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SUMMARY

Transcription factors (TFs) define cellular identity either by activating target cell
program or by silencing donor program as demonstrated by intensive cell reprog-
ramming studies. Here, we propose an extended minimum set cover model with
stable selection (3Scover) to systematically identify silencing TFs, named safe-
guard TFs, from omics data. First, a cell type-TF specificity network is constructed
to systematically link cell types with their specifically expressed TFs. Then we
search the minimum TF set to cover this network with ‘‘many but one specificity’’
characteristic and integratemany subsamplingmodels for a stable solution. 3Sco-
ver identified 30 safeguard TFs in human and mouse. These safeguard TFs are
significantly enriched in the experimentally discovered reprogramming panel
with their protein-protein interactors. In addition, they tend to interact closely
with chromatin regulators, negatively regulate transcription, and function earlier
in development. Collectively, 3Scover allows us to probe master TFs and combi-
natorial regulation in controlling cell identity.

INTRODUCTION

Transcription factors (TFs) are the master regulators for many important biological processes. Specifically,

cell identity is controlled to a large extent by the TFs, which bind specific sequence, recruit chromatin reg-

ulators (CRs), turn on and off the target genes, and finally change the cell fate (Corces et al., 2018; D’Alessio

et al., 2015; Duren et al., 2017). This fact is revealed by the seminal induced pluripotent stem cell experi-

ments: that a small number of TFs are sufficient to establish gene expression profiles, which define plurip-

otent cell identity (Yamanaka, 2012). Further investigations confirmed that ectopic expression of TF con-

verts cells from one type to another by many cellular reprogramming experiments. For example, the

combination of the three TFs (ASCL1, BRN2, and MYT1L) has been shown to reprogram fibroblasts and

other somatic cells into induced neuronal (iN) cells (Masserdotti et al., 2016). A pool of six genes (TFs:

SIX1, SIX2, HOXA11, and SNAI2; transcriptional co-activator: OSR1, EYA1) were found to activate nephron

progenitor phenotype in the adult proximal tubule cell line (Hendry et al., 2013).

Those cell reprogramming experiments imply that TFs work in different combinations with other TFs or co-

factors to enact a vast repertoire of cellular fates, and combinatorial regulations among several TFs are crit-

ical to convert one cell type to another (Li et al., 2019; Wang et al., 2009; Zhang et al., 2018). However, the

detailed underlying mechanism remains elusive, for example, which TFs are important in the 1,500–2,000

TFs encoded in the genome, how to form the right combination panel, what is each TF’s role in the

panel, etc.

Recently, Mall et al. proposed that reprogramming requires the activation of target cell programs and

silencing of donor cell programs (Mall et al., 2017) by taking the reprogramming experiment from fibro-

blasts and other somatic cells to iN cells as an illustration. ASCL1 acts as a pioneer TF to activate the

neuronal program, whereas MYT1L acts as a safeguard TF to directly repress other non-neuronal somatic

lineages to maintain neuronal identity (Mall et al., 2017). Systematic approaches are proposed to identify

pioneer TFs for most cell types in humans according to two characteristics: typically expressed at relatively

high levels and in a quite strict cell-type-specific fashion (D’Alessio et al., 2015). These pioneer TF charac-

teristics were widely accepted and used to identify regulon, a group of genes that are regulated by TF as a

unit, in all cell types for mouse (Suo et al., 2018). Compared with pioneer TFs, safeguard TFs are difficult to
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Figure 1. Cell Type-TF Specificity Network Construction and the Reprogramming TF Panel Induced Subnetwork

(A) TF is associated with cell types by the defined specificity scores, which are organized into a matrix with rows and columns indicating TFs and cell types.

(B) Specificity score is ranked for all TFs within each cell type (column).
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be defined in biology and characterized from high-throughput data. Thus, computational method to iden-

tify safeguard TFs is in pressing need and expected to reduce barriers in understanding the mechanisms

underlying TF combinatorial regulation.

In this study, we propose a Set cover model with Stable Selection (3Scover) to identify safeguard TFs across

a large collection of different cell types or tissues in a robust and parsimony way. 3Scover takes the TF

ranking or scoring data in each cell type as input, reconstructs a cell type-TF network, extracts patterns

from the network, and then identifies safeguard TFs as output. To test the validity, we apply 3Scover to

two large-scale transcriptomic datasets and identify 30 safeguard TFs in human and mouse (available at

https://github.com/AMSSwanglab/3SCover/blob/master/Human_safeguard_TF.txt; https://github.com/

AMSSwanglab/3SCover/blob/master/Mouse_safeguard_TF.txt). Those safeguard TFs serve as distinctive

signatures of lineages and group similar cell types together. The experimentally verified TFs in cell reprog-

ramming panels are enriched in safeguard TF-TF protein-protein interaction (PPI) network. We further

explore the biological properties for safeguard TFs by public omics data. The regulatory pattern of safe-

guard TFs is different from that of other TFs, with a higher percentage of distal enhancers. Safeguard

TFs closely interact with the CRs with negative regulation of gene expression in epigenomics. Those are

consistent with the concept of safeguard TF functioning in early development and low differentiation

context and playing a negative regulatory role.

RESULTS

Constructing Cell Type-TF Specificity Network

We construct a cell type-TF specificity network, i.e., a cell type-TF bipartite graph, to connect TFs with cell

types (nodes in the network) by quantifying how ‘‘specific’’ a TF belongs to a cell type (edges in the

network). This network provides a global landscape and useful resource to study TF and cell type relation-

ships and allows us to explore the hidden patterns and systematically dissect the TF ‘‘specificity’’ across

various cell types. Figure 1 shows the procedure of constructing the cell type-TF specificity network and

modeling structures in the network.

As the first step, we quantify TF’s ‘‘specificity’’ in a given cell type by two properties derived from its expres-

sion pattern: ‘‘high expression’’ and ‘‘cell type-specific fashion.’’ ‘‘High expression’’ is a prerequisite for

specificity, and TF with ‘‘high expression’’ is more likely to play major roles in gene regulation. To exclude

the housekeeping TFs, which are highly expressed in all cell types, we introduce ‘‘cell type-specific fashion’’

to remove TFs with basic cellular function. An entropy-based measure of Jensen-Shannon divergence is

calculated as specificity score, and TFs are ranked in each cell type (see Methods for details). These spec-

ificity score data are shown in Figure 1A as a matrix where the row denotes TFs and column denotes cell

types. This score matrix is converted into TF specificity rank matrix in each cell type as shown in Figure 1B.

We then choose a rank threshold (top 30 in our study) and output the cell type-TF adjacency matrix in Fig-

ure 1C by setting items below the threshold to 1, whereas other items to 0. This sparse matrix can be natu-

rally reorganized into a bipartite graph linking cell types with the TFs, named cell type-TF specificity

network.

Following the aforementioned procedure, we calculate the specificity rank matrix and construct the human

and mouse cell type-TF specificity networks from two datasets, i.e., 1,055 TFs across 233 cell types ranked

by gene expression in human (D’Alessio et al., 2015) and 202 TFs (regulons) across 818 cell types ranked by

Figure 1. Continued

(C) Adjacency matrix of the cell type-TF network by thresholding the specificity rank data. It is derived from specificity rank matrix by setting a threshold and

binarized into 1 and 0 indicating if TF is present and absent in a given cell type. This adjacency matrix can be easily represented as a bipartite graph wherein

TF and cell types are nodes and their connections are edges. The cell type-TF specificity network is a bipartite network and can induce the TF-TF network if

two TFs share the same cell type.

(D) Reprogramming panel inducted TF-TF subnetwork. We select the TFs used in reprogramming experiment from literature, called reprogramming panel

TF, and extract the induced subnetwork. TFs are grouped by cell type to which they are used to reprogram, called preprogramming panel lineage. Color of

TFs and cell types correspond to their reprogramming panel lineage.

(E) Reprogramming panel TF induced subnetwork from mouse cell type-TF specificity network.

(F) Sankey plot and word cloud of (D). Sankey plot shows the relationship of TF groups and cell type groups in (D); each group of cell type is indicated by the

corresponding word cloud.

(G) Sankey plot and word cloud of (E).

See also Figure S1.

ll
OPEN ACCESS

iScience 23, 101227, June 26, 2020 3

iScience
Article

https://github.com/AMSSwanglab/3SCover/blob/master/Human_safeguard_TF.txt
https://github.com/AMSSwanglab/3SCover/blob/master/Mouse_safeguard_TF.txt
https://github.com/AMSSwanglab/3SCover/blob/master/Mouse_safeguard_TF.txt


the regulatory strength in mouse (Suo et al., 2018). To visualize the two large networks, we focus on the TFs

previously used in lineage reprogramming experiment and extract the reprogramming panel TF-induced

subnetworks as shown in Figures 1D and 1E. TFs are classified into eight groups based on their reprogram-

ming panel lineages, including hematopoietic multipotent progenitor cell, cardiomyocytes, endothelial

cells, hepatocytes, melanocytes, nephron progenitors, neuron, and retinal pigment epithelium-like cells

(RPE-Like). We next classify cell types into eight groups according to the number of their linked TFs in

the cell type-TF specificity network (see Methods for details). We observe that the cell type-TF specificity

networks are well organized in modular structure in both human andmouse. For example, ASCL1, POU3F2,

SOX2, MYT1L, NEUROD1, ISL1, MNX1, and FOXA2 are highly associated with neuron cell types in human.

Those cell type-TF module structures are highly conserved in human and mouse. GATA4 and MEF2C are

associated with cardiomyocytes, and CEBPA and HNF4A are associated with hepatocytes. The Sankey plot

in Figures 1F and 1G summarizes the relationship between cell types and TFs.We observe that the numbers

of cell types linked with TFs vary widely. In the human subnetwork, SNAI2 and RUNX1 are linked with

maximal number of 51 cell types, whereas LHX3 is linked with only one cell type. For mouse, Hnf4a is linked

with a maximal number of 230 cell types and the least number is 97 by Sox10. We generate word cloud for

each group of cell type to display the cell type annotations by their frequency in the group. Figures 1F and

1G indicate that the constructed cell type-TF specificity networks are consistent with the reprogramming

experiments. For example, in human subnetwork, ‘‘endothelial’’ is of high appearance in the cell types in

ERG and FLI1 linking group and they are known TFs used to reprogram donor cell types to endothelial cells.

In mouse subnetwork, Cebpa and Hnf4a connect with liver and are known as factors to reprogram to he-

patocytes. Taken together, the reconstructed cell type-TF specificity network is in high quality and the en-

coded high-level relationships among TFs and cell types need to be explored further. We next develop

systematic method to mine the knowledge from the network.

Characterizing Safeguard TFs in Cell Type-TF Specificity Network

We observe in the reconstructed cell type-TF specificity network that some TFs have high degree by spe-

cifically expressing in many cell types, but some TFs do not. We first compare the known safeguard TF

MYT1L (Mall et al., 2017) and pioneer TF NEUROD1 (Guo et al., 2014) for their degrees in the network.

Both TFs are used to reprogram fibroblast to neuron but show different specificity pattern. We extract

the subnetwork induced by MYT1L and NEUROD1, respectively, from the human cell type-TF specificity

network (Figure S1A), and most of the cell types included are neuron related. Figure 2A shows that the

degree of MYT1L in human cell type-TF specificity network is 35, whereas the degree is 4 for NEUROD1.

We further observe their distinct expression patterns across tissues. Figure 2B shows that NEUROD1 is

specifically expressed in ‘‘brain-cerebellar hemisphere’’ and ‘‘brain-cerebellum,’’ whereas safeguard TF

MYT1L is turned on in almost all neuronal cell types (brain amygdala, brain anterior cingulate cortex,

brain caudate, brain cerebellar hemisphere, brain cerebellum, brain cortex, brain frontal cortex, brain

hippocampus, brain hypothalamus, brain nucleus accumbens, brain putamen, and pituitary) and is turned

off in other tissues. The contrast of MYT1L and NEUROD1 in Figures 2A and 2C suggests an important

characteristic for safeguard TF: ‘‘many but one specificity’’ at gene expression level, which requires TF to

be expressed with high level in a cell type-specific way in many cell types, but not just in one cell type.

This is different from pioneer TF by requiring narrow cell type specificity. This ‘‘many but one specificity’’

property is well explained by the fact that the maintenance of the neuronal lineage context not only

needs the activation of neuron functional properties but also needs repression properties of other line-

ages (Mall et al., 2017).

In addition to ‘‘many but one specificity’’ for a single TF, we observe in Figures 1D and 1E that a small set

of TFs can cover almost all the cell types. This motivates us to deduce the coverage property from the

whole cell type-TF specificity network. We make a reasonable assumption that safeguard TFs are indis-

pensable in each lineage to switch off the context of other lineages. Putting together, safeguard TFs

from all lineages constitute the safeguard TF set. Motivated by the law of parsimony, we hypothesize

that the safeguard TF set is organized under the overall goal of parsimony principle as the evolution

outcome: the lineage program maintaining relies on a minimal set of safeguard TFs repressing conver-

sion to other lineages.

Collectively, we propose two quantitative characteristics that safeguard TF set should meet. (1) ‘‘Many but

one specificity’’: Specificity can be quantified by entropy-based measure to assess whether the TF is spe-

cifically expressed in a broad lineage, but not just in a single cell type. (2) Parsimony: All cell type identities
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in an organism should be safeguarded by a minimal set of TFs, in which a combination of TFs maintains the

context of corresponding lineage. We note that the parsimony characteristic is a global property for the

safeguard TF set to cover all lineages, whereas the ‘‘many but one specificity’’ characteristic is a local prop-

erty for a certain TF to cover some broadly specific lineage.
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Figure 2. Safeguard TF Characterization and 3Scover Framework

(A) The degree of MYT1L and NEUROD1 in human cell type-TF specificity network.

(B) Comparison of expression pattern for safeguard TF and pioneer TF across tissues. Bar plot shows the median TPM of MYT1L (safeguard TF, green) and

Neurod1 (pioneer TF, orange) in 53 tissues from GTEx dataset. The line indicates that TPM value is 2. In 12 tissues, MYT1L is above the line (red), in which 11

tissues are brain related.

(C) Number of cell types whose median expression is above the line. There are 13 tissues for MYT1L (green) and only 3 for NEUROD1 (orange).

(D) Overview of 3Scover framework. 3Scover takes cell type-TF specificity network as input, models two major characteristics of safeguard TF, combines the

minimum set cover problem model with ensemble strategy, and prioritizes safeguard TFs as output. Specifically, the solution stability is achieved by

subsampling the input network, finding the minimum set cover solution for each subnetwork (subproblem I), and then integrating them into a stable

safeguard TF list (subproblem II).
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Identifying Safeguard TF by Set Cover Model with Stability Selection (3Scover)

Based on the deduced properties of safeguard TF, we propose a model, 3Scover (Set Cover Problem

with Stability Selection), to systematically identify the safeguard TFs, taking cell type-TF specificity

network as input. The main idea behind 3Scover is illustrated in Figure 2D. Classical set cover

model is introduced to find the minimum safeguard TF set to cover the cell type-TF specificity

network. To get a robust safeguard TF set, we extend the classical model by introducing the stability

selection. This is an ensemble strategy by subsampling the cell type-TF specificity network and aggre-

gating the minimum safeguard TF sets based on each subnetwork (Figure 2D and the motivations are

in Methods).

3Scover is formally described as follows:

min
x;xl

PL
l = 1

�
lkxl � xk2 +

XK
i = 1

xli

!

s:t:
P
i
aijx

l
iR1; for l˛f1;2;.; Lg; j˛Tl

xi; xli˛f0;1g; i˛f1;2;.;Kg; l˛f1;2;.; Lg
where L is the number of subsampling times; K andN are, respectively, the number of TFs and cell types in

the network; xl represents the solution for l-th set cover subproblem by subsampling; and x is the

consistent or stable solution for all the subproblems. The term in objective function
PK

i = 1x
l
i finds

the minimum set cover for the l-th subproblem; the term in objective function
PL

l = 1kxl � xk minimizes

the distance between the consistent solution with subsampling solutions; the constraintsP
iaijx

l
iR1; for l˛f1; 2;.; Lg; for j˛Tl are introduced to restrict the l-th solution to cover all cell types in

Tl; and Tl is the set of cell types in the l-th random subsampling.

We tackle the large scale 0-1 integer linear programming by iteratively solving two sub-optimization

problems (Figure 2C and Methods). The set cover sub-optimization problem, which is known as

one of Karp’s 21 NP complete problem, is solved by branch and bound algorithm in CPLEX for

MATLAB.

3Scover Uncovers Distinctive Signatures of Lineages

We first apply 3Scover to identify safeguard TFs in human. We subsample from the human cell type-

TF specificity network for 1,000 times as input, and 3Scover ranks the TFs by the probability of the

TF being a safeguard TF (Table 1). We select the top 30 TFs as our final safeguard TF set. This in-

cludes 5 TFs in existing reprogramming panels—MYT1L, RUNX1, MNX1, SNAI2, and SOX10 (Table 2).

And we can reasonably speculate that those safeguard TFs work with pioneer TFs when reprogram-

ming to ‘‘melanocytes,’’ ‘‘nephron progenitors,’’ ‘‘neuron,’’ and ‘‘haematopoietic multipotent progen-

itor cell.’’

Those 30 safeguard TFs serve as distinctive signatures of lineages. We group cell types into nine lineage

groups (Figure S2), and cell types in the same group perform similar functions. The expression patterns

in Figure 3A clearly show that 30 safeguard TFs are representative in the cell type-TF specificity network.

We further annotate each group by summarizing the included cell types and identify the signature safe-

guard TF for each group (see Methods for details). For example, there are 46 cell types in the neuron group

(Figure 3A), in which 31 are brain regions, such as ‘‘prefrontal cortex,’’ ‘‘midbrain,’’ and ‘‘cerebellar hemi-

sphere.’’ Of the remaining 15 cell types 7 are neuronal cell types. Thus, this group is annotated as

neuron/brain and associates to safeguard TF MYT1L, SOX10, and SALL1. When we focus on MYT1L as pos-

itive control, we find that 33 of 35 MYT1L linking cell types are included in this group and all 33 cell types are

related to brain or neuron.

Figure 3B shows the heatmap of safeguard TFs’ expression pattern using the independent GTEx expres-

sion data across 53 tissues. We find that all tissues from brain are in the first group. Also, MYT1L,

SOX10, and SALL1 are the safeguard TFs in this group. This is in accordance with the result in Figure 3A.

From the clustering result of the cell types, we can conclude that similar safeguard TF profiles lead to similar

cell types.
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TF xi in the

Optimal

Solution

Cell Type

Group

TF Family Canonical

Sequence

Length

Length # Linked

Cell

Type

Reprogramming

Panel

Degree

in PPI

Network

Interacting

CR

# of

CR

Phylostratum Conserved

in Mouse?

MYT1L 1 Neuron C2H2 ZF 1,186 542,162 35 Neuron

(Marro et al., 2011)

3 0 6 No

TP63 0.933 Epithelial p53 680 265,854 28 188 BRD8, SMARCD2,

MDM2, MDM4,

CARM1, KAT2B

6 2 No

IKZF1 0.926 immune C2H2 ZF 519 129121 39 173 HDAC1, CHD4,

HDAC2, HDAC4,

HDAC5, HDAC7,

HDAC3, RBBP4,

CHD3, SMARCA4,

HDAC11, CBX8

12 2 No

RUNX1 0.914 Epithelial Runt 453 261499 51 HMPC

(Sandler et al., 2014)

151 SUV39H1, KAT6B,

HDAC1, HDAC3,

KAT6A, HDAC2,

TRIM33, SMARCA4,

SMARCB1, KMT2A,

DNMT1, HDAC11

12 5 Yes

PTTG1 0.891 Endothelial Unknown 202 6,939 43 136 0 12 No

GATA6 0.828 Heart GATA 595 33,095 22 10 0 2 Yes

SALL1 0.817 Neuron C2H2 ZF 1,324 15,299 25 25 0 2 No

MNX1 0.569 Immune Homeodomain 401 5,802 9 neuron

(Lee et al., 2009)

1 0 3 No

SHOX2 0.555 Kidney Homeodomain 331 10,154 26 5 0 2 No

STAT1 0.424 Epithelial STAT 750 45,216 53 295 SMARCA4, JAK2,

SMARCA2, DOT1L,

HDAC4, HDAC1,

HDAC3

7 2 No

GLIS3 0.419 Stomach C2H2 ZF 775 475,909 41 24 0 2 No

HOXC6 0.343 Kidney Homeodomain 235 13,973 26 9 0 2 No

HOXC10 0.272 Bone Homeodomain 342 5,118 22 10 0 2 No

Table 1. Safeguard TFs in Human Identified by 3Scover and Their Genomic Features

(Continued on next page)
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TF xi in the

Optimal

Solution

Cell Type

Group

TF Family Canonical

Sequence

Length

Length # Linked

Cell

Type

Reprogramming

Panel

Degree

in PPI

Network

Interacting

CR

# of

CR

Phylostratum Conserved

in Mouse?

GATA2 0.271 Endometrium GATA 480 13,767 3 61 HDAC3, HDAC5,

KAT2A

3 2 Yes

ELF4 0.257 Immune Ets 663 45,795 37 14 MDM2 1 5 No

ELK4 0.244 Heart Ets 431 24,931 11 11 SIRT7 1 5 Yes

HOXA13 0.244 Endometrium Homeodomain 388 3,228 13 0 0 3 No

TCF21 0.234 Bone bHLH 179 6,418 24 15 0 6 No

MAFF 0.21 Immune bZIP 164 14,580 28 70 HDAC5 1 6 No

HNF4G 0.188 Immune Nuclear receptor 408 26,860 13 15 0 5 No

SNAI2 0.161 Bone C2H2 ZF 268 3,762 51 nephron

progenitors

(Hendry et al.,

2013)

32 HDAC2, HDAC1,

KDM1A, CHD4,

MDM2

5 2 No

ESR1 0.156 Endometrium Nuclear receptor 595 412,779 15 1,330 SMARCA4, SMARCD1,

SMARCA2, MDM2,

TADA3, KAT5,

HDAC7, HDAC4,

HDAC5, HDAC9,

RBBP4, HDAC1,

HDAC3, KAT6A,

HDAC2, KDM1A,

KMT2D, RBBP5,

ASH2L, WDR5,

TRRAP, EHMT2,

CHD4, EP400,

RUVBL1, RUVBL2,

EZH2, SUV39H1,

SMARCD3, SUPT6H,

WHSC1L1, SUZ12,

CHD6

33 5 No

IRF1 0.151 Immune IRF 325 9,166 27 73 KAT2B, KAT2A,

SMARCA4, MDM2

4 5 No

EMX2 0.149 Endometrium Homeodomain 252 7,103 16 3 0 2 No

Table 1. Continued (Continued on next page)
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TF xi in the

Optimal

Solution

Cell Type

Group

TF Family Canonical

Sequence

Length

Length # Linked

Cell

Type

Reprogramming

Panel

Degree

in PPI

Network

Interacting

CR

# of

CR

Phylostratum Conserved

in Mouse?

TWIST1 0.139 Bone bHLH 202 2,206 27 72 KAT2B, HDAC2,

CHD4, HDAC3,

WDR5, SETD8,

CHD3, HDAC6

8 6 No

NR2F2 0.138 Stomach Nuclear receptor 414 14,337 9 73 HDAC1, SMARCAD1 2 5 No

SOX10 0.135 Neuron HMG/Sox 466 12,222 20 Melanocytes

(Yang et al., 2014)

16 0 2 No

HIC2 0.118 Heart C2H2 ZF 615 34,059 15 22 0 2 No

E2F7 0.106 Endothelial E2F 911 44,336 49 17 RUVBL1 1 2 No

MEOX2 0.103 Kidney Homeodomain 304 75,473 12 220 KAT5, CXXC1 2 2 No

Table 1. Continued

xi value in the optimal solution denotes the probability of the TF being a safeguard TF, and 30 safeguard TFs are ranked by xi ; cell type group corresponds to cell type-TF heatmap in Figure 3A; canonical

sequence is the sequence of the TF to describe all the protein products encoded by one gene in a given species in a single entry; number of linked cell type is the number of linked cell type of TF in the cell type-

TF specificity network; reprogramming panel is the lineage to which TF is used to reprogram; degree in PPI network is the degree of TF in human PPI network; interacting CR is the linked CRs of TF in the PPI

network; phylostratum is the evolutionary emergence level of TF (Domazet-Loso and Tautz, 2008), and a higher level corresponds to a later emergence of gene.
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The Genomic Features of Safeguard TFs

TFs in Reprogramming Panel Are Enriched in PPI Network of Safeguard TFs

TFs tend to co-regulate transcription by interacting with other TFs, CRs, and co-factors. We reconstruct the

PPI network of safeguard TFs with other TFs based on the PPI repository BioGRID. We further label safe-

guard TFs and TFs in the list of 35 experimentally verified TFs used in cell reprogramming in Figure 4A.

We ask if the TFs in reprogramming panel are enriched in this network. Thirteen TFs are included in the

network for the total 205 TFs, and eight are expected by chance (Figure 4B). This gives a fold change

1.87 and p value 0.0068 (hypergeometric test). It supports that safeguard TFs are strongly implicated in re-

programming. We can define two types of proteins based on the network structure. The type I protein in-

teracts with only one safeguard TF and type II protein interacts with more than two safeguard TFs. Most

safeguard TFs interact with both type I and type II proteins, suggesting that safeguard TFs can function

independently and cooperatively with other TFs.

Reprogramming Program Lineage Combination of TFs Safeguard TF

Melanocytes MITF, PAX3, SOX10 SOX10

Nephron progenitors HOXA11, OSR1, SIX1, SIX2, SNAI2 SNAI2

Neuron ASCL1, FOXA2, ISL1, LHX3, MNX1, MYT1L,

NEUROD1, POU3F2

MYT1L

Hematopoietic FOSB, GFI1, RUNX1, SPI1, POU5F1 RUNX1

Table 2. Safeguard TFs Identified by 3Scover that Have Been Used for Lineage Reprogramming in Human

TF combination includes all TFs used to reprogram to the reprogramming penal lineage. Safeguard TF identified in our work

included in the TF combination is listed in the third column.
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Figure 3. Human Safeguard TFs Serve Distinctive Signatures of Lineages

(A) Heatmap based on adjacency matrix of mouse safeguard TF-induced specificity network. Green represents that the

cell type (row) is linked by the TF (column). We identify nine groups of cell types and assign each TF in the group according

to the heatmap. We annotate each group by summarizing its included cell types.

(B) Heatmap of independent expression data fromGTEx database. According to themedian expression of safeguard TFs,

we can identify brain group and the three signature TFs consistently show up— MYT1L, SOX10, and SALL1.

See also Figure S2.
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In the PPI network, MYC has interaction with safeguard TF RNUX1, protecting the first group annotated

with epithelial and trachea. It was previously used to reprogram to RPE-Like cells by cooperating with

NCoR/SMRT co-repressors to create an epigenetic barrier to somatic cell reprogramming (Zhuang

et al., 2018). It suggests that RNUX1 may safeguard epithelial lineage and repress other lineages by recruit-

ing repressors such as MYC.

Safeguard TFs Interact Closely with Chromatin Regulator

We then check one subclass of proteins in the PPI network.We hypothesize that safeguard TF should recruit

CRs to regulate the chromatin accessibility and to repress cell type differentiation to other lineages. We

construct a safeguard TF-CR PPI network by extracting the interactions among TFs and CRs (Figure 4C).

Figure 4D shows that the number of edges in the network of safeguard TF is significantly larger than net-

works constructed by randomly picking 30 TFs (p value, 0.0386, 10,000 random networks). It suggests that

safeguard TF andCR tend to interact closely. Furthermore, functional enrichment analysis shows that CRs in

13192 22
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Figure 4. Safeguard TFs Interact with Other TFs and CRs in the Protein-Protein Interaction Network

(A) PPI network among safeguard TFs and other TFs. Green node represents safeguard TF, and rhombus represents TF in

reprogramming panel.

(B) Overlap of TFs in the network and TFs in reprogramming panel. Reprogramming panel TFs are significantly enriched in

safeguard TFs and its protein-protein interactors.

(C) PPI network among safeguard TFs and CRs. Safeguard TFs are denoted by green nodes, and CRs are denoted by

orange nodes.

(D) Distribution of the number of edges in the PPI network. The distribution is constructed by randomly sampling 30 TFs

and CRs 10,000 times. Red line marks number of edges for network in (C) with a number of 98 and p value 0.0386.
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Figure 5. Safeguard TFs Tend to Take Effects in Early Stage of Development and Differentiation and Repress

Other Lineages

(A) Function enrichment for human safeguard TFs. Function annotations specifically for safeguard TF are marked in red.

(B) Function enrichment for other TFs and function annotations specifically for other TFs are marked by red.

(C) Comparing the percentage of distal enhancers (intergenic enhancers) between safeguard TFs and other TFs by t test.

A p value 0.0264 shows that the percentage of distal enhancer of safeguard TFs is significantly higher than other TFs.
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this network are enriched in negative regulation of expression (Figure S1C), whereas all CRs aggregate into

epigenetic regulation of gene expression (Figure S1D).

Safeguard TFs Tend to Function in Early Stage in Development and Differentiation

To explore the function of safeguard TF in detail, we perform enrichment on both 30 safeguard TFs and

other TFs in the human cell type-TF specificity network (D’Alessio et al., 2015) (Figures 5A and 5B). The

most enriched function is negative regulation of transcription by RNA polymerase II, which offers the po-

tential for the safeguard TFs to repress expression of core genes in other cell types. And 19 of 30 safeguard

TFs have this function. Compared with the enriched function of other TFs, chordate embryonic develop-

ment is only enriched in safeguard TFs, whereas the exclusively enriched functions of other TFs are gland

development, sensory organ development, muscle structure development, head development, heart

development, and myeloid cell differentiation. All of those are late specific tissue or lineage development.

This suggests that safeguard TFs may take effect earlier than other TFs. Besides, mesenchymal cell (which

can differentiate into a variety of cell types) differentiation and positive regulation of mesenchymal cell pro-

liferation are only enriched in safeguard TFs, whereas epithelial cell differentiation and myeloid cell differ-

entiation, as well as leukocyte differentiation, are only enriched in other TFs. These also provide evidence

that safeguard TFs take effect in earlier differentiation context.

Safeguard TFs Tend to Be Regulated by Distal Regulatory Elements

We further compare safeguard TFs and other TFs for nine genomic features by unpaired t test. Those fea-

tures include regulatory complexity (defined as number of regulatory enhancers associated with this TF),

number of proximal enhancers, number of distal enhancers, number of exons, exon length, PPI degree,

gene length, ratio of proximal enhancer, and ratio of distal enhancer. Figure 5C shows that safeguard

TF is significantly higher than other TFs in the ratio of distal enhancers, which are key contributors to

gene expression specificity among cell types (Bulger and Groudine, 2011). It suggests that safeguard

TFs might be elaborately regulated by distal enhancers and are significantly different from other TFs.

Safeguard TFs Tend to Repress Other Lineages

An essential feature of safeguard TF is repressing differentiation to other lineages. We use the correlation

of safeguard TF and the tissue typemarker genes (CellMarker database, Zhang et al., 2019) across cell types

in GTEx data to check if safeguard TF’s expression level is negatively correlated to those marker genes’

expression (see Methods). Figure 5D shows that safeguard TF in neuron group, MYT1L, has significantly

negative mean correlation with cell type marker genes in 26 of 37 tissues other than brain (t test, p value <

0.05, 23 for q-value < 0.05). Figures 5E and 5F show the similar results for SALL1 (13 of 37) and SOX10 (20 of

37). This indicates that SOX10, MYT1L, and SALL1 tend to repress neuron lineages differentiation to other

lineages. We can get similar results in some other safeguard TFs (Figure S3), supporting that safeguard TFs

may repress many different somatic lineages using an independent large-scale gene expression dataset.

Safeguard TFs Tend to Be Conserved in Mouse and Human

In addition to human dataset, we apply 3Scover to reveal 30 mouse safeguard TFs by randomly subsam-

pling for 1,000 times in the mouse cell type-TF specificity network (Table 3). Figure 6A shows the heatmap

of adjacency matrix for mouse safeguard TF-induced specificity network. Clearly those 30 TFs are very

representative. Figures 6B and 6C are the enriched function for mouse safeguard TFs and other TFs. We

can find that embryonic morphogenesis is only enriched in mouse safeguard TFs and the corresponding

function for other TFs is morphogenesis of epithelium. This suggests that mouse safeguard TFs take effect

in an earlier development stage. Besides, mouse safeguard TFs work in less differentiated stage, such as

hematopoietic progenitor cell differentiation, compared with other TFs with the function of myeloid cell

differentiation. These two observations are consistent with the human safeguard TFs.

Figure 5. Continued

(D) Mean correlation between safeguard TF MYT1L and cell type makers. For each tissue type, we calculate the Pearson

correlation coefficients on median TPM of MYT1L and tissue type markers across all cell types in GTEx datasets. The cell

type markers are from CellMarker database.

(E) Mean correlation between safeguard TF SALL1 and cell type markers.

(F) Mean correlation between safeguard TF SOX10 and cell type makers.

See also Figure S3.
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TF xi Family Canonical

Sequence

Length

Length # Linked

Cell

Type

Reprogramming

Panel Lineage

PPI Degree CR #CR Phylostratum Conserved in

Human?

Rel 0.781 Rel 587 34,120 206 5 0 3 No

Egr1 0.704 C2H2 ZF 533 3,750 178 9 0 2 No

Elf2 0.685 Ets 593 87,925 141 7 0 5 No

Sox4 0.634 HMG/Sox 390 4,780 202 0 0 2 No

Elk4 0.548 Ets 430 18,080 135 0 0 5 Yes

Pole3 0.447 Unknown 145 1,214 195 3 Chrac1 1 2 No

Hnf4a 0.416 Nuclear receptor 474 66,051 230 Hepatocytes

(Yang et al., 2014)

7 Sirt1 1 5 No

Pparg 0.416 Nuclear receptor 505 129,258 207 87 Men1, dac1, Sirt1 3 5 No

Gata6 0.394 GATA 589 33,126 225 15 Bmi1 1 2 Yes

Runx3 0.307 Runt 409 57,346 241 1 0 5 No

Klf10 0.295 C2H2 ZF 479 6,306 159 4 0 2 No

Cebpd 0.253 bZIP 269 2,260 162 7 Rb1 1 3 No

Hoxa10 0.211 Homeodomain 416 3,743 142 6 0 2 No

Gtf2i 0.209 GTF2I-like 998 76,929 157 3 0 2 No

Tal1 0.193 bHLH 329 13,945 156 18 Hdac1, Kat2b 2 6 No

Tead2 0.172 TEA 445 17,867 211 4 0 3 No

Zfp580 0.153 C2H2 ZF 172 2,192 175 0 0 2 No

Gata4 0.142 GATA 441 46,358 196 Cardiomyocytes

(Chen et al., 2012)

27 Smarca4, Eed 2 2 No

Foxo3 0.136 Forkhead 672 90,957 132 8 0 3 No

Gata2 0.126 GATA 480 8,369 172 3 0 2 Yes

Xbp1 0.124 bZIP 267 5,353 169 2 0 6 No

E2f4 0.115 E2F 410 7,708 212 4 0 2 No

Tfdp1 0.114 E2F 410 39,698 221 10 0 2 No

Trps1 0.114 GATA 1281 234,291 123 6 0 3 No

Table 3. Safeguard TFs in Mouse Identified by 3Scover and Their Genomic Features

(Continued on next page)
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TF xi Family Canonical

Sequence

Length

Length # Linked

Cell

Type

Reprogramming

Panel Lineage

PPI Degree CR #CR Phylostratum Conserved in

Human?

Pou2f1 0.105 Homeodomain; POU 770 137,481 94 21 0 3 No

Nfyb 0.103 Unknown 207 15,442 192 0 0 2 No

Nr2f6 0.098 Nuclear receptor 390 7,834 141 4 0 5 No

Creb3l1 0.087 bZIP 519 41,843 191 1 0 2 No

Myb 0.085 Myb/SANT 636 36,055 192 21 0 2 No

Runx1 0.085 Runt 451 95,864 177 Hematopoietic stem

cell (Sandler et al., 2014)

44 Hdac1, Hdac2,

Rbbp4, Smarca4,

Smarcb1, Ash2l,

Phc1, Smarcd1,

Bmi1

10 5 Yes

Table 3. Continued

The genomic feature descriptions are the same as in Table 1.
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Figure 6D shows that four safeguard TFs are conserved in mouse and human, ELK4, GATA6, GATA2, and

RUNX1; three of them are experimentally verified reprogramming TFs, HNF4A, GATA4, and RUNX1.

The conservation of safeguard TFs in human and mouse are statistically enriched with a p value 0.007 (Fig-

ure 6E) (see Methods). However, all human safeguard TFs in the brain and neuron—MYT1L, SOX10, and

SALL1—are human specific, suggesting the regulatory difference of nervous system between human

and mouse.

3Scover Predicts Pou2f1 as Muscle Candidate Safeguard TFs

An important application of 3Scover is to predict the safeguard TF for a certain tissue. We takemuscle as an

example. We first find the safeguard TF specifically linked with muscle lineage by a fold change (see

Methods). Figure 7A shows that the fold changes of Rel and Pou21 between muscle lineage and all cell

types are ectopic high. Besides, we take advantage of the fact that there are some muscle linages that

appear during reprogramming from mouse embryonic fibroblasts (MEFs) to iN cells (Treutlein et al.,

2016). We utilize the single-cell RNA sequencing data at multiple time points for iN reprogramming to

explore the expression pattern of different TFs in the iN reprogramming progress. Figures 7B–7D show

the expression pattern of Myod1, Rel, and Pou2f1. It suggests that the expression pattern of Pou2f1 is

similar to that of Myod1, which is a muscle pioneer reprogramming factor (Davis et al., 1987). In addition,

it has been suggested that Oct-1 (Pou2f1) is involved in the specification of myogenic phenotypes (Lakich

et al., 1998) and causes disorganization when under-expressed (Columbaro et al., 2013). Bringing the afore-

mentioned observations together, we suggest Pou2f1 as the candidate safeguard TF for muscle.
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other TFs

Figure 6. Safeguard TFs Are Conserved in Mouse and Human

(A) Heatmap of adjacency matrix for mouse safeguard TF-induced specificity network. Green represents that cell type

(row) is associated to the TF (column). We identify eight groups of cell types and TFs according to the heatmap. We

annotate each group by summarizing its included cell types.

(B) Function enrichment of mouse safeguard TFs. Red represents mouse safeguard TF-specific functions.

(C) Function enrichment of other non-safeguard mouse TFs. Red represents non-safeguard TF-specific functions.

(D) Conserved safeguard TFs in mouse and human (ELK4, GATA6, GATA2, and RNUX1).

(E) The number of overlapped safeguard TFs between mouse and human are significantly larger than random. We count

the overlap of randomly picked 30mouse TFs and random picked 30 human TFs for 1,000 times and then generate the null

distribution. Red line marks the observed number of overlaps of safeguard TF with a p value 0.007.
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DISCUSSION

We propose 3Scover, an ensemble method based on set cover model, to find a robust set of TFs in the re-

constructed cell type-TF specificity network taking advantage of two quantitative characteristics of safe-

guard TF. 3Scover takes cell type-cell type interaction, cell type-TF interaction, and TF-TF interaction

into account and is different from the naive strategy to identify safeguard TFs only in one cell type. 3Scover

relies on the cell type-TF specificity network as the only input. In our test, this network is constructed by

gene expression data (human) or regulatory strength data (mouse). It can be generalized to motif enrich-

ment score given chromatin accessibility data or even experimentally measured cell type-TF specificity

network in future.

At present, MYT1L is the only known and experimentally validated safeguard TF. 3SCover, as the first

computational method for identifying safeguard TFs, extracts two quantitative characteristics of safeguard

TF based on the observation of MYT1L. There are some further evidences for ‘‘many but one’’ specificity we

observed in the literature. In reprogramming, safeguard TFs are often used to reprogram many different

donor cell types (Xu et al., 2015). Besides, MYT1L is a pan neuron-specific TF (Mall et al., 2017). These facts

suggest that safeguard TFs are lineage specific but not specific in only one cell type. More experimentally

verified safeguard TFs will enhance this ‘‘many but one’’ specificity observation and help us to better define

and capture the main safeguard TF’s character.

For the human and mouse data, we choose 30 as a rank cutoff to construct the cell type-TF specificity

network. We tried cutoff larger than 30, but the number of TFs in solution of set cover problem remains
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Figure 7. Pou2f1 Is a Candidate Muscle Safeguard TF

(A) Fold change of mouse safeguard TFs in muscle based on cell type-TF specificity network. Fold change is computed by

dividing the percentage of cell types linked with the TF in muscle by the percentage in all cell types. Green represents Rel

and Pou2f1.

(B) Boxplot of Myod1’s expression in the single cell RNA sequencing data for reprogramming form MEF to iN. Each point

represents a single cell, and all cells are classified to nine groups.

(C) Boxplot of Rel’s expression.

(D) Boxplot of Pou2f1’s expression.
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about the same (Figure S1C). Here, 30 is chosen as a demonstration because dozens of candidate TFs are

reported as signatures of the cell type in literature. The choice can be guided by the knowledge of the num-

ber of reprogramming factors for a cell type in practice.

Several genomic evidences suggest that safeguard TFs act as a repressor, including the negative regula-

tion of safeguard TFs and CR having interaction, the negative correlation of safeguard TF with cell type

marker genes, as well as safeguard TF RNUX1 recruiting MYC by PPI, forming a barrier to other lineages.

However, how to define ‘‘repression’’ from data and how the safeguard TFs repress other lineages remains

a question waiting for more wet-laboratory experiments and data analysis to explore.

3Scover ranks MYT1L as the first in our human safeguard TF list, and MYT1L is the only known and exper-

imentally validated safeguard TF for neuron. It is well known that the combination of ASCL1 as a pioneer TF,

MYT1L as a safeguard TF, and BRN2 as a context-dependent TF reprograms fibroblasts into iN cells. In

addition, MYT1L mutations can cause intellectual disability (Blanchet et al., 2017) suggesting that genetic

mutations on a safeguard TF lead to disease related to cell types protected by it. Based on our pilot study of

the safeguard TFs in the whole cell type-TF network, we propose a working model to help to understand

the role of safeguard TFs in the development and differentiation. When pluripotent stem cells differentiate

to a certain type of mature cell, safeguard TF should be turned on first to maintain the lineage including the

target mature cell type and repress other lineages that stem cells may convert to. After that, pioneer TFs

and other context-dependent TFs are turned on to direct the cell to differentiation target cell type. This

model is conceptional and needs more independent data and evidence to support and verify. We believe

that many safeguard TFs will be revealed in future, and this allows better model and mechanism

understanding.

Limitations of the Study

Our work is limited as a pure computational prediction for safeguard TF by omics data. 3Scover provides

promising safeguard TF candidates, which should be further supported and validated by well-designed

wet-laboratory functional experiments. We believed the perturbation experiments (knock-down or over-

expression) and genomic binding experiments (chromatin immunoprecipitation sequencing) in the right

cellular context will be extremely useful. Second, ‘‘Safeguard TF’’ is a limited term in this study because

we define the safeguard TF only through the comparison of MYT1L as safeguard TF and NEUROND1 as

pioneer TF based on the expression across certain cell types. However, we highlight that the ‘‘many but

one specificity’’ and parsimony principle in the cell type-TF specificity network are quite general concepts

and may reveal other important TFs in a more complete dataset with more cell types. Third, safeguard TF

has the implication to ‘‘repress’’ other lineages in addition to ‘‘many but one specificity.’’ How to define

‘‘repression’’ from other omics data and how the safeguard TFs repress other lineages remains a question

waiting for more wet-laboratory experiments and data analysis to explore.

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Yong Wang (ywang@amss.ac.cn).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

The datasets and code generated during this study are available at https://github.com/AMSSwanglab/

3SCover. The identified 30 safeguard TFs in human and mouse are available at https://github.com/

AMSSwanglab/3SCover/blob/master/Human_safeguard_TF.txt; https://github.com/AMSSwanglab/

3SCover/blob/master/Mouse_safeguard_TF.txt. All code related to the Data visualization techniques is

available at https://github.com/AMSSwanglab/3SCover/tree/master/figure.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Figure S1. MYT1L and NEUROD1 induced cell type-TF subnetworks. Related to Figure 1. (A) MYT1L and 
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represents for a higher frequency.
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Figure S3. Correlation between safeguard TF and cell type marker genes. Related to Figure 5. Mean correlation 
between safeguard TFs and cell type makers. For each cell type, we get the Pearson correlation coefficients based on 
median TPM of safeguard TF and cell type marker genes across all cell types in GTEx datasets. The cell type marker genes 
are from CellMarker database. More details are in Figure 5D.



Transparent Methods 

Public data collection 

To observe the distinct expression patterns across all cell types of MYT1L and NEUROD1, we 

collected gene medium TPMs across 53 tissues from Genotype-Tissue Expression (GTEx) 

portal (Carithers et al., 2014). GTEx data resource was also used to provide the independent 

evidence for the ability of safeguard TF determining distinctive signatures of lineages. Protein-

protein interaction repository were downloaded from BIOGRID (https://thebiogrid.org/). 

Functional enrichment analysis is given by Metascape (http://metascape.org). To predict the 

safeguard TF in muscle, we used single-cell RNA-seq at multiple time points in direct 

reprogramming from fibroblast to neuron, because some fibroblast cells transform to muscle in 

this process (Treutlein et al., 2016). 

Specificity score 

The method of calculating specificity scores is presented by D'Alessio, A.C., et al. (D'Alessio 

et al., 2015). The specificity score for a certain TF in the ith cell type is a −𝑙𝑜𝑔10(𝐽𝑆𝐷) and 

JSD is defined as follows: 

𝐽𝑆𝐷 =
1

2
(∑𝑥𝑘𝑙𝑜𝑔

2𝑥𝑘

𝑥𝑘 + 𝑦𝑘
+

𝑁

𝑘=1

∑ 𝑦𝑘𝑙𝑜𝑔
2𝑦𝑘

𝑥𝑘 + 𝑦𝑘

𝑁

𝑘=1

) 

𝑥𝑘 represents the normalized expression of the TF in the kth cell type and  𝑥𝑘 =
𝑒𝑘

∑ 𝑒𝑘
𝑁
𝑘= 1

, where 

𝑒𝑘 represents the expression of the TF in the k-th cell type. 

y is the background vector and 𝑦𝑘 = {0, 𝑘 ≠ 𝑖
1, 𝑘 = 𝑖

. 

The score can be simplif ied as: 

𝐽𝑆𝐷 =
1

2
(∑𝑥𝑘𝑙𝑜𝑔 2 + 𝑙𝑜𝑔

2𝑥𝑖

𝑥𝑖 + 1
+

𝑘≠𝑖

𝑙𝑜𝑔
2

𝑥𝑖 + 1
) 

Classifying cell types to reprogramming panel lineage 

After extracting the reprogramming panel TF induced subnetwork from cell type-TF specificity 

network, we classify TFs into 8 groups based on the lineage to which reprograming panel TFs 

are used to reprogram (reprogramming panel lineages). We also classify cell types to 8 groups. 

For a certain cell type, we count the number of TFs in each group linked to this cell type. Then, 

we classify the cell type to the group with the largest counting number.  

Motivation to build the 3Scover model 

We explain the main idea by set covering and ensemble strategy respectively to extract 

safeguard TFs from the constructed cell type-TF network. Let’s first consider the set cover 

problem without subsampling: 

https://thebiogrid.org/
http://metascape.org/
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Where, K and N are respectively the number of TFs and cell types in the network; 𝑥𝑖 = 1, if the 

i-th TF is a safeguard TF and 𝑥𝑖 = 0, if not; 𝐴 = (𝑎𝑖𝑗)𝐾×𝑁 is the adjacency matrix of cell type-

TF network and 𝑎𝑖𝑗 = 1, if the i-th TF is linked with the j-th cell type; min𝑥 ∑ 𝑥𝑖
𝐾
𝑖=1  aims to 

minimize the number of identif ied safeguard TFs; ∑ 𝑎𝑖𝑗𝑥𝑖 ≥ 1, 𝑗 ∈ {1,2,… , 𝑁}𝐾
𝑖=1  requires at 

least one safeguard TF linked with each cell type.  

 

This is a 0-1 integer linear programming, or more precisely, a set cover problem. This is a 

classical model in combinatorics, computer science, operations research, and complexity 

theory and known as one of Karp’s 21 NP-problem. In this set cover problem, the set of cell 

types is the universe; each TF represent for a set including cell types linked with the TF; the 

safeguard TF list the minimum set cover, i.e., we aim to minimize the number of safeguard TFs 

to cover every cell type in the universe. We note that the first characteristic, “many but one 

specificity”, is modeled explicitly in the objective function. However, in a general sense, the 

probability of a TF to be safeguard TF increases along with the increased numbers cell types 

covered by this TF, suggesting that the model tends to identify a TF of “many but one specificity” 

as a safeguard TF. 

 

The set cover model is deterministic and has some limitations: 1) There may be more than one 

minimum set cover. 2) Minimum set cover is easily influenced by the noise in the data. To 

overcome these diff iculties, we introduce the ensemble strategy. In statistics and machine 

learning, ensemble strategies use multiple learning algorithms (set cover problem in our case) 

to obtain better predictive performance than could be obtained from any of the constituent 

(individual strategies) learning algorithms. For example, in reconstructing gene regulatory 

network, the ensemble method obtained the most consistent network structure with respect to 

all of the datasets, thereby not only significantly alleviating the problem of dimensionalit y but 

also remarkably improving the prediction reliability (Wang et al., 2006). This motivates us to 

introduce the ensemble strategy to solve a multitude of set cover subsampling models for a 

more stable solution. 

 

3Scover model 

We propose Set cover problem with Stability Selection model (3Scover) as follows:  
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Where L is the number of subsampling times; K and N are respectively the number of TFs and 



cell types in the network; 𝒙𝑙  represents the solution for l-th set cover sub-problem by 

subsampling; 𝒙 is the consistent or stable solution for all the subproblems; There are two terms 

in the objective function. ∑ 𝑥𝑖
𝑙𝐾

𝑖=1  f inds the minimum set cover for the l-th sub-problem; and 

∑ ‖𝒙𝑙 − 𝒙‖𝐿
𝑙=1  minimizes distance between the consistent solution with subsampling solutions; 

We introduce the constraint ∑ 𝑎𝑖𝑗 𝑥𝑖
𝑙 ≥ 1, for 𝑙 ∈ {1,2,… , 𝐿}, for 𝑗 ∈ 𝑇𝑙𝑖  to restrict the l-th solution 

to cover all cell types in 𝑇𝑙 . 𝑇𝑙  is the set of remaining cell types at the l-th randomly 

subsampling; 

 

3Scover quantif ies the two characteristics of safeguard TF based on the cell type-TF specificity 

network. “Many but one specificity” can be measured by the degree of TF and the safeguard 

TF set satisfying parsimony must be a set of TFs with minimal size whose induced subnetwork 

including all cell types. In addition, 3Scover uses “stability selection” method based on 

subsampling cell types to get TFs which most possibly be safeguard TF. It suggests that if a 

TF is of essential importance, it should be included in the minimum set cover  even though we 

remove some cell types’ information from our data (Guimaraes et al., 2006). By randomly 

removing, or subsampling in other words, a fixed number of cell types from the network, solving 

the problem, gaining the minimum TF sets, and integrating them, we can find the stable 

safeguard TFs which are seldom influenced by the absence of several cell types (or data noise) 

and non-uniqueness of the solution.  

 

3Scover overcomes the impact of noise in data by subsampling, removes non-uniqueness of 

set cover problem by synthesizing multiple solutions, finally outputs a robust safeguard TF set. 

Importantly, 3Scover takes into account the cell type-TF, TF-TF, and cell type-cell type 

interaction. As the input of the model, cell type-TF interaction is spontaneously involved in the 

model. Additionally, the model could avoid closely related TFs concomitantly selected as 

safeguard TF (see proof in Methods). Compared with previous work to identify important TFs 

separately for every cell type, we conceive all cell types as a whole and thus could identify TFs 

at the systems level. 

 

Decomposition algorithm 

The objective function of 3Scover is convex but the variables are restricted to be binary. It’s an 

extension from the classical set cover problem known as a NP-hard problem. Accurately solving 

(1) needs a lot of computer capacity due to a large number of variables. To overcome this 

diff iculty, we propose a decomposition algorithm as follows.  

Specifically, we decompose (1) into 2 relatively easy sub-problems: 

Sub-optimization problem I: 
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It can be divided into L independent problems and the l-th is as follows: 
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This is the classical set cover problem. We solve the problem by branch-and-cut algorithm with 

CPLEX. 

  

Sub-optimization problem II: 

1

2

2
min

L
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−
x

x x  (4) 

This subproblem has a closed-form solution as the mean of the L sub-solutions 

We solve the two sub-problems iteratively.  

⚫ STEP-0: Initialization. Solve L set cover problems, with the l-th problems as  
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taking the 𝑇𝑙 -induced subnetwork as input for the l-th set cover problem and get 

solutions 𝒙𝑙(0), 𝑖 ∈ {1, …, 𝐿}.  

⚫ STEP-1: Fix 𝒙𝑙(𝑘) , 𝑖 ∈ {1,… , 𝐿}, and solve 
1

2

2
min

L
l

l=
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x

x x , in which the solution 

is 𝒙(𝑘+1) = ∑ 𝒙𝑙(𝑘)/𝐿𝐿
𝑙=1 . 

⚫ STEP-2: Fix 𝒙(𝑘), solving 𝑥𝑙(𝑘+1) by 
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By choosing the parameters λ , subsampling times L, and subsampling size |𝑇𝑙 | as well as the 

number of iterations, we can gain the stable solution 𝒙, where 𝑥𝑖  is an estimator of the 

probability of the i-th TF to be a safeguard TF. 

 

Algorithm complexity analysis 

The core subroutine in our algorithm is to solve a set cover problem with K elements and N 

sets. Set cover problem is known as one of Karp's 21 NP-complete problems. We used the 

CPLEX solver in MATLAB for the set cover problem by branch and bound algorithm. There are 

2𝐾 leaf nodes in a binary tree and in theory the computational complexity 𝑂(2𝐾). In practice, 

the solver is very efficient due to the sparsity of cell type-TF bipartite graph. To achieve a stable 

solution, we solved the set cover problem for L times in the algorithm of 3SCover. For each 



sub-solution, the algorithm was used to identify the safeguard TF in human and mouse where 

K is the number of TF and N is the number of resampling cell type. For the human case, we 

have K=1055, N=210, and L=1000. The total running time is 2 days and 56 minutes (0.51s for 

single set cover subproblem on average). For the mouse case, we have K=202, N=736, and 

L=1000. The total running time is 2 days and 56 minutes (227s for single set cover subproblem 

on average). 

 

Proof of avoiding redundancy of 3Scover 

3Scover could avoid closely related TFs concomitantly selected as safeguard TF and we 

explain this by reduction to absurdity. We consider two closely related TFs, TF1 and TF2, and 

the linked cell types of TF1 are included in the linked cell types of TF2. If both TFs are in 

safeguard TF set, we can construct a smaller set by removing TF1. This will generate a smaller 

safeguard TF set and reduce the objective function. 

 

Conservation of safeguard TF in human and mouse 

We observed that 3 of the 4 safeguard TFs conserved in human and mouse are experimentally 

verif ied reprogramming TFs. We ask the question if this 75% ratio (3/4) is different with the 

situation by chance in statistics. We compute the conservation p-value by a permutation based 

test. Specifically, we transformed 202 mouse TFs and 1,055 human TFs to the homologous 

gene id. Then we randomly chose 30 IDs in human and mouse for 1,000 times and calculated 

the number of overlapped TFs. There are 7 times in which the number of overlapped TF is 

bigger than 4. This suggests that the conservation of safeguard TF in human and mouse are 

statistically enriched with a p-value 0.007. 

 

Correlation of safeguard TF and the tissue type markers  

According to the CellMarker database (Zhang et al., 2019), we extract the markers for 70 cell 

types by filtering the samples by the following steps.  

1. Annotated by “Cancer cell” as its cell type 

2. With “Undefined” tissue type 

3. With none gene symbols for cell marker 

4. With “single-cell sequencing” as “markerResource” 

5. With a cell name as “cancer cell” or “cancer stem cell” 

The resulting sample comprises 1,596 cells from 70 cell types. To find markers for a certain cell 

type, we collect all markers of cells included in the cell type. Then we remove markers with <1 

median TPM values in all tissues from The Genotype-Tissue Expression (GTEx) project. Cell 

marker are intuitively specific for cell type. Therefore, we remove cell markers identif ied as 

marker in more than 40 cell types. Finally, we filter the tissues with less than 3 markers. To the 

end, we get 37 cell types and the number of their cell markers ranges from 4 (Vagina) to 254 

(Blood). 

 

For a certain safeguard TF, we calculate the Pearson correlation coefficient between it and 

each marker of a cell type based on the GTEx expression dataset. A negative mean correlation 

of tissue type markers (p-value < 0.05, t-test) suggests that the safeguard TF tends to repress 

the cell type. 



 

Measure safeguard TF specifically linked with lineage 

We use a fold change to measure the specificity of a safeguard TF linked with a lineage. The 

foreground percentage of a lineage is the percentage of cell types l inked with the TF among 

the cell types in the lineage. And the background percentage is the cell types linked with TF 

among all cell types. This fold change is defined by dividing the foreground by the background 

percentage. 

 

Data visualization techniques 

All heatmaps in Figure 1, Figure 3, and Figure 6 are performed by pheatmap R package. All 

networks included in Figure 1, Figure 4, and Figure S1 are performed by Cytoscape 

(Shannon et al., 2003). Sankey diagrams of Figure 1F and Figure 1G are performed by 

ggalluvial R package. Functional enrichment is implemented by Metascape 

(http://metascape.org). Histogram, boxplot, and line graph in Figure 4, Figure 5, Figure 6, 

Figure 7, Figure S1 and Figure S3 are performed by ggplot2 R package. Venn diagrams in 

Figure 4 and Figure 6 are implemented by VennDiagram R package. Word cloud diagrams 

are performed by a online tool (https://www.wordclouds.com/). All related code is available at 

https://github.com/AMSSwanglab/3SCover/tree/master/figure. 

  

http://metascape.org/
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