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SUMMARY

Transcription factors (TFs) define cellular identity either by activating target cell
program or by silencing donor program as demonstrated by intensive cell reprog-
ramming studies. Here, we propose an extended minimum set cover model with
stable selection (3Scover) to systematically identify silencing TFs, named safe-
guard TFs, from omics data. First, a cell type-TF specificity network is constructed
to systematically link cell types with their specifically expressed TFs. Then we
search the minimum TF set to cover this network with “many but one specificity”
characteristic and integrate many subsampling models for a stable solution. 3Sco-
ver identified 30 safeguard TFs in human and mouse. These safeguard TFs are
significantly enriched in the experimentally discovered reprogramming panel
with their protein-protein interactors. In addition, they tend to interact closely
with chromatin regulators, negatively regulate transcription, and function earlier
in development. Collectively, 3Scover allows us to probe master TFs and combi-
natorial regulation in controlling cell identity.

INTRODUCTION

Transcription factors (TFs) are the master regulators for many important biological processes. Specifically,
cell identity is controlled to a large extent by the TFs, which bind specific sequence, recruit chromatin reg-
ulators (CRs), turn on and off the target genes, and finally change the cell fate (Corces et al., 2018; D'Alessio
et al., 2015; Duren et al., 2017). This fact is revealed by the seminal induced pluripotent stem cell experi-
ments: that a small number of TFs are sufficient to establish gene expression profiles, which define plurip-
otent cell identity (Yamanaka, 2012). Further investigations confirmed that ectopic expression of TF con-
verts cells from one type to another by many cellular reprogramming experiments. For example, the
combination of the three TFs (ASCL1, BRN2, and MYT1L) has been shown to reprogram fibroblasts and
other somatic cells into induced neuronal (iN) cells (Masserdotti et al., 2016). A pool of six genes (TFs:
SIX1, SIX2, HOXA11, and SNAI2; transcriptional co-activator: OSR1, EYA1) were found to activate nephron
progenitor phenotype in the adult proximal tubule cell line (Hendry et al., 2013).

Those cell reprogramming experiments imply that TFs work in different combinations with other TFs or co-
factors to enact a vast repertoire of cellular fates, and combinatorial regulations among several TFs are crit-
ical to convert one cell type to another (Li et al., 2019; Wang et al., 2009; Zhang et al., 2018). However, the
detailed underlying mechanism remains elusive, for example, which TFs are important in the 1,500-2,000
TFs encoded in the genome, how to form the right combination panel, what is each TF's role in the
panel, etc.

Recently, Mall et al. proposed that reprogramming requires the activation of target cell programs and
silencing of donor cell programs (Mall et al., 2017) by taking the reprogramming experiment from fibro-
blasts and other somatic cells to iN cells as an illustration. ASCL1 acts as a pioneer TF to activate the
neuronal program, whereas MYT1L acts as a safeguard TF to directly repress other non-neuronal somatic
lineages to maintain neuronal identity (Mall et al., 2017). Systematic approaches are proposed to identify
pioneer TFs for most cell types in humans according to two characteristics: typically expressed at relatively
high levels and in a quite strict cell-type-specific fashion (D'Alessio et al., 2015). These pioneer TF charac-
teristics were widely accepted and used to identify regulon, a group of genes that are regulated by TF as a
unit, in all cell types for mouse (Suo et al., 2018). Compared with pioneer TFs, safeguard TFs are difficult to
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Figure 1. Cell Type-TF Specificity Network Construction and the Reprogramming TF Panel Induced Subnetwork

(A) TF is associated with cell types by the defined specificity scores, which are organized into a matrix with rows and columns indicating TFs and cell types.
(B) Specificity score is ranked for all TFs within each cell type (column).
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Figure 1. Continued

(C) Adjacency matrix of the cell type-TF network by thresholding the specificity rank data. It is derived from specificity rank matrix by setting a threshold and
binarized into 1 and 0 indicating if TF is present and absent in a given cell type. This adjacency matrix can be easily represented as a bipartite graph wherein
TF and cell types are nodes and their connections are edges. The cell type-TF specificity network is a bipartite network and can induce the TF-TF network if
two TFs share the same cell type.

(D) Reprogramming panel inducted TF-TF subnetwork. We select the TFs used in reprogramming experiment from literature, called reprogramming panel
TF, and extract the induced subnetwork. TFs are grouped by cell type to which they are used to reprogram, called preprogramming panel lineage. Color of
TFs and cell types correspond to their reprogramming panel lineage.

(E) Reprogramming panel TF induced subnetwork from mouse cell type-TF specificity network.

(F) Sankey plot and word cloud of (D). Sankey plot shows the relationship of TF groups and cell type groups in (D); each group of cell type is indicated by the
corresponding word cloud.

(G) Sankey plot and word cloud of (E).

See also Figure S1.

be defined in biology and characterized from high-throughput data. Thus, computational method to iden-
tify safeguard TFs is in pressing need and expected to reduce barriers in understanding the mechanisms
underlying TF combinatorial regulation.

In this study, we propose a Set cover model with Stable Selection (3Scover) to identify safeguard TFs across
a large collection of different cell types or tissues in a robust and parsimony way. 3Scover takes the TF
ranking or scoring data in each cell type as input, reconstructs a cell type-TF network, extracts patterns
from the network, and then identifies safeguard TFs as output. To test the validity, we apply 3Scover to
two large-scale transcriptomic datasets and identify 30 safeguard TFs in human and mouse (available at
https://github.com/AMSSwanglab/3SCover/blob/master/Human_safeguard_TF.txt; https://github.com/
AMSSwanglab/3SCover/blob/master/Mouse_safeguard_TF.txt). Those safeguard TFs serve as distinctive
signatures of lineages and group similar cell types together. The experimentally verified TFs in cell reprog-
ramming panels are enriched in safeguard TF-TF protein-protein interaction (PPI) network. We further
explore the biological properties for safeguard TFs by public omics data. The regulatory pattern of safe-
guard TFs is different from that of other TFs, with a higher percentage of distal enhancers. Safeguard
TFs closely interact with the CRs with negative regulation of gene expression in epigenomics. Those are
consistent with the concept of safeguard TF functioning in early development and low differentiation
context and playing a negative regulatory role.

RESULTS

Constructing Cell Type-TF Specificity Network

We construct a cell type-TF specificity network, i.e., a cell type-TF bipartite graph, to connect TFs with cell
types (nodes in the network) by quantifying how “specific” a TF belongs to a cell type (edges in the
network). This network provides a global landscape and useful resource to study TF and cell type relation-
ships and allows us to explore the hidden patterns and systematically dissect the TF “specificity” across
various cell types. Figure 1 shows the procedure of constructing the cell type-TF specificity network and
modeling structures in the network.

"

As the first step, we quantify TF's “specificity” in a given cell type by two properties derived from its expres-
sion pattern: “high expression” and “cell type-specific fashion.” “High expression” is a prerequisite for
specificity, and TF with "high expression” is more likely to play major roles in gene regulation. To exclude
the housekeeping TFs, which are highly expressed in all cell types, we introduce “cell type-specific fashion”
to remove TFs with basic cellular function. An entropy-based measure of Jensen-Shannon divergence is
calculated as specificity score, and TFs are ranked in each cell type (see Methods for details). These spec-
ificity score data are shown in Figure 1A as a matrix where the row denotes TFs and column denotes cell
types. This score matrix is converted into TF specificity rank matrix in each cell type as shown in Figure 1B.
We then choose a rank threshold (top 30 in our study) and output the cell type-TF adjacency matrix in Fig-
ure 1C by setting items below the threshold to 1, whereas other items to 0. This sparse matrix can be natu-
rally reorganized into a bipartite graph linking cell types with the TFs, named cell type-TF specificity
network.

Following the aforementioned procedure, we calculate the specificity rank matrix and construct the human

and mouse cell type-TF specificity networks from two datasets, i.e., 1,055 TFs across 233 cell types ranked
by gene expression in human (D'Alessio et al., 2015) and 202 TFs (regulons) across 818 cell types ranked by
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the regulatory strength in mouse (Suo et al., 2018). To visualize the two large networks, we focus on the TFs
previously used in lineage reprogramming experiment and extract the reprogramming panel TF-induced
subnetworks as shown in Figures 1D and 1E. TFs are classified into eight groups based on their reprogram-
ming panel lineages, including hematopoietic multipotent progenitor cell, cardiomyocytes, endothelial
cells, hepatocytes, melanocytes, nephron progenitors, neuron, and retinal pigment epithelium-like cells
(RPE-Like). We next classify cell types into eight groups according to the number of their linked TFs in
the cell type-TF specificity network (see Methods for details). We observe that the cell type-TF specificity
networks are well organized in modular structure in both human and mouse. For example, ASCL1, POU3F2,
SOX2, MYT1L, NEURODT1, ISL1, MNX1, and FOXAZ2 are highly associated with neuron cell types in human.
Those cell type-TF module structures are highly conserved in human and mouse. GATA4 and MEF2C are
associated with cardiomyocytes, and CEBPA and HNF4A are associated with hepatocytes. The Sankey plot
in Figures 1F and 1G summarizes the relationship between cell types and TFs. We observe that the numbers
of cell types linked with TFs vary widely. In the human subnetwork, SNAI2 and RUNX1 are linked with
maximal number of 51 cell types, whereas LHX3 is linked with only one cell type. For mouse, Hnf4a is linked
with a maximal number of 230 cell types and the least number is 97 by Sox10. We generate word cloud for
each group of cell type to display the cell type annotations by their frequency in the group. Figures 1F and
1G indicate that the constructed cell type-TF specificity networks are consistent with the reprogramming
experiments. For example, in human subnetwork, “endothelial” is of high appearance in the cell types in
ERG and FLI1 linking group and they are known TFs used to reprogram donor cell types to endothelial cells.
In mouse subnetwork, Cebpa and Hnf4a connect with liver and are known as factors to reprogram to he-
patocytes. Taken together, the reconstructed cell type-TF specificity network is in high quality and the en-
coded high-level relationships among TFs and cell types need to be explored further. We next develop
systematic method to mine the knowledge from the network.

Characterizing Safeguard TFs in Cell Type-TF Specificity Network

We observe in the reconstructed cell type-TF specificity network that some TFs have high degree by spe-
cifically expressing in many cell types, but some TFs do not. We first compare the known safeguard TF
MYT1L (Mall et al., 2017) and pioneer TF NEUROD1 (Guo et al., 2014) for their degrees in the network.
Both TFs are used to reprogram fibroblast to neuron but show different specificity pattern. We extract
the subnetwork induced by MYT1L and NEUROD1, respectively, from the human cell type-TF specificity
network (Figure STA), and most of the cell types included are neuron related. Figure 2A shows that the
degree of MYT1L in human cell type-TF specificity network is 35, whereas the degree is 4 for NEUROD1.
We further observe their distinct expression patterns across tissues. Figure 2B shows that NEUROD1 is
specifically expressed in “brain-cerebellar hemisphere” and "“brain-cerebellum,” whereas safeguard TF
MYT1L is turned on in almost all neuronal cell types (brain amygdala, brain anterior cingulate cortex,
brain caudate, brain cerebellar hemisphere, brain cerebellum, brain cortex, brain frontal cortex, brain
hippocampus, brain hypothalamus, brain nucleus accumbens, brain putamen, and pituitary) and is turned
off in other tissues. The contrast of MYT1L and NEUROD1 in Figures 2A and 2C suggests an important
characteristic for safeguard TF: “many but one specificity” at gene expression level, which requires TF to
be expressed with high level in a cell type-specific way in many cell types, but not just in one cell type.
This is different from pioneer TF by requiring narrow cell type specificity. This “many but one specificity”
property is well explained by the fact that the maintenance of the neuronal lineage context not only
needs the activation of neuron functional properties but also needs repression properties of other line-
ages (Mall et al., 2017).

In addition to “many but one specificity” for a single TF, we observe in Figures 1D and 1E that a small set
of TFs can cover almost all the cell types. This motivates us to deduce the coverage property from the
whole cell type-TF specificity network. We make a reasonable assumption that safeguard TFs are indis-
pensable in each lineage to switch off the context of other lineages. Putting together, safeguard TFs
from all lineages constitute the safeguard TF set. Motivated by the law of parsimony, we hypothesize
that the safeguard TF set is organized under the overall goal of parsimony principle as the evolution
outcome: the lineage program maintaining relies on a minimal set of safeguard TFs repressing conver-
sion to other lineages.

Collectively, we propose two quantitative characteristics that safeguard TF set should meet. (1) “Many but

one specificity”: Specificity can be quantified by entropy-based measure to assess whether the TF is spe-
cifically expressed in a broad lineage, but not just in a single cell type. (2) Parsimony: All cell type identities
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Figure 2. Safeguard TF Characterization and 3Scover Framework

(A) The degree of MYT1L and NEUROD1 in human cell type-TF specificity network.

(B) Comparison of expression pattern for safeguard TF and pioneer TF across tissues. Bar plot shows the median TPM of MYT1L (safeguard TF, green) and
Neurod1 (pioneer TF, orange) in 53 tissues from GTEx dataset. The line indicates that TPM value is 2. In 12 tissues, MYT1L is above the line (red), in which 11
tissues are brain related.

(C) Number of cell types whose median expression is above the line. There are 13 tissues for MYT1L (green) and only 3 for NEUROD1 (orange).

(D) Overview of 3Scover framework. 3Scover takes cell type-TF specificity network as input, models two major characteristics of safeguard TF, combines the
minimum set cover problem model with ensemble strategy, and prioritizes safeguard TFs as output. Specifically, the solution stability is achieved by
subsampling the input network, finding the minimum set cover solution for each subnetwork (subproblem 1), and then integrating them into a stable
safeguard TF list (subproblem II).

in an organism should be safeguarded by a minimal set of TFs, in which a combination of TFs maintains the
context of corresponding lineage. We note that the parsimony characteristic is a global property for the
safeguard TF set to cover all lineages, whereas the “many but one specificity” characteristic is a local prop-
erty for a certain TF to cover some broadly specific lineage.

iScience 23, 101227, June 26, 2020 5
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Identifying Safeguard TF by Set Cover Model with Stability Selection (3Scover)

Based on the deduced properties of safeguard TF, we propose a model, 3Scover (Set Cover Problem
with Stability Selection), to systematically identify the safeguard TFs, taking cell type-TF specificity
network as input. The main idea behind 3Scover is illustrated in Figure 2D. Classical set cover
model is introduced to find the minimum safeguard TF set to cover the cell type-TF specificity
network. To get a robust safeguard TF set, we extend the classical model by introducing the stability
selection. This is an ensemble strategy by subsampling the cell type-TF specificity network and aggre-
gating the minimum safeguard TF sets based on each subnetwork (Figure 2D and the motivations are
in Methods).

3Scover is formally described as follows:

L

K
min Z(A||x'—x||2+ Zx/
o i=1

1=1

s.t. Za;,-Xi’Z'l, forle{1,2,...,L}, jeT

x, x€{0,1}, ie{1,2,...,K}, le{1,2,...,1}

where Lis the number of subsampling times; Kand N are, respectively, the number of TFs and cell types in
the network; x' represents the solution for I-th set cover subproblem by subsampling; and x is the
consistent or stable solution for all the subproblems. The term in objective function S, x! finds
the minimum set cover for the I-th subproblem; the term in objective function S_1_,||x! — x|| minimizes
the distance between the consistent solution with subsampling solutions; the constraints
Ziagjx[21, for le {1,2,...,L}, for je T; are introduced to restrict the I-th solution to cover all cell types in
T); and T, is the set of cell types in the I-th random subsampling.

We tackle the large scale 0-1 integer linear programming by iteratively solving two sub-optimization
problems (Figure 2C and Methods). The set cover sub-optimization problem, which is known as
one of Karp’s 21 NP complete problem, is solved by branch and bound algorithm in CPLEX for
MATLAB.

3Scover Uncovers Distinctive Signatures of Lineages

We first apply 3Scover to identify safeguard TFs in human. We subsample from the human cell type-
TF specificity network for 1,000 times as input, and 3Scover ranks the TFs by the probability of the
TF being a safeguard TF (Table 1). We select the top 30 TFs as our final safeguard TF set. This in-
cludes 5 TFs in existing reprogramming panels—MYT1L, RUNX1, MNX1, SNAI2, and SOX10 (Table 2).
And we can reasonably speculate that those safeguard TFs work with pioneer TFs when reprogram-
ming to "melanocytes,
itor cell.”

"o "o

nephron progenitors,” “neuron,” and "haematopoietic multipotent progen-

Those 30 safeguard TFs serve as distinctive signatures of lineages. We group cell types into nine lineage
groups (Figure S2), and cell types in the same group perform similar functions. The expression patterns
in Figure 3A clearly show that 30 safeguard TFs are representative in the cell type-TF specificity network.
We further annotate each group by summarizing the included cell types and identify the signature safe-
guard TF for each group (see Methods for details). For example, there are 46 cell types in the neuron group

"o

(Figure 3A), in which 31 are brain regions, such as “prefrontal cortex,” “midbrain,” and “cerebellar hemi-
sphere.” Of the remaining 15 cell types 7 are neuronal cell types. Thus, this group is annotated as
neuron/brain and associates to safeguard TF MYT1L, SOX10, and SALLT. When we focus on MYT1L as pos-
itive control, we find that 33 of 35 MYT1L linking cell types are included in this group and all 33 cell types are

related to brain or neuron.

Figure 3B shows the heatmap of safeguard TFs’ expression pattern using the independent GTEx expres-
sion data across 53 tissues. We find that all tissues from brain are in the first group. Also, MYTIL,
SOX10, and SALL1 are the safeguard TFs in this group. This is in accordance with the result in Figure 3A.
From the clustering result of the cell types, we can conclude that similar safeguard TF profiles lead to similar
cell types.
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28
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Table 1. Safeguard TFs in Human Identified by 3Scover and Their Genomic Features
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TF xj inthe Cell Type TF Family
Optimal Group
Solution
GATA2 0.271 Endometrium  GATA
ELF4 0.257 Immune Ets
ELK4 0.244 Heart Ets

HOXA13 0.244 Endometrium Homeodomain

TCF21 0.234 Bone bHLH

MAFF 0.21 Immune bzIP

HNF4G  0.188 Immune Nuclear receptor
SNAI2 0.161 Bone C2H2 ZF

ESR1 0.156 Endometrium  Nuclear receptor

IRF1 0.151 Immune IRF

EMX2 0.149 Endometrium Homeodomain

Table 1. Continued

Canonical
Sequence
Length

480

663

431

388

179

164

408

268

595

325

252

Length

13,767

45,795
24,931
3,228
6,418
14,580
26,860

3,762

412,779

9,166

7,103

# Linked Reprogramming  Degree
Cell Panel in PPI
Type Network
3 61
37 14
11 (N
13 0
24 15
28 70
13 15
51 nephron 32
progenitors
(Hendry et al.,
2013)
15 1,330
27 73
16 3

Interacting # of Phylostratum Conserved
CR CR in Mouse?

HDAC3, HDACS, 3 2 Yes
KAT2A

MDM2 1 5 No

SIRT7 1 5 Yes

HDACS5 1 6 No

HDAC2, HDAC1,
KDM1A, CHD4,
MDM2

SMARCA4, SMARCD1, 33 5 No
SMARCA2, MDM2,
TADA3, KATS,
HDAC7, HDAC4,
HDACS, HDAC?,
RBBP4, HDACT,
HDAC3, KAT6A,
HDAC2, KDM1A,
KMT2D, RBBPS5,
ASH2L, WDR5,
TRRAP, EHMT2,
CHD4, EP400,
RUVBL1, RUVBL2,
EZH2, SUV39H1,
SMARCD3, SUPT6H,
WHSC1L1, SUZ12,
CHD6

KAT2B, KAT2A, 4 5 No
SMARCA4, MDM2

0 2 No

(Continued on next page)
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TF xj inthe Cell Type TF Family Canonical Length # Linked Reprogramming Degree Interacting # of Phylostratum Conserved
Optimal Group Sequence Cell Panel in PPI CR CR in Mouse?
Solution Length Type Network
TWIST1 0.139 Bone bHLH 202 2,206 27 72 KAT2B, HDAC2, 8 6 No
CHD4, HDAC3,
WDRS, SETDS8,
CHD3, HDACé6
NR2F2 0.138 Stomach Nuclear receptor 414 14,337 9 73 HDAC1, SMARCAD1 2 5 No
SOX10 0.135 Neuron HMG/Sox 466 12,222 20 Melanocytes 16 0 2 No

(Yang et al., 2014)

HIC2 0.118 Heart C2H2 ZF 615 34,059 15 22 0 2 No
E2F7 0.106 Endothelial E2E 911 44,336 49 17 RUVBL1 1 2 No
MEOX2  0.103 Kidney Homeodomain 304 75,473 12 220 KAT5, CXXC1 2 2 No

Table 1. Continued

x; value in the optimal solution denotes the probability of the TF being a safeguard TF, and 30 safeguard TFs are ranked by x;; cell type group corresponds to cell type-TF heatmap in Figure 3A; canonical
sequence is the sequence of the TF to describe all the protein products encoded by one gene in a given species in a single entry; number of linked cell type is the number of linked cell type of TF in the cell type-
TF specificity network; reprogramming panel is the lineage to which TF is used to reprogram; degree in PPl network is the degree of TF in human PPI network; interacting CR is the linked CRs of TF in the PPI
network; phylostratum is the evolutionary emergence level of TF (Domazet-Loso and Tautz, 2008), and a higher level corresponds to a later emergence of gene.
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Reprogramming Program Lineage Combination of TFs Safeguard TF
Melanocytes MITF, PAX3, SOX10 SOX10
Nephron progenitors HOXA11, OSR1, SIX1, SIX2, SNAI2 SNAI2
Neuron ASCL1, FOXA2, ISL1, LHX3, MNX1, MYT1L, MYT1L

NEUROD1, POU3F2

Hematopoietic FOSB, GFI1, RUNX1, SPI1, POUSF1 RUNX1

Table 2. Safeguard TFs Identified by 3Scover that Have Been Used for Lineage Reprogramming in Human
TF combination includes all TFs used to reprogram to the reprogramming penal lineage. Safeguard TF identified in our work
included in the TF combination is listed in the third column.

The Genomic Features of Safeguard TFs

TFs in Reprogramming Panel Are Enriched in PPl Network of Safeguard TFs

TFs tend to co-regulate transcription by interacting with other TFs, CRs, and co-factors. We reconstruct the
PPl network of safeguard TFs with other TFs based on the PPl repository BioGRID. We further label safe-
guard TFs and TFs in the list of 35 experimentally verified TFs used in cell reprogramming in Figure 4A.
We ask if the TFs in reprogramming panel are enriched in this network. Thirteen TFs are included in the
network for the total 205 TFs, and eight are expected by chance (Figure 4B). This gives a fold change
1.87 and p value 0.0068 (hypergeometric test). It supports that safeguard TFs are strongly implicated in re-
programming. We can define two types of proteins based on the network structure. The type | protein in-
teracts with only one safeguard TF and type Il protein interacts with more than two safeguard TFs. Most
safeguard TFs interact with both type | and type Il proteins, suggesting that safeguard TFs can function
independently and cooperatively with other TFs.

10| | Brain - Spinal cord (cervical c=1)
T L | Brain - Cerebellar Hemisphere
E' - gerebellum
" - Cortex
brain DX10 - Anterior cingulate cortex (BA24)

ALL1 - Frontal Cortex (BA9)

- Nucleus accumbens (basal gangiia)
M2 | Brain - Caudate (basal ganglia)
— Brain - Putamen (basal ganglia)
- ia nigra

Brain - Hypothalamus

Brain - Amygdala

Brain - Hippocampus

£ 1| (R T e

Liver
Heart - Left Ventricle
Pancreas
Colon - Sigmoid
B Esophagus - Gastroesophageal Junction
Esophagus - Muscularis
Adrenal Gland
-HIC2 PTTGt n Artory - Goronary )
e L Heart - Atrial Appendage
1 Adipose ~ Visceral (Omentum)
MNX1 frtery = Aorta = s
L] | Spleen o
RF1 MAFF - Small Intestine - Terminal lleum ‘@
ZF1 - Colon - Transverse 2
L L |stomach g 1
_ 1 Cervix - Ectocervix H
Cervix - Endocervix
- Vagina - 0.5
Bladder B
Prostate 2
= Testis £
Pituitary = 0
Thyroid z
Kidney - Cortex >
n Ovary ° -05
I Fallopian Tube -
Uterus
Muscle - Skeletal
Esophagus - Mucosa -1
Minor Salivary Gland
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| . Cells - Transformed fibroblasts
Adipose = Subcutaneous
Artery - Tibial
Breast - Mammary Tissue
| I | Nerve - Tibial

1TIvS
ZXW3

9vaNH
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9IXOH
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01X0S

Figure 3. Human Safeguard TFs Serve Distinctive Signatures of Lineages

(A) Heatmap based on adjacency matrix of mouse safeguard TF-induced specificity network. Green represents that the
celltype (row) is linked by the TF (column). We identify nine groups of cell types and assign each TF in the group according
to the heatmap. We annotate each group by summarizing its included cell types.

(B) Heatmap of independent expression data from GTEx database. According to the median expression of safeguard TFs,
we can identify brain group and the three signature TFs consistently show up— MYT1L, SOX10, and SALLT.

See also Figure S2.
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Figure 4. Safeguard TFs Interact with Other TFs and CRs in the Protein-Protein Interaction Network

(A) PPl network among safeguard TFs and other TFs. Green node represents safeguard TF, and rhombus represents TF in
reprogramming panel.

(B) Overlap of TFs in the network and TFs in reprogramming panel. Reprogramming panel TFs are significantly enriched in
safeguard TFs and its protein-protein interactors.

(C) PPI network among safeguard TFs and CRs. Safeguard TFs are denoted by green nodes, and CRs are denoted by
orange nodes.

(D) Distribution of the number of edges in the PPl network. The distribution is constructed by randomly sampling 30 TFs
and CRs 10,000 times. Red line marks number of edges for network in (C) with a number of 98 and p value 0.0386.

In the PPl network, MYC has interaction with safeguard TF RNUX1, protecting the first group annotated
with epithelial and trachea. It was previously used to reprogram to RPE-Like cells by cooperating with
NCoR/SMRT co-repressors to create an epigenetic barrier to somatic cell reprogramming (Zhuang
etal., 2018). It suggests that RNUX1 may safeguard epithelial lineage and repress other lineages by recruit-
ing repressors such as MYC.

Safeguard TFs Interact Closely with Chromatin Regulator

We then check one subclass of proteins in the PPl network. We hypothesize that safeguard TF should recruit
CRs to regulate the chromatin accessibility and to repress cell type differentiation to other lineages. We
construct a safeguard TF-CR PPl network by extracting the interactions among TFs and CRs (Figure 4C).
Figure 4D shows that the number of edges in the network of safeguard TF is significantly larger than net-
works constructed by randomly picking 30 TFs (p value, 0.0386, 10,000 random networks). It suggests that
safeguard TF and CR tend to interact closely. Furthermore, functional enrichment analysis shows that CRs in
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Figure 5. Safeguard TFs Tend to Take Effects in Early Stage of Development and Differentiation and Repress
Other Lineages

(A) Function enrichment for human safeguard TFs. Function annotations specifically for safeguard TF are marked in red.
(B) Function enrichment for other TFs and function annotations specifically for other TFs are marked by red.

(C) Comparing the percentage of distal enhancers (intergenic enhancers) between safeguard TFs and other TFs by t test.
A p value 0.0264 shows that the percentage of distal enhancer of safeguard TFs is significantly higher than other TFs.
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Figure 5. Continued

(D) Mean correlation between safeguard TF MYT1L and cell type makers. For each tissue type, we calculate the Pearson
correlation coefficients on median TPM of MYT1L and tissue type markers across all cell types in GTEx datasets. The cell
type markers are from CellMarker database.

(E) Mean correlation between safeguard TF SALL1 and cell type markers.

(F) Mean correlation between safeguard TF SOX10 and cell type makers.

See also Figure S3.

this network are enriched in negative regulation of expression (Figure S1C), whereas all CRs aggregate into
epigenetic regulation of gene expression (Figure S1D).

Safeguard TFs Tend to Function in Early Stage in Development and Differentiation

To explore the function of safeguard TF in detail, we perform enrichment on both 30 safeguard TFs and
other TFs in the human cell type-TF specificity network (D'Alessio et al., 2015) (Figures 5A and 5B). The
most enriched function is negative regulation of transcription by RNA polymerase Il, which offers the po-
tential for the safeguard TFs to repress expression of core genes in other cell types. And 19 of 30 safeguard
TFs have this function. Compared with the enriched function of other TFs, chordate embryonic develop-
ment is only enriched in safeguard TFs, whereas the exclusively enriched functions of other TFs are gland
development, sensory organ development, muscle structure development, head development, heart
development, and myeloid cell differentiation. All of those are late specific tissue or lineage development.
This suggests that safeguard TFs may take effect earlier than other TFs. Besides, mesenchymal cell (which
can differentiate into a variety of cell types) differentiation and positive regulation of mesenchymal cell pro-
liferation are only enriched in safeguard TFs, whereas epithelial cell differentiation and myeloid cell differ-
entiation, as well as leukocyte differentiation, are only enriched in other TFs. These also provide evidence
that safeguard TFs take effect in earlier differentiation context.

Safeguard TFs Tend to Be Regulated by Distal Regulatory Elements

We further compare safeguard TFs and other TFs for nine genomic features by unpaired t test. Those fea-
tures include regulatory complexity (defined as number of regulatory enhancers associated with this TF),
number of proximal enhancers, number of distal enhancers, number of exons, exon length, PPl degree,
gene length, ratio of proximal enhancer, and ratio of distal enhancer. Figure 5C shows that safeguard
TF is significantly higher than other TFs in the ratio of distal enhancers, which are key contributors to
gene expression specificity among cell types (Bulger and Groudine, 2011). It suggests that safeguard
TFs might be elaborately regulated by distal enhancers and are significantly different from other TFs.

Safeguard TFs Tend to Repress Other Lineages

An essential feature of safeguard TF is repressing differentiation to other lineages. We use the correlation
of safeguard TF and the tissue type marker genes (CellMarker database, Zhang et al., 2019) across cell types
in GTEx data to check if safeguard TF's expression level is negatively correlated to those marker genes’
expression (see Methods). Figure 5D shows that safeguard TF in neuron group, MYT1L, has significantly
negative mean correlation with cell type marker genes in 26 of 37 tissues other than brain (t test, p value <
0.05, 23 for g-value < 0.05). Figures 5E and 5F show the similar results for SALL1 (13 of 37) and SOX10 (20 of
37). This indicates that SOX10, MYT1L, and SALL1 tend to repress neuron lineages differentiation to other
lineages. We can get similar results in some other safeguard TFs (Figure S3), supporting that safeguard TFs
may repress many different somatic lineages using an independent large-scale gene expression dataset.

Safeguard TFs Tend to Be Conserved in Mouse and Human

In addition to human dataset, we apply 3Scover to reveal 30 mouse safeguard TFs by randomly subsam-
pling for 1,000 times in the mouse cell type-TF specificity network (Table 3). Figure 6A shows the heatmap
of adjacency matrix for mouse safeguard TF-induced specificity network. Clearly those 30 TFs are very
representative. Figures 6B and 6C are the enriched function for mouse safeguard TFs and other TFs. We
can find that embryonic morphogenesis is only enriched in mouse safeguard TFs and the corresponding
function for other TFs is morphogenesis of epithelium. This suggests that mouse safeguard TFs take effect
in an earlier development stage. Besides, mouse safeguard TFs work in less differentiated stage, such as
hematopoietic progenitor cell differentiation, compared with other TFs with the function of myeloid cell
differentiation. These two observations are consistent with the human safeguard TFs.
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TF

Rel
Egril
Elf2
Sox4
Elk4
Pole3

Hnfda

Pparg
Gatab
Runx3
KIf10
Cebpd
Hoxa10
Gtf2i
Tal1
Tead2
Zfp580

Gatad

Foxo3
Gata2
Xbp1
E2f4
Tfdp1

Trps1

Xi

0.781

0.704

0.685

0.634

0.548

0.447

0.416

0.416

0.394

0.307

0.295

0.253

0.211

0.209

0.193

0.172

0.153

0.142

0.136

0.126

0.124

0.115

0.114

0.114

Family

Rel

C2H2 ZF
Ets
HMG/Sox
Ets
Unknown

Nuclear receptor

Nuclear receptor
GATA

Runt

C2H2 ZF

bZIP
Homeodomain
GTF2l-like

bHLH

TEA

C2H2 ZF

GATA

Forkhead
GATA
bzIP

E2F

E2F

GATA

Canonical
Sequence
Length

587

588

593

390

430

145

474

505

589

409

479

269

416

998

329

445

172

441

672

480

267

410

410

1281

Length

34,120
3,750
87,925
4,780
18,080
1,214

66,051

129,258
33,126
57,346

6,306
2,260
3,743
76,929
13,945
17,867
2,192

46,358

90,957
8,369
5,353
7,708

39,698

234,291

# Linked
Cell

Type
206
178
141
202
135
195

230

207
225
241
159
162
142
157
156
211
175

196

132
172
169
212
221

123

Reprogramming

Panel Lineage

Hepatocytes
(Yang et al., 2014)

Cardiomyocytes
(Chen et al., 2012)

Table 3. Safeguard TFs in Mouse Identified by 3Scover and Their Genomic Features

PPI Degree

87

15

10

CR

Chracl

Sirt1

Men1, dac1, Sirt1

Bmi1

Rb1

Hdac1, Kat2b

Smarca4, Eed

Phylostratum  Conserved in

Human?
3 No
2 No
5 No
2 No
5 Yes
2 No
5 No
5 No
2 Yes
5 No
2 No
3 No
2 No
2 No
6 No
3 No
2 No
2 No
3 No
2 Yes
6 No
2 No
2 No
3 No

(Continued on next page)
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Pou2fl  0.105
Nfyb 0.103
Nr2f6  0.098
Creb3l1  0.087
Myb 0.085

Runx1 0.085

Table 3. Continued

The genomic feature descriptions are the same as in Table 1.

Homeodomain; POU
Unknown

Nuclear receptor
bzIP

Myb/SANT

Runt

207

390

519

636

451

137,481
15,442
7,834
41,843
36,055

95,864
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141
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192

177

21

Hematopoietic stem 44
cell (Sandler et al., 2014)

Hdac1, Hdac2,

Rbbp4, Smarca4,
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Bmi1

10

No

sPIY
92usIog|

SSaicl®) ¢

©)
3
m
P
>
0
@)
m
n
)




¢? CellPress

OPEN ACCESS

] | G0:0001568: blood vessel development
] G0:1903708: positive regulation of hemopoiesis
] R-MMU-73857: RNA Polymerase Il Transcription
Brain | — G0:0048598: embryonic morphogenesis
Muscl — G0:0030217: T cell differentiation
uscle — G0:0043065: positive regulation of apoptotic process
Fetal | G0:0048511: rhythmic process
— mmu05166: HTLV-| infection
y /——— ipti i ion in cancer
" G0:0031016: pancreas development
Brain — G0:0032526: response to retinoic acid
Mesenchyme 1 G0:0001935: endothelial cell proliferation
Ski | —— G0:0002244: hematopoietic progenitor cell differentiation
in G0:0042698: ovulation cycle
Y
— R-MMU-453279: Mitotic G1-G1/S phases
| — G0:0016525: negative regulation of angiogenesis
Bone —] G0:0000082: G1/S transition of mitotic cell cycle
Lun
Mes?enchyme ° 2 4 6( ) 8 °
-log10(P]
Testis c mouse safeguard TFs
Muscle ] | G0:0030099: myeloid cell differentiation
] GO:0061614: pri-miRNA transcription by RNA polymerase Il
] mmu05202: Transcriptional misregulation in cancer
GO:0002521: leukocyte differentiation
 ———— mmu05166: HTLV- infection
y : : gland t
Placenta —— GO:0043009: chordate_eTl:g:mc development
i  ——] GO:0008285: negative regulation of cell proliferation
Muscl GO:0045165: cell fate commitment
uscle | —— 0:0001501: skeletal system development
Lung | —— ] GO:0009725: response to hormone
E—— -MMU-73857: RNA Polymerase Il Transcription
1 0:0001816: cytokine production
L | —— i system
——] GO:0048511: rhythmic process
= | —— GO:0009299: mRNA transcription
[ | — G0:0002009: morphogenesis of an epithelium
Uterus E—— GO:0043620: regulation of DNA transcription to stress
= :0010942: positive regulation of cell death
——— O: f
| Lung : . - - - -
= Peripheral 0 5 10 -Iogz100(Pj 25 30
T Blood
L other TFs
Bone
— 0.5
Kid number of overlap
idney 0.4- between Human and Mouse
Mammary -'?0 3 safelgua;doz-F,: 4
] Intestine 2 value=0.
= Kidney g0z
== Brain 04
= Liver Human _ Mouse :
Mammary (1] T T T * *
e ELK4 GATA6 0 1 2 3 4 5 6
=
B GATA2 RUNX1 number of overlap

Figure 6. Safeguard TFs Are Conserved in Mouse and Human

(A) Heatmap of adjacency matrix for mouse safeguard TF-induced specificity network. Green represents that cell type
(row) is associated to the TF (column). We identify eight groups of cell types and TFs according to the heatmap. We
annotate each group by summarizing its included cell types.

(B) Function enrichment of mouse safeguard TFs. Red represents mouse safeguard TF-specific functions.

(C) Function enrichment of other non-safeguard mouse TFs. Red represents non-safeguard TF-specific functions.

(D) Conserved safeguard TFs in mouse and human (ELK4, GATA6, GATA2, and RNUX1).

(E) The number of overlapped safeguard TFs between mouse and human are significantly larger than random. We count
the overlap of randomly picked 30 mouse TFs and random picked 30 human TFs for 1,000 times and then generate the null
distribution. Red line marks the observed number of overlaps of safeguard TF with a p value 0.007.

Figure 6D shows that four safeguard TFs are conserved in mouse and human, ELK4, GATA6, GATA2, and
RUNX1; three of them are experimentally verified reprogramming TFs, HNF4A, GATA4, and RUNX1.
The conservation of safeguard TFs in human and mouse are statistically enriched with a p value 0.007 (Fig-
ure 6E) (see Methods). However, all human safeguard TFs in the brain and neuron—MYT1L, SOX10, and
SALLT1—are human specific, suggesting the regulatory difference of nervous system between human
and mouse.

3Scover Predicts Pou2f1 as Muscle Candidate Safeguard TFs

Animportant application of 3Scover is to predict the safeguard TF for a certain tissue. We take muscle as an
example. We first find the safeguard TF specifically linked with muscle lineage by a fold change (see
Methods). Figure 7A shows that the fold changes of Rel and Pou21 between muscle lineage and all cell
types are ectopic high. Besides, we take advantage of the fact that there are some muscle linages that
appear during reprogramming from mouse embryonic fibroblasts (MEFs) to iN cells (Treutlein et al.,
2016). We utilize the single-cell RNA sequencing data at multiple time points for iN reprogramming to
explore the expression pattern of different TFs in the iN reprogramming progress. Figures 7B-7D show
the expression pattern of Myod1, Rel, and Pou2f1. It suggests that the expression pattern of Pou2f1 is
similar to that of Myod1, which is a muscle pioneer reprogramming factor (Davis et al., 1987). In addition,
it has been suggested that Oct-1 (Pou2f1) is involved in the specification of myogenic phenotypes (Lakich
etal., 1998) and causes disorganization when under-expressed (Columbaro et al., 2013). Bringing the afore-
mentioned observations together, we suggest Pou2f1 as the candidate safeguard TF for muscle.
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Figure 7. Pou2f1 Is a Candidate Muscle Safeguard TF

(A) Fold change of mouse safeguard TFs in muscle based on cell type-TF specificity network. Fold change is computed by
dividing the percentage of cell types linked with the TF in muscle by the percentage in all cell types. Green represents Rel
and Pou2f1.

(B) Boxplot of Myod1's expression in the single cell RNA sequencing data for reprogramming form MEF to iN. Each point
represents a single cell, and all cells are classified to nine groups.

(C) Boxplot of Rel’s expression.

(D) Boxplot of Pou2f1’s expression.

DISCUSSION

We propose 3Scover, an ensemble method based on set cover model, to find a robust set of TFs in the re-
constructed cell type-TF specificity network taking advantage of two quantitative characteristics of safe-
guard TF. 3Scover takes cell type-cell type interaction, cell type-TF interaction, and TF-TF interaction
into account and is different from the naive strategy to identify safeguard TFs only in one cell type. 3Scover
relies on the cell type-TF specificity network as the only input. In our test, this network is constructed by
gene expression data (human) or regulatory strength data (mouse). It can be generalized to motif enrich-
ment score given chromatin accessibility data or even experimentally measured cell type-TF specificity

network in future.

At present, MYT1L is the only known and experimentally validated safeguard TF. 3SCover, as the first
computational method for identifying safeguard TFs, extracts two quantitative characteristics of safeguard
TF based on the observation of MYT1L. There are some further evidences for “many but one” specificity we
observed in the literature. In reprogramming, safeguard TFs are often used to reprogram many different
donor cell types (Xu et al., 2015). Besides, MYT1L is a pan neuron-specific TF (Mall et al., 2017). These facts
suggest that safeguard TFs are lineage specific but not specific in only one cell type. More experimentally
verified safeguard TFs will enhance this “many but one” specificity observation and help us to better define

and capture the main safeguard TF's character.

For the human and mouse data, we choose 30 as a rank cutoff to construct the cell type-TF specificity
network. We tried cutoff larger than 30, but the number of TFs in solution of set cover problem remains
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about the same (Figure S1C). Here, 30 is chosen as a demonstration because dozens of candidate TFs are
reported as signatures of the cell type in literature. The choice can be guided by the knowledge of the num-
ber of reprogramming factors for a cell type in practice.

Several genomic evidences suggest that safeguard TFs act as a repressor, including the negative regula-
tion of safeguard TFs and CR having interaction, the negative correlation of safeguard TF with cell type
marker genes, as well as safeguard TF RNUX1 recruiting MYC by PPI, forming a barrier to other lineages.
However, how to define “repression” from data and how the safeguard TFs repress other lineages remains
a question waiting for more wet-laboratory experiments and data analysis to explore.

3Scover ranks MYT1L as the first in our human safeguard TF list, and MYT1L is the only known and exper-
imentally validated safeguard TF for neuron. It is well known that the combination of ASCL1 as a pioneer TF,
MYT1L as a safeguard TF, and BRN2 as a context-dependent TF reprograms fibroblasts into iN cells. In
addition, MYT1L mutations can cause intellectual disability (Blanchet et al., 2017) suggesting that genetic
mutations on a safeguard TF lead to disease related to cell types protected by it. Based on our pilot study of
the safeguard TFs in the whole cell type-TF network, we propose a working model to help to understand
the role of safeguard TFs in the development and differentiation. When pluripotent stem cells differentiate
to a certain type of mature cell, safeguard TF should be turned on first to maintain the lineage including the
target mature cell type and repress other lineages that stem cells may convert to. After that, pioneer TFs
and other context-dependent TFs are turned on to direct the cell to differentiation target cell type. This
model is conceptional and needs more independent data and evidence to support and verify. We believe
that many safeguard TFs will be revealed in future, and this allows better model and mechanism
understanding.

Limitations of the Study

Our work is limited as a pure computational prediction for safeguard TF by omics data. 3Scover provides
promising safeguard TF candidates, which should be further supported and validated by well-designed
wet-laboratory functional experiments. We believed the perturbation experiments (knock-down or over-
expression) and genomic binding experiments (chromatin immunoprecipitation sequencing) in the right
cellular context will be extremely useful. Second, “Safeguard TF" is a limited term in this study because
we define the safeguard TF only through the comparison of MYT1L as safeguard TF and NEUROND1 as
pioneer TF based on the expression across certain cell types. However, we highlight that the “many but
one specificity” and parsimony principle in the cell type-TF specificity network are quite general concepts
and may reveal other important TFs in a more complete dataset with more cell types. Third, safeguard TF
has the implication to “repress” other lineages in addition to “many but one specificity.” How to define
"repression” from other omics data and how the safeguard TFs repress other lineages remains a question
waiting for more wet-laboratory experiments and data analysis to explore.

Resource Availability
Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by
the Lead Contact, Yong Wang (ywang@amss.ac.cn).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

The datasets and code generated during this study are available at https://github.com/AMSSwanglab/
3SCover. The identified 30 safeguard TFs in human and mouse are available at https://github.com/
AMSSwanglab/3SCover/blob/master/Human_safeguard_TF.txt; https://github.com/AMSSwanglab/
3SCover/blob/master/Mouse_safeguard_TF.txt. All code related to the Data visualization techniques is
available at https://github.com/AMSSwanglab/3SCover/tree/master/figure.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Figure S1. MYT1L and NEUROD1 induced cell type-TF subnetworks. Related to Figure 1. (A) MYT1L and
NEUROD1 induced subnetwork of human cell type-TF specificity network. (B) The number of TFs in minimum set
cover based on different rank thresholds. The number remains unchanged when the rank threshold m >30. (C)
Function enrichment result of CRs in network Figure 4C. (D) Function enrichment of all CRs.
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Figure S2. Detailed information for the heatmap in Figure 3A. Related to Figure 3. Word cloud is used (https://
www.wordclouds.com/) to show the major content of each group of cell types in the heatmap, where a larger word
represents for a higher frequency.
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Figure S3. Correlation between safeguard TF and cell type marker genes. Related to Figure 5. Mean correlation
between safeguard TFs and cell type makers. For each cell type, we get the Pearson correlation coefficients based on
median TPM of safeguard TF and cell type marker genes across all cell types in GTEx datasets. The cell type marker genes

are from CellMarker database. More details are in Figure 5D.



Transparent Methods

Public data collection

To observe the distinct expression patterns across all cell types of MYT1L and NEUROD1, we
collected gene medium TPMs across 53 tissues from Genotype-Tissue Expression (GTEX)
portal (Carithers et al., 2014). GTEx data resource was also used to provide the independent
evidencefor the ability of safeguard TF determining distinctive signatures of lineages. Protein-
protein interaction repository were downloaded from BIOGRID (https://thebiogrid.org)).

Functional enrichment analysis is given by Metascape (http://metascape.org). To predict the
safeguard TF in muscle, we used single-cell RNA-seq at multiple time points in direct

reprogramming from fibroblast to neuron, because some fibroblast cells transform to muscle in
this process (Treutlein et al., 2016).

Specificity score

The method of calculating specificity scores is presented by D'Alessio, A.C., et al. (D'Alessio
etal., 2015). The specificity score for acertain TF in the ith cell typeis a —log,,(JSD) and
JSD is defined as follows:

N N
1 2xy 2y
JSD = = Zx lo +Z lo
2\~ * gxk+yk kzlyk gxk+3’k

x; represents the normalized expression of the TF in the kth cell type and x;, = z”e—kek where
k=1

ey represents the expression of the TF in the k-th cell type.

0,k=i

y is the background vector and y, = {1 k=i

The score can be simplified as:

2
+1

SD—lz log 2+ log—2 41
J =3 xlog +ngi+1+0gxi

k=i

Classifying cell types to reprogramming panel lineage

After extracting the reprogramming panel TF induced subnetwork from cell type-TF specificity
network, we classify TFs into 8 groups based on the lineage to which reprograming panel TFs
are used to reprogram (reprogramming panel lineages). We also classify cell typesto 8 groups.
For a certain cell type, we count the number of TFsin each group linked to this cell type. Then,
we classify the cell type to the group with the largest counting number.

Motivation to build the 3Scover model

We explain the main idea by set covering and ensemble strategy respectively to extract
safeguard TFs from the constructed cell type-TF network. Let’s first consider the set cover
problem without subsampling:


https://thebiogrid.org/
http://metascape.org/

min

st. a;% =1, je{l,2,...,N}

AR

X; e{O B,ie{l,2,...,K}

Where, Kand N are respectively the number of TFs and cell types in the network; x; = 1, if the
i-th TF is a safeguard TF and x; = 0, if not; A = (a;;)kxn IS the adjacency matrix of cell type-
TF network and a;; = 1, if the i-th TF is linked with the j-th cell type; min, K . x; aims to
minimize the number of identified safeguard TFs; X/, a;;x; 2 1,j € {1,2,...,N} requires at
least one safeguard TF linked with each cell type.

This is a 0-1 integer linear programming, or more precisely, a set cover problem. This is a
classical model in combinatorics, computer science, operations research, and complexity
theory and known as one of Karp’s 21 NP-problem. In this set cover problem, the set of cell
types is the universe; each TF representfor a set including cell types linked with the TF; the
safeguard TF list the minimum set cover, i.e., we aim to minimize the number of safeguard TFs
to cover every cell type in the universe. We note that the first characteristic, “many but one
specificity”, is modeled explicitly in the objective function. However, in a general sense, the
probability of a TF to be safeguard TF increases along with the increased numbers cell types
covered by this TF, suggesting thatthe model tends to identify aTF of “many but one s pecificity”
as asafeguard TF.

The set cover model is deterministic and has some limitations: 1) There may be more than one
minimum set cover. 2) Minimum set cover is easily influenced by the noise in the data. To
overcome these difficulties, we introduce the ensemble strategy. In statistics and machine
learning, ensemble strategies use multiple learning algorithms (set cover problemin our case)
to obtain better predictive performance than could be obtained from any of the constituent
(individual strategies) learning algorithms. For example, in reconstructing gene regulatory
network, the ensemble method obtained the most consistent network structure with respect to
all of the datasets, thereby not only significantly alleviating the problem of dimensionality but
also remarkably improving the prediction reliability (Wang et al., 2006). This motivates us to
introduce the ensemble strategy to solve a multitude of set cover subsampling models for a
more stable solution.

3Scover model
We propose Set cover problem with Stability Selection model (3Scover) as follows:

min i[i”x' -~ xH2 +ixi')
X =]
st. Za” x >1, forlefl,2,...,L}, jeT, (1)

X, X {01, ie{l2,...K} le{l2,..., L}

Where L is the number of subsampling times; K and N are respectively the number of TFs and



cell types in the network; x! represents the solution for I-th set cover sub-problem by
subsampling; x is the consistentor stable solution for all the subproblems; There are two terms
in the objective function. XX, x! finds the minimum set cover for the I-th sub-problem; and
Yi_illxt — x|| minimizes distance between the consistent solution with subsampling solutions;
We introduce the constraint ¥; a;;x! > 1,for € {1,2,...,L},for j € T; to restrict the I-th solution
to cover all cell types in T;. T, is the set of remaining cell types at the I-th randomly

subsampling;

3Scover quantifies the two characteristics of safeguard TF based on the cell type-TF specificity
network. “Many but one specificity” can be measured by the degree of TF and the safeguard
TF set satisfying parsimony must be a set of TFs with minimal size whose induced subnetwork
including all cell types. In addition, 3Scover uses “stability selection” method based on
subsampling cell types to get TFs which most possibly be safeguard TF. It suggests that if a
TF is of essential importance, it should be included in the minimum set cover even though we
remove some cell types’ information from our data (Guimaraes et al., 2006). By randomly
removing, or subsampling in other words, a fixed number of cell types fromthe network, solving
the problem, gaining the minimum TF sets, and integrating them, we can find the stable
safeguard TFswhich are seldom influenced by the absence of several cell types (or data noise)
and non-uniqueness of the solution.

3Scover overcomes the impact of noise in data by subsampling, removes non-unigueness of
set cover problem by synthesizing multiple solutions, finally outputs arobust safeguard TF set.
Importantly, 3Scover takes into account the cell type-TF, TF-TF, and cell type-cell type
interaction. As the input of the model, cell type-TF interaction is spontaneously involved in the
model. Additionally, the model could avoid closely related TFs concomitantly selected as
safeguard TF (see proof in Methods). Compared with previous work to identify important TFs
separately for every cell type, we conceive all cell types as a whole and thus could identify TFs
at the systems level.

Decomposition algorithm

The objective function of 3Scover is convex but the variables are restricted to be binary. It's an
extension fromthe classical setcover problem known as a NP-hard problem. Accurately solving
(1) needs a lot of computer capacity due to a large number of variables. To overcome this
difficulty, we propose a decomposition algorithm as follows.

Specifically, we decompose (1) into 2 relatively easy sub-problems:

Sub-optimization problemI:

min i[l”x' - xH2 +ZK:xi']
X =] i=1
st. Dax =L le{l,2,.. L}, jeT, 2

X, X {01, ie{l2,...K} le{l2,..., L}

It can be divided into L independent problems and the I-th is as follows:



K
min > x
X i=1
st. Dax 2L jeT 3)
x, X e{0,1}, ie{L,2,...,K}

This is the classical set cover problem. We solve the problem by branch-and-cut algorithm with
CPLEX.

Sub-optimization problem II:
. L 2
min ZHXI —xH2 (4)
1=1

This subproblem has a closed-form solution as the mean of the L sub-solutions
We solve the two sub-problems iteratively.
® STEP-O: Initialization. Solve L set cover problems, with the I-th problems as

K
min >’ x
X i=1
st. Zaijxi' >1, jeT :

x, x' e{0,1}, forie{l,2,...,.K}
taking the T;-induced subnetwork as input for the I-th set cover problem and get
solutions x!©@,i € {1, ..., L}.

L
. 2
® STEP-1:Fix x!® ,i € {1,..,L},and solve min ZHX' - XH2 , in which the solution
X =1

is xk+D =YL ¥t /],
® STEP-2:Fix x®, solving x!+1) py

L K
. I(k+1) (k) I (k+1)
mi (EHX K, + 20 J
=1 i=1

st. Y ax“P =1 forle{l,2,...,L}, jeT,

ij N
X, XD cf0.1}, foriefl,2,...K} le{l2,...,L}

By choosingthe parameters A, subsampling times L, and subsampling size |T;| as well as the
number of iterations, we can gain the stable solution x, where x; is an estimator of the
probability of the i-th TF to be a safeguard TF.

Algorithm complexity analysis

The core subroutine in our algorithm is to solve a set cover problem with K elements and N
sets. Set cover problem is known as one of Karp's 21 NP-complete problems. We used the
CPLEX solver in MATLAB for the set cover problem by branch and bound algorithm. There are
2K leaf nodesin a binary tree and in theory the computational complexity 0(25). In practice,
the solveris very efficientdue to the sparsity of cell type-TF bipartite graph. To achieve a stable
solution, we solved the set cover problem for L times in the algorithm of 3SCover. For each



sub-solution, the algorithm was used to identify the safeguard TF in human and mouse where
K is the number of TF and N is the number of resampling cell type. For the human case, we
have K=1055, N=210, and L=1000. The total running time is 2 days and 56 minutes (0.51s for
single set cover subproblem on average). For the mouse case, we have K=202, N=736, and
L=1000. The total running time is 2 days and 56 minutes (227s for single set cover subproblem
on average).

Proof of avoiding redundancy of 3Scover

3Scover could avoid closely related TFs concomitantly selected as safeguard TF and we
explain this by reduction to absurdity. We consider two closely related TFs, TF1 and TF2, and
the linked cell types of TF1 are included in the linked cell types of TF2. If both TFs are in
safeguard TF set, we can construct a smaller set by removing TF1. This will generate a smaller
safeguard TF set and reduce the objective function.

Conservation of safeguard TF in human and mouse

We observed that 3 of the 4 safeguard TFs conserved in human and mouse are experimentally
verified reprogramming TFs. We ask the question if this 75% ratio (3/4) is different with the
situation by chance in statistics. We compute the conservation p-value by a permutation based
test. Specifically, we transformed 202 mouse TFs and 1,055 human TFs to the homologous
geneid. Then we randomly chose 30 IDs in human and mouse for 1,000 times and calculated
the number of overlapped TFs. There are 7 times in which the number of overlapped TF is
bigger than 4. This suggests that the conservation of safeguard TF in human and mouse are
statistically enriched with a p-value 0.007.

Correlation of safeguard TF and thetissuetype markers
According to the CellMarker database (Zhang et al., 2019), we extract the markers for 70 cell
types by filtering the samples by the following steps.

1. Annotated by “Cancer cell” as its cell type

2. With “Undefined” tissue type

3. With none gene symbols for cell marker

4. With “single-cell sequencing” as “markerResource”

5. With a cell name as “cancer cell” or “cancer stem cell”
The resulting sample comprises 1,596 cells from 70 cell types. To find markers for a certain cell
type, we collect all markers of cells included in the cell type. Then we remove markers with <1
median TPM values in all tissues from The Genotype-Tissue Expression (GTEX) project. Cell
marker are intuitively specific for cell type. Therefore, we remove cell markers identified as
marker in more than 40 cell types. Finally, we filter the tissues with less than 3 markers. To the
end, we get 37 cell types and the number of their cell markers ranges from 4 (Vagina) to 254
(Blood).

For a certain safeguard TF, we calculate the Pearson correlation coefficient between it and
each marker of a cell type based on the GTEx expression dataset. A negative mean correlation
of tissue type markers (p-value < 0.05, t-test) suggests that the safeguard TF tends to repress
the cell type.



Measure safeguard TF specifically linked with lineage

We use a fold change to measure the specificity of a safeguard TF linked with a lineage. The
foreground percentage of a lineage is the percentage of cell types linked with the TF among
the cell types in the lineage. And the background percentage is the cell types linked with TF
among all cell types. This fold change is defined by dividing the foreground by the background
percentage.

Datavisualization techniques

All heatmaps in Figure 1, Figure 3, and Figure 6 are performed by pheatmap R package. All
networks included in Figure 1, Figure 4, and Figure S1 are performed by Cytoscape
(Shannon et al., 2003). Sankey diagrams of Figure 1F and Figure 1G are performed by
ggalluvial R package. Functional enrichment is implemented by Metascape
(http://metascape.orq). Histogram, boxplot, and line graph in Figure 4, Figure 5, Figure 6,
Figure 7, Figure S1 and Figure S3 are performed by ggplot2 R package. Venn diagrams in
Figure 4 and Figure 6 are implemented by VennDiagram R package. Word cloud diagrams
are performed by a online tool (https://www.wordclouds.com/). All related code is available at
https://github.com/AMSSwanglab/3SCover/tree/master/figure.



http://metascape.org/
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