been shown to be a therapeutic target for acquired
liver cholestasis. For example, Adv-mediated mitochondrial superoxide dismutase (SOD)
gene delivery leads to a reduction in liver injury by avoiding the formation of oxygen free
radicals derived from the accumulation of hydrophobic BAs and preventing the release of
proinflammatory cytokines, such as TNFα and TGF-β, in mice with BDL [95]. Similarly,
administration of Adv vectors expressing an inhibitor gene of proinflammatory cytokine
signaling like collagen triple helix repeat containing-1 (Cthrc-1) has shown a reduction of
liver fibrosis in mice subjected to BDL and drug-mediated cholestasis through the inhibition
of TGF-β signaling caused by the accelerating degradation of phospho-Smad3 [96].

3.1.3. Anti-Fibrotic Therapies

Anti-fibrotic therapies for cholestatic disorders via reducing pro-inflammatory fac-
tors tend to promote collagen degradation and thus reduce the degree of liver fibrosis.
Adv vectors expressing the urokinase-plasminogen activator (uPA) gene resulted in a
slight reduction of liver fibrosis, leading to a partial improvement of liver histology in
rats with BDL associated with the activation of metalloproteinases that trigger collagen
degradation [97,98]. Additionally, AAV vectors that allow hepatic expression of angiotensin-
converting enzyme (ACE2) provided a sustained anti-fibrotic effect in different animal
models of BDL and drug-induced cholestasis [99]. A different strategy to fight fibrosis
is based on the gene delivery of human hepatocyte nuclear factor 4 alpha (HNF4A) via
AAV vectors or mRNA containing LNP. This type of gene therapy was able to decrease the
expression of genes involved in profibrogenic activity and revert fibrosis in several mouse
models with induced or genetic cholestasis [100].

3.1.4. Amelioration of Bile Flow

Finally, Adv-mediated hepatic delivery of aquaporin-1 (AQP1) has shown an improve-
ment in the bile flow of estrogen-induced cholestatic rats [101]. In fact, this approach
resulted in a marked reduction of serum ALP, as well as serum and biliary concentrations
of bile salts. Moreover, AQP1 gene transfer increased biliary output as mediated by a
significant increase in BSEP transport activity [102].

Thus, gene therapy approaches may offer a new avenue for the development of novel
treatments for acquired cholestatic disorders.

3.2. Gene Therapy for Inherited Cholestasis

Gene therapy for the treatment of inherited hepatic diseases has garnered a great deal
of attention after demonstrating that AAV vectors expressing human coagulation factors
IX and VIII in the livers of patients with hemophilia B and A, respectively, resulted in a
sustained therapeutic effect for more than three years [103]. In fact, a large number of gene
therapy products have demonstrated promising therapeutic effects in clinically relevant an-
imal models, leading to clinical trials for inherited liver disorders, such as phenylketonuria,
familial hypercholesterolemia, ornithine transcarbamylase deficiency, acute intermittent
porphyria, methylmalonic acidemia, and Wilson’s disease, among others [88]. In the next
sections of the review, we will focus on the use of gene therapy for inherited cholestatic
diseases, which include genetic disorders with associated cholestasis and the different
forms of PFIC.

3.2.1. Gene Therapy of Genetic Disorders with Associated Cholestasis

Preclinical studies have shown promising results in animal models of Cerebrotendi-
nous xanthomatosis (CTX) and Crigler-Najjar syndrome type 1. In the first case, the
administration of an AAV8 vector expressing CYP27A was able to restore BA metabolism
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and normalize the concentration of most BAs in plasma in a mouse model of CTX [104].
Interestingly, this therapeutic effect was achieved with only 20% of transduced hepato-
cytes, which could greatly facilitate the clinical translation of this approach. Secondly,
treatment of Crigler–Najjar syndrome type 1 with an AAV8 vector expressing UDP-
glucuronosyltransferase family 1-member A1 (UGT1A) showed normalization of total
serum bilirubin levels in two animal models of the disease, Gunn rats and Ugt1a1-/-

mice [105]. In this last model, a therapeutic effect was also demonstrated in newborn
mice, although high doses of vector were required to maintain the effect [106]. These
preclinical results led to a phase I/II clinical trial sponsored by Genethon (Évry, France),
which is currently ongoing (NCT03466463).

The results observed in preclinical studies of Crigler–Najjar syndrome showed that
one of the main limitations for gene therapy of genetic cholestatic diseases could be related
to the loss of viral genomes associated with hepatocyte proliferation occurring in young
patients [107].

3.2.2. Gene Therapy for PFIC Diseases

Gene therapy approaches for PFIC can be based on gene supplementation or gene
editing strategies to modify and repair the affected genes. The implementation of gene
therapy for the different types of PFIC has some limitations. Firstly, in some types of
PFIC in order to achieve stable and long-term therapeutic efficacy, it could be necessary to
transduce most of the hepatocytes, which may require the use of high doses of the viral
vector with the concomitant safety concerns [107,108]. Secondly, some types of PFIC have
extrahepatic clinical manifestations hampering the liver-targeted treatment [109]. Finally,
PFIC diseases requiring therapy are generally diagnosed in pediatric patients, and gene
therapy based on non-integrative vectors, such as AAV, may be inefficient due to the loss
of viral genomes associated with hepatocyte proliferation in a growing liver [107]. The
decision to undergo gene therapy for PFIC, as well as the outcome of the therapy, will likely
be influenced by the type of mutations present in the affected gene. For example, patients
with missense mutations leading to decreased protein activity will probably respond better
than those with a complete deficiency.

Although the loss of viral genomes could be a problem for most inherited cholestasis,
ABCB4 deficiency, which causes PFIC3, has certain advantages over other PFIC types for
liver gene therapy. For example, previous results using hepatocyte transplantation in a
mouse model of PFIC3 showed that engraftment of 12% of healthy hepatocytes was enough
to achieve therapeutic efficacy [110]. This evidence led to four preclinical studies examining
the feasibility of gene therapy for PFIC3 in three different Abcb4-/- mouse models with a
range of phenotypes depending on the mouse strain [111].

Gene Therapy for PFIC3 Based on ABCB4 Supplementation

The first study tested gene therapy in C57BL/6 Abcb4-/- mice that were challenged
with a BA-enriched diet to increase liver toxicity due to their mild phenotype. Treatment
with an AAV8 vector expressing ABCB4 demonstrated long-term efficacy by preventing the
increase of serum transaminases and the loss of biliary PC levels after BA challenge [112].
In a second study, performed by our group, we evaluated PFIC3 AAV-based gene therapy
in FVB Abcb4-/- mice, which have a clinically relevant phenotype characterized by high
serum levels of bile salts and transaminases, hepatosplenomegaly, and liver fibrosis [113].
In this model, we demonstrated that an AAV8 vector containing a codon-optimized ABCB4
sequence downstream of the liver specific alpha-1 antitrypsin (AAT) promoter resulted in
stable and long-term correction of PFIC3 by improving all disease markers. Interestingly,
this therapy was not only able to prevent disease progression in young mice (two-week-
old), in which symptoms had not yet developed, but also in older mice with an established
phenotype (five-week-old and sixteen-week-old mice). The therapeutic effect was dose
dependent, and it was observed that restoration of biliary PC levels above 12–13% (over
4000 µM) of wild-type levels was enough to have a curative effect. This indicates that
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PFIC3 could be treated even if only a small fraction of hepatocytes were transduced, in this
way resembling gene therapy of other diseases like hemophilia B, in which therapeutic
effects can be obtained with a small percentage of transduced hepatocytes. In our study, the
therapeutic threshold was achieved with as little as 2–3% of wild-type ABCB4 expression
levels [113]. Interestingly, this therapy was more efficacious in male mice compared
to females, although a sustained therapeutic effect could be obtained in females by the
administration of a second vector dose [113].

Recently, a preclinical study based on LNP-encapsulated mRNA therapy was able
to transiently reverse the disease phenotype in BALB/c Abcb4-/- mice [114]. BALB/c
Abcb4-/- show similar levels of serum biomarkers as the FVB Abcb4-/- mice, but with a
faster progression of liver fibrosis, leading to early development of primary liver cancers
as well as an earlier onset of other complications, such as portal hypertension [111]. Five
repeat ABCB4 mRNA-LNP injections were able to restore ABCB4 expression and biliary PC
levels (~42% of wild-type levels), as well as improve serum biomarker levels, liver fibrosis,
and hepatomegaly [114,115]. However, these previously described non-integrative vector-
based gene therapy strategies may have important limitations, such as loss of transgene
expression, either because of loss of viral genomes due to hepatocyte division or because the
short half-life of mRNA requires periodic administration to maintain the therapeutic effect.
An alternative strategy to solve this hurdle is gene delivery mediated by an integrative
vector.

Using this type of approach, Siew et al. tested PFIC3 correction by the use of an
integrative hybrid vector based on the expression of a piggyBac transposase and an AAV8
vector containing a piggyBac ABCB4 expression cassette in FVB Abcb4-/- mice. A single
dose of the hybrid vector in neonates demonstrated the recovery of biliary PC levels and
normalization of serum biomarkers. Additionally, the hybrid AAV-piggyBac treatment
prevented biliary cirrhosis and reduced tumorigenesis [116]. However, the possibility of
this vector integrating into oncogenic sites represents a high risk for clinical application.
Results from these preclinical studies have led to orphan drug designation of an AAV
vector harboring a codon optimized version of ABCB4 (VTX-803) developed by Vivet
Therapeutics (Paris, France), opening a promising pathway for the treatment of patients
with this cholestatic disorder (Table 2).

Gene Therapy for PFIC3 Targeting Mechanisms of Disease

Although gene supplementation or correction of the affected gene is the most straight-
forward gene therapy strategy for PFIC3, several studies have shown that it is also possible
to treat this disease by altering the expression of other genes that are involved in this
pathology. One example is the delivery of vectors that express genes that contribute to
the attenuation of liver fibrosis, such as ACE2 and HNF4A, as described in Section 3.1.3.
In this sense, an AAV8 vector expressing ACE2 was able to reduce liver fibrosis in early-
and late-stage FVB Abcb4-/- mice [117]. Moreover, hepatocyte-targeted administration of
HNF4A mRNA encapsulated with a biodegradable lipid restored the metabolic activity of
hepatocytes in FVB Abcb4-/- mice, leading to a robust inhibition of fibrogenesis [100].

A novel approach that could be used to treat cholestatic diseases is based on the
regulation of BA synthesis and homeostasis. It has recently been described that Limb
expression 1-like protein (LIX1L) is increased in the liver of patients with cholestatic
diseases and that the normalization of its expression alleviates cholestatic liver injury in
different cholestatic mouse models, including FVB Abcb4-/- mice. LIX1L regulates the levels
of miR-191-3p, a microRNA that downregulates transcription factor liver receptor homolog-
1 (LRH-1), thereby inhibiting Cyp7a1 and Cyp8b1 expression, two enzymes required for
BA synthesis. Based on these data, Li et al. [118], recently showed that an AAV vector
overexpressing miR-191-3p was able to ameliorate cholestasis in FVB Abcb4-/- mice by direct
repression of LRH-1 expression, thereby reducing de novo BA synthesis [118]. Another
potential target for reducing liver fibrosis through gene therapy of cholestatic disorders is
the suppression of the neurokinin 1 receptor (NK1R) axis as well as transforming growth
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factor-β1 (TGF-β1)/miR-31 signaling. In FVB Abcb4-/- mice, knock-out of NK1R has been
shown to decrease the levels of miR-31 and of proinflammatory molecules such as TFG-
β1, resulting in the reduction of liver inflammation and fibrosis [119]. These therapeutic
approaches could be very useful for either acquired cholestatic disorders or PFIC.

Table 2. Gene therapy approaches for PFIC3.
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(similar to patients) More severe

Vector AAV8 AAV8
Hybrid AAV-piggyBac

transposon LNP

Dose 5 × 1013 vg/kg 1 × 1014 vg/kg ~2 × 1014 vg/kg 1.0 mg/kg

Age of treatment 10-week-old 2- or 5-week-old Newborn 4-week-old
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Disadvantages
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AAT, alpha-1 antitrypsin; AAV, adeno-associated vector; ALP, alkaline phosphatase; ALT, alanine aminotransferase;
BW, body weight; LNP, lipid nanoparticles; LP1, liver-specific transcriptional control unit; PC, phosphatidylcholine;
TRsh, short piggyBac terminal repeats; VG, viral genomes; WT, wild-type.

Gene Therapy for Other Types of PFIC

For other types of PFIC, although gene supplementation using vectors expressing the
specific mutated gene is also an option, there are certain barriers that make the development
of these treatments more challenging than for PFIC3. For example, patients with PFIC1,
PFIC4, PFIC5, and PFIC6 have extrahepatic manifestations that cannot be rescued by liver-
targeted gene therapy [109,120]. In addition, in contrast to gene therapy for PFIC3, where
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liver toxicity arises in the bile canaliculi and transgene delivery to a fraction of hepatocytes
leads to sufficient ABCB4 protein to reverse toxicity, in other types of PFIC where toxicity
occurs in hepatocytes, it is likely that correction of a high percentage of these cells will
be required to achieve a therapeutic effect [110,121]. One additional problem to develop
gene therapy strategies for some types of PFIC is the lack of suitable animal models that
adequately recapitulate the phenotype of patients. Currently, there are no TJP2-deficient
animal models available to test the feasibility of gene therapy for PFIC4 [121]. Likewise, the
existing animal model for PFIC6 is not suitable, because it has a complete knock-out of the
MYO5B protein, which is not an appropriate model for this cholestatic disease. For that, it
is necessary to develop an animal model with missense mutations of the MYO5B gene that
affect the motor domain but do not result in complete deficiency of the protein [122]. In the
case of PFIC2, there are several animal models that show a varying degree of pathology
depending on the genetic background. Abcb11-/- mice in a C57BL/6 background represent
the closest model to the patient disease phenotype, showing a drastic decrease in bile salt
content in the bile that leads to increased levels of serum transaminases, liver fibrosis,
and hepatomegaly, with these changes being more severe in females than in males [123].
However, unlike PFIC2 patients, these mice only show a mild elevation of serum bile salts,
which is one of the main biomarkers of the disease.

Finally, the loss of transgene expression by hepatocyte cell division is a drawback
for the use of non-integrative vectors, such as AAV, in gene therapy of these inherited
cholestatic disorders that need to be treated at very early ages, as only a few hepatocytes
will maintain episomal AAV genomes [124]. Unlike PFIC3, for which partial gene therapy
supplementation or correction of the affected gene is feasible, other types of PFIC may
benefit from other gene therapy strategies aimed at reversing liver damage at several levels.

4. Future Directions

Due to the growing success of liver-targeted gene therapies and preclinical stud-
ies showing therapeutic efficacy against cholestatic diseases, such as PFIC3, the need to
overcome challenges involved in taking these products from bench to bedside is even
more critical.

One of the main challenges that gene therapy of cholestatic disorders faces is the
potential loss of therapeutic effect in pediatric patients. This could be due to a decrease
of viral genomes as a result of hepatocyte divisions in a growing liver in the case of
AAV-based therapies, or to the transient expression of non-viral vector-mediated mRNA
delivery [107,125]. Other challenges include immune responses to treatment (vector or
transgene) and vector-mediated toxicities, particularly as a result of using very high vector
doses. Strategies for addressing these challenges will guide the possible directions for
present and future research.

First, the administration of repeated doses of the vector could allow the maintenance
of the therapeutic effect. However, this is only straightforward for non-viral vectors,
such as mRNA-loaded nanoparticles, although it will greatly increase the cost of this
therapy [115,125]. For viral vectors, such as AAV, the induction of vector-neutralizing anti-
bodies after the first dose prevents the use of the same vector for additional administrations.
However, several strategies have been proposed to allow vector re-administrations, which
include the use of alternative AAV serotypes without cross-reactivity [126], the elimination
of neutralizing antibodies using IgG-degrading endopeptidases [127], and the prevention
of humoral and cellular responses against the virus via co-administration of the vector with
rapamycin encapsulated in LNPs [128].

Second, the combination of gene therapy vectors with pharmacological therapies,
such as UDCA, could provide synergistic therapeutic effects, especially in PFIC3 patients
with more severe pathology who do not respond to UDCA treatment [19]. The use of
pharmacological therapies in some pediatric patients could lead to a healthier liver status,
improving the vector transduction efficiency and/or allowing the administration of the



Biomedicines 2022, 10, 1238 14 of 20

gene therapy product at an older age, at which vector genomes could be maintained for
longer periods of time.

Third, the sequential therapy of non-viral vectors such as mRNA-loaded nanoparticles
in pediatric patients with growing livers followed by the administration of a viral vector
that allows safe and stable long-term expression of the transgene at an older age, or the
combination of vectors that, after reducing liver injury, facilitate the long-term efficacy of
gene therapy could be of interest.

Fourth, the improvement of gene therapy vectors by codon optimization or incorpo-
rating promoters that allow a more potent expression of the transgene with the aim of
reducing the viral dose required to achieve a therapeutic effect could function to reduce
the risk of toxicity from high doses [129,130]. Alternatively, inducible promoters could
allow a safe, precise, and controlled expression of the transgene with physiological trans-
gene regulation [131,132], thus avoiding unwanted effects of transgene overexpression,
such as silencing, exacerbated immune responses, or cytotoxicity that could result in the
elimination of the transduced hepatocytes [133,134]. The modification of the transgene via
codon optimization with a reduced number of CpG motifs may also mitigate the risk of
activating the Toll-like receptor 9 pathway [135], which has been theorized to result in loss
of transduced hepatocytes [136].

And finally, for those cholestatic disorders in which correction of the majority of
hepatocytes for a long-term therapeutic effect is likely necessary, as in the case of some PFIC
subtypes [108,109], a promising alternative is the use of CRISPR/Cas9 to achieve specific
gene correction by non-homologous end-joining, base editing, or prime editing. The high
efficiency of liver-targeted gene delivery makes it an ideal organ for the application of gene
editing strategies in animal models of PFIC [88]. However, there are still many barriers
hampering the use of gene editing techniques in humans, such as reduced specificity
of targeted integration leading to safety concerns, as well as the low efficacy of non-
homologous end-joining [137]. However, for most patients with more severe extrahepatic
pathologies, liver-targeted gene therapy by itself will not be sufficient [109,122]. In this
sense, the combination of gene therapy products targeting the liver with other therapies
that allow the alleviation of extrahepatic damage could show a beneficial effect in these
patients.

5. Conclusions

Although pharmacological therapies can be used to treat cholestatic diseases with
milder phenotypes, they are less efficient in patients with a more severe pathology. As
addressed in this review, alternative approaches, such as gene therapy, could represent
a promising novel approach. To date, many preclinical studies using liver-directed gene
therapy in clinically relevant animal models of both inherited and induced cholestasis have
shown promising results. Although there are still many challenges for the implementation
of these emerging treatments in the clinic, it is likely that some of these therapies will be
approved in the near future, giving new hope for many cholestatic patients.
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