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Abstract
Mathematical models are formal and simplified representations of the knowledge
related to a phenomenon. In classical epidemic models, a major simplification con-
sists in assuming that the infectious period is exponentially distributed, then implying
that the chance of recovery is independent on the time since infection. Here, we first
attempt to investigate the consequences of relaxing this assumption on the perfor-
mances of time-variant disease control strategies by using optimal control theory. In
the framework of a basic susceptible–infected–removed (SIR) model, an Erlang dis-
tribution of the infectious period is considered and optimal isolation strategies are
searched for. The objective functional to be minimized takes into account the cost of
the isolation efforts per time unit and the sanitary costs due to the incidence of the
epidemic outbreak. Applying the Pontryagin’s minimum principle, we prove that the
optimal control problem admits only bang–bang solutions with at most two switches.
In particular, the optimal strategy could be postponing the starting intervention time
with respect to the beginning of the outbreak. Finally, by means of numerical simu-
lations, we show how the shape of the optimal solutions is affected by the different
distributions of the infectious period, by the relative weight of the two cost compo-
nents, and by the initial conditions.
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1 Introduction

Infectious diseases are responsible for significant social and economic losses world-
wide. Several recent examples, one for all the ongoing pandemic caused by SARS-
CoV-2 virus, pointed out the need for suitable public health interventions for effective
disease control and eradication. Also in the case of livestock and wildlife, infectious
diseases lead to huge economic losses to farmers (DEFRA/DCMS 2002) and endan-
ger wild species’ survival (McCallum and Dobson 1995), in addition to representing
potential risks for spillover in human (Daszak et al. 2000).

In the last 20 years, we have witnessed to an increase of the role of mathemati-
cal models in improving the understanding and making predictions on the infection
dynamics and in informing the policies for disease management (Ferguson et al. 2001;
Gatto et al. 2020; Gumel et al. 2004). The susceptible–infected–removed (SIR) class
of models represent the most commonly used framework to investigate epidemio-
logical systems through ordinary differential equations (Anderson and May 1992).
In SIR models, the host population units are subdivided into different compartments
according to their epidemiological status as: susceptibles (S), i.e. healthy units that
can be infected, infected (I ), i.e. diseased units that can infect other ones, and removed
(R), i.e. units who died or recovered from the infection. The units of observation may
represent single individuals or groups (e.g. farms in case of livestock diseases).

The classical SIR models are built using different simplified assumptions on the
epidemiological processes. One of the major simplifications consists in assuming a
constant rate of leaving the infected class, namely an exponential distribution of the
infectious period. Effectively, this means that the chance of a unit to recover during
any given time period does not depend on the duration of the time that it has already
been infected. Whilst such an assumption may provide significant mathematical con-
venience and be reasonably realistic in some situations, most often the assumption
is violated, then requiring the inclusion of more realistic distributions of infectious
periods in epidemic models (Bailey 1954; Gough 1977; Simpson 1952).

The consequences of assuming non-exponential distributions of the infectious
period in SIR models on (i) the qualitative (Krylova and Earn 2013; Lloyd 2001a)
and quantitative (Wearing et al. 2005; Feng et al. 2016) predictions of the infec-
tion dynamics, (ii) the estimate of epidemiological parameters (Wearing et al. 2005),
and (iii) the effectiveness of time-invariant intervention policies (Feng et al. 2007;
Wang et al. 2017) have received some attention in recent years. However, no attempts
have been made, to our knowledge, to investigate the consequences of assuming non-
exponential distributions of the infectious period on the performances of time-variant
disease control strategies by using optimal control theory (Pontryagin et al. 1962).

Here, by investigating the problem of minimizing the epidemic burden by using
isolation control, wewill show that different assumptions on the shape of the infectious
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period distribution may lead to qualitatively and quantitatively different shapes of the
optimal control function, thus critically affecting the effectiveness of disease control
policies.

The paper is organized as follows. In Sect. 2, we present an SIRmodel with Erlang-
distributed infectious period and isolation control (Erlang distributions are special
cases of gamma distributions (Evans and Peacock 1993)). An optimal control problem
aimed at minimizing the control costs and the epidemic size is formulated in Sect. 3,
where also necessary and sufficient conditions of optimality are derived. The profiles
of admissible optimal isolation strategies are analytically characterized in Sect. 4.
Then, we provide numerical simulations in order to understand the sensitivity of the
optimal solutions to: (i) different assumptions on the distribution of the infectious
period; (ii) relative cost of the two components of the objective functional; and, (iii)
initial conditions (Sect. 5). Finally, discussion of the presented results and concluding
remarks are given in Sect. 6.

2 Model formulation

The inclusion of non-exponential distributions of the infectious period in epidemic
models means that the chance of recovery depends on the time since infection, and
hence the model needs to keep track of this information. Although this can be achieved
in several ways, e.g. via an integro-differential equation formulation (Hethcote and
Tudor 1980; Keeling and Grenfell 1997) or a partial differential equation formulation
(Anderson and May 1992), a significant body of research has been focused on the
method of stages (see, just to mention a few papers, Cunniffe et al. 2012; Lloyd
2001a, b; Sherborne et al. 2015), first introduced—to the best of our knowledge—
by Cox and Miller (1965). It consists in assuming that the infectious period obeys a
distribution of the typeErlang(n, nγ ),wheren ∈ N+ and1/γ > 0 is themeanduration
of infection (the Erlang variate is a gamma variate with integer shape parameter (Evans
and Peacock 1993)). The corresponding probability density function is

f (x; n, nγ ) = (nγ )n

(n − 1)! x
n−1e−nγ x , x ≥ 0.

The popularity of this assumption comes from the fact that an Erlang distribution
with shape parameter n is nothing else than the distribution of a sum of n indepen-
dent exponentially distributed random variables of identical mean 1/(nγ ). The case
n = 1 reproduces the exponential distribution; as the parameter n increases, the infec-
tious period distribution becomes more closely centered on its mean, with n → +∞
corresponding to all units having exactly the same duration of infection.

Thus, the use of the Erlang distribution in an epidemic model is equivalent to split
the infected compartment in a finite number of fictitious stages in series: newly infected
units enter the first stage, pass through each successive stage, and recover as they leave
the nth stage. These multiple stages of infection can be also used to represent periods
of increased or decreased risk of transmitting the disease (Ma and Earn 2006).
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By adopting the method of stages, we consider the following SIR model with an
Erlang(n, nγ )-distributed infectious period and including a bounded control function
u(t) ∈ U = [0, umax ] representing the rate of isolation of infected units at time t :

Ṡ = −βSI ,

İ1 = βSI − (nγ + u(t))I1,

İ j = nγ I j−1 − (nγ + u(t))I j , j = 2, . . . , n.

(1)

Here, the upper dot denotes the time derivative, S is the number of susceptible units
at time t and I is the number of infected units at time t , which equals the sum of the
infected units, I j , in each j th stage, with j = 1, . . . , n, namely

I =
n∑

j=1

I j .

The units of observation in model (1) may represent either individuals (in the case
of human diseases) or farms (in the case of livestock diseases). The parameters are
positive constants: β represents the transmission rate and γ represents the removal
rate.

The assumption of upper boundedness for u(t) reflects the realistic scenario of prac-
tical limitations on the maximum rate at which the control strategy may be employed.
Such a restriction is due to several factors, including the limited number of health
officers, the time necessary for detecting the target individuals or farms, the reduced
capacity of infrastructures and so on. Specifically, by setting an upper bound on u(t),
we are assuming a limitation on the maximum isolation effort relative to the target
population instead of on the overall isolation activities performed per time unit (which
are represented by u(t)I ).

For convenience of notation, let us denote μ = nγ and adopt the following change
of variables:

Yk =
k∑

j=1

I j

namely, Yk is the cumulative of the infected units in the first k stages of infection. In
particular, Yn = I . One can easily check that system (1) becomes

Ṡ = −βSYn,

Ẏ1 = βSYn − (μ + u(t))Y1,

Ẏk = βSYn − u(t)Yk − μ (Yk − Yk−1) , k = 2, . . . , n.

(2)

Then, the general controlled system in compact form reads:

ẋ = f(x) + u(t)g(x),

123



On the optimal control of SIR model with… Page 5 of 21    36 

where x = (S,Y1, . . . ,Yn)T is the state-variables vector, and f and g are given by

f =

⎛

⎜⎜⎜⎝

−βSYn
βSYn − μY1

...

βSYn − μ(Yn − Yn−1)

⎞

⎟⎟⎟⎠ , g =

⎛

⎜⎜⎜⎝

0
−Y1

...

−Yn

⎞

⎟⎟⎟⎠ . (3)

We denote with T the terminal time of planning (i.e. time horizon). In general, it is not
clear how large T must be in order to coincide with a reasonable interpretation of the
end of the epidemic. To overcome the problem, by following the approach adopted by
Bolzoni et al. (2019), Bolzoni et al. (2017) and Hansen and Day (2011), we choose T
as the disease extinction time. Formally, let ε be a positive constant such that ε < 1,
then

T = inf {t ∈ R+|Yn(t) = ε} , (4)

which implies that the optimal control problem will have free final time. To make the
definition (4) meaningful, we choose the initial number of infected units Yn(0) = I (0)
strictly greater than ε. As a consequence, T is the first time atwhich the state variableYn
drops to ε. Using this approach, we also avoid the undesirable possibility of subsequent
peaks of infection caused by a fractional number of infected units (Hansen and Day
2011). From a biological point of view, by setting ε < 1 as the condition to identify
the extinction time means assuming the infection goes extinct when there is less than
one infected unit in the host population.

To model equations (2), we associate the following epidemiologically well-posed
initial conditions:

S(0) = S0 > 0, Yk(0) = Yk,0 ≥ 0, k = 1, . . . , n − 1, Yn(0) = Yn,0 > ε. (5)

Note that, by simply looking at the first and the last equation in (2), one gets that the
set

D =
{
x ∈ R

n+1+ | S ≤ S0, S + Yn ≤ S0 + Yn,0

}
(6)

is positively invariant, i.e. solutions of (2) starting in D remain in D for all t ≥ 0.
Therefore, it is not restrictive to limit our analyses to region D.

3 The optimal control problem

This section is devoted to the formalization of our control problem. Specifically, we
set an optimal control problem involving two different and coexisting goals, namely
minimization of:

• costs due to the isolation efforts per time unit:

∫ T

0
A0u(t)dt;
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• costs due to the number of individuals or farms that have been infected during the
whole outbreak: ∫ T

0
A1βSYndt;

where A0, A1 ∈ R+ are the balancing weight factors, representing the costs per time
unit of isolation efforts and the costs of a single new infection, respectively. Of course,
A1 must be strictly positive for the problem being meaningful (otherwise, we are
searching for the control that minimizes its own cost). Hence, it is not restrictive to
set A = A0/A1 ≥ 0, with A representing the relative cost per time unit of isolation
efforts over the cost of a single new infection.

By setting the costs of isolation per time unit as A0u(t), we are assuming that
the control costs are proportional to control effort instead of to the overall control
activities, which are represented by u(t)Yn . This assumption fits the scenarios in which
the procedures of isolation are forerun by surveillance and testing activities aimed at
detecting the target populations, as in the cases of test-and-isolate and test-and-cull
control strategies (Bolzoni et al. 2019).

In sum, we are considering the following optimal control (OC) problem, aiming at
minimizing simultaneously control efforts and epidemic size:

(OC) Find an optimal control function u∗(t) that minimizes the objective functional

J =
∫ T

0
(Au(t) + βSYn)dt, (7)

with T given by (4), on the admissible set

� =
{
u(·) ∈ L1 (0, T ) | u(t) ∈ U = [0, umax ]

}
, (8)

subject to (2) with initial conditions (5).

The existence of the solution for the OC problem is guaranteed since the requirements
of classical existence theorems are satisfied.More precisely,we refer to the formulation
of Filippov theorem and its corresponding corollary given by Agrachev and Sachkov
(2004) for proving the following theorem.

Theorem 1 There exists an optimal control solution u∗(t) to the OC problem.

Proof We list the requirements of the corollary of Filippov existence theorem in
Agrachev and Sachkov (2004):

1. the control set U = [0, umax ] is compact;
2. the sets AU (x) = {f(x) + u(t)g(x)| u(t) ∈ U }, x ∈ D (with D as in (6)), are

convex;
3. there exists a constant C such that:

|f(x) + u(t)g(x)| ≤ C(1 + |x|),

with x ∈ D and u(t) ∈ U .
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Condition 1 is trivial. Since x ∈ D and u(t) ∈ U , the state and the control variables
are a priori bounded and also Condition 3 is verified.

To check that Condition 2 holds, firstly we take x ∈ D and prove that the line
connecting two points of AU (x) entirely lies in AU (x).

Let us take y1, y2 ∈ AU (x), then there exist u1(t), u2(t) ∈ U such that
y j = f(x) + u j (t)g(x), j = 1, 2. One easily gets:

α y1 + (1 − α) y2 = f(x) + (αu1(t) + (1 − α) u2(t)) g(x).

Since U is convex, αu1(t) + (1 − α) u2(t) ∈ U , ∀α ∈ [0, 1], and then

α y1 + (1 − α) y2 ∈ AU (x), ∀α ∈ [0, 1] .

	
As regards the characterization of the optimal control, according to Pontryagin’s min-
imum principle (Chachuat 2007; Pontryagin et al. 1962; Schmitendorf 1976), the
problem of finding the time-dependent control variable u∗(t) that minimizes the objec-
tive functional (7) is equivalent to the problem of minimizing the Hamiltonian:

H(x, u(t),λ) = Au(t) + βSYn + λT (f(x) + u(t)g(x)) , (9)

given by the sum of the integrand of (7) and the scalar product of λ and the right-hand
side of the state system (2). Here λ = (

λS, λY1 , . . . , λYn
)T denotes as usual the adjoint

variables vector at time t , which is the solution of the adjoint system

λ̇ = −∂H(x∗, u∗(t),λ)

∂x
, (10)

with the transversality conditions

λS (T ) = 0, λYk (T ) = 0, k = 1, . . . , n − 1, λYn (T ) free. (11)

The notation with superscript * is used to denote the solution to the state system (2)
corresponding to the optimal control u∗(t). The above transversality conditions are
consequence of the equality terminal constraint on the state variable Yn given by (4).
For analytical details see Chachuat (2007), Pontryagin et al. (1962) and Schmitendorf
(1976).

Further, H is constantly equal to zero along the optimal solution:

H(x∗, u∗(t),λ) ≡ 0.

In sum, the optimal control u∗(t) that solves the control problem is the time-dependent
function that minimizes the Hamiltonian (9) on the admissible set (8):

H(x∗, u∗(t),λ) = min
u(·)∈�

H(x∗, u(t),λ),
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where (x∗, u∗(t),λ) must satisfy

ẋ = f(x) + u(t)g(x),

x(0) = (
S0,Y1,0, . . . ,Yn,0

)T
, Yn(T ) = ε,

λ̇ = −∂H(x, u(t),λ)

∂x
,

λS (T ) = λY1(T ) = · · · = λYn−1(T ) = 0,

0 = H(x, u(t),λ),

and the control horizon T is defined by (4).
Since H is linear respect to u(t), the value of u∗(t) is determined by the sign of the

so-called switching function:

ψ(x,λ) = ∂H

∂u
= A + λT g(x).

In particular,

u∗(t) =

⎧
⎪⎨

⎪⎩

0 if ψ(x∗,λ) > 0

us(t) if ψ(x∗,λ) = 0

umax if ψ(x∗,λ) < 0

(12)

with us(t) ∈ U .
If ψ(x∗,λ) vanishes on a set of isolated points, the corresponding control function

is a bang–bang control, as well known, and its value at these points is not defined.
However, for convenience of numerical simulations, we set it equal to umax . The
isolated time instants, internal to [0, T ], in which ψ vanishes are called switching
times.

Unless otherwise specified, we restrict the use of the superscript * only to the
optimal control function u∗(t), in order to simplify the notation.

4 Admissible optimal solutions

The main result is that the admissible optimal controls for the OC problem under
investigation are bang–bang with at most two switching times.

Theorem 2 The optimal solution u∗(t) to the OC problem is a bang–bang control.
When u∗(t) �≡ 0, it is of the form

u∗(t) =

⎧
⎪⎨

⎪⎩

0 t ∈ [0, τ1)
umax t ∈ [τ1, τ2]
0 t ∈ (τ2, T ]

(13)

with τ1, τ2 ∈ [0, T ], and τ1 ≤ τ2.
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Proof Throughout the proof we omit the superscript * for the optimal quantities, in
order to simplify the notation.

First we compute the Hamiltonian (9) along the optimal solution:

H = Au(t) + βSYn

(
1 − λS +

n∑

k=1

λYk

)
− (u(t) + μ)

n∑

k=1

λYk Yk + μ

n−1∑

k=1

λYk+1Yk

= Au(t) −
n∑

k=1

λ̇Yk Yk ≡ 0, (14)

and explicitly write the adjoint system (10):

λ̇S = −βYn

(
1 − λS +

n∑

k=1

λYk

)
,

λ̇Yk = (u(t) + μ)λYk − μλYk+1, k = 1, . . . , n − 1

λ̇Yn = −βS

(
1 − λS +

n∑

k=1

λYk

)
+ (u(t) + μ)λYn .

(15)

The switching function with its first and second time derivatives read, respectively:

ψ = A −
n∑

k=1

λYk Yk, (16)

ψ̇ = βSYn (1 − λS) ,

ψ̈ = βSẎn (1 − λS) + β2SY 2
n

n∑

k=1

λYk . (17)

Let us prove that ψ can vanish only in isolated points. By contradiction, suppose that
ψ vanishes on some interval I. Then, also all its time derivatives vanish there; in
particular, ψ = ψ̇ = ψ̈ = 0 on I yields:

n∑

k=1

λYk Yk

∣∣∣∣∣
I

= A, (18)

λS|I = 1, (19)
n∑

k=1

λYk

∣∣∣∣∣
I

= 0, (20)

implying
n∑

k=1

λ̇Yk

∣∣∣∣∣
I

= 0. (21)
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By explicitly writing the addenda of (21), one obtains
∑n

k=2 λYk = 0 on I, that, along
with (20), gives λY1 = 0 on I. Then, also λ̇Y1 = 0 on I and, by proceeding in series,
we have

λYk

∣∣I = 0, ∀k = 1, . . . , n (22)

(see the corresponding adjoint equations in (15)). Two cases must be considered:

• A > 0. Then, equalities (22) are in contrast with (18).
• A = 0. From (18)–(22) it follows that, once ψ vanishes, it must remain null,
namely T ∈ I. However, the equality (19) is in contrast with the transversality
condition λS(T ) = 0.

In both cases a contradiction arises. As a consequence, ψ can vanish only in isolated
points, namely u(t) is a bang–bang control: it can assume only the extreme values
u(t) = 0 and u(t) = umax .

Let us now prove that u(t) changes its value at most two times and, in such a case,
the two switches are from u(t) = 0 to u(t) = umax and again back to u(t) = 0.

As first step, we consider the value assumed by the quantities involved in the OC
problem at the extinction time T . Taking into account the transversality conditions
(11), we have H(T ) = Au(T ) + βS(T )Yn(T ) + λYn (T )Ẏn(T ) = 0. Since it is
Ẏn(T ) < 0 by the definition of T , it follows that

λYn (T ) > 0. (23)

From the adjoint equations (15), one yields

λ̇S(T ) < 0, (24)

λ̇Yk (T ) = 0, k = 1, . . . , n − 2, (25)

λ̇Yn−1(T ) < 0. (26)

Substituting (25) into the formula of the Hamiltonian (14) provides
λ̇Yn−1(T )Yn−1(T )+ λ̇Yn (T )Yn(T ) = Au(T ) ≥ 0, which, in turn, implies λ̇Yn (T ) > 0.

Let us also verify that λYk (T
−) > 0 > λ̇Yk (T

−), k = 1, . . . , n−2. Take k = n−2
and assume, by contradiction, that λYn−2(T

−) < 0 < λ̇Yn−2(T
−). By handling the

corresponding adjoint equation (see (15)), one yields

μλYn−1(T
−) = (u(T−) + μ)λYn−2(T

−) − λ̇Yn−2(T
−) < 0,

that is not possible because λYn−1(T ) = 0 and λ̇Yn−1(T ) < 0. Thus, a contradiction
arises and it must be λYn−2(T

−) > 0 > λ̇Yn−2(T
−). By applying the same argument,

one can proceed in series for 1 ≤ k < n − 2.
As a further step, we show that λYk ≥ 0 in [0, T ], ∀k = 1, . . . , n. To this end, let

us define t̄ = inf A, with

A = {t ∈ [0, T ] : λYk ≥ 0 in [t, T ], ∀k = 1, . . . , n}
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and prove that t̄ = 0. From the above considerations it follows that T ∈ A �= ∅ and
t̄ < T . By contradiction suppose t̄ > 0, namely there exists k̄ ∈ {1, . . . , n} such that
λYk̄ (t̄) = 0 < λ̇Yk̄ (t̄). Two cases must be considered:

• k̄ < n. Then, λYk̄+1
(t̄) = −λ̇Yk̄ (t̄)/μ < 0 (see (15)), which is in contrast with

the definition of t̄ .
• k̄ = n. Then, sgn(λ̇S(t̄)) = sgn(λ̇Yn (t̄)) > 0. Since λ̇S(T ) < 0 as given in (24),
there exists t̂ ∈ A, t̄ < t̂ < T , such that

λ̇S(t̂) = 0. (27)

By substituting (27) into the expression of H and rearranging, we obtain

H(t̂) = u(t̂)ψ(t̂) − μ

n−1∑

k=1

λYk+1(t̂)(Yk+1(t̂) − Yk(t̂)) − μλ1(t̂)Y1(t̂) < 0,

which is contrast with the identity H ≡ 0.

In both cases a contradiction arises. As a consequence, t̄ = 0, namely

λYk ≥ 0 in [0, T ], ∀k = 1, . . . , n. (28)

Note that we have also proved that

λ̇S < 0 in [0, T ]. (29)

As last step, let us assume, by contradiction, that u(t) admits two consecutive switches,
being the first one from umax to 0 and vice versa the second one. Let τs1, τs2 ∈ (0, T ),
with τs1 < τs2, be the corresponding switching times, respectively, from u(t) =
umax to u(t) = 0 and from u(t) = 0 to u(t) = umax . From (12) it follows that
ψ̇(τs1) > 0 > ψ̇(τs2). Since ψ̇(T ) > 0 (see (11)–(17)), ψ̇ vanishes at least two times
in (0, T ), say them tM ∈ (τs1, τs2) and tm ∈ (τs2, T ), that are, respectively, relative
maximum andminimum points forψ . From (17) it follows that λS(tM ) = 1 = λS(tm),
which, however, contradicts the condition (29).As a consequence, the presence of three
or more switching times is definitively excluded. Also, if u(t) changes its value two
times, it is necessarily from 0 to umax and again back to 0. This concludes the proof.

	

In Theorem 2, the time instants τ1 ∈ [0, T ] and τ2 ∈ [τ1, T ] are introduced to

extend the concept of switching time. Specifically, τ1 [resp. τ2] is the starting [resp.
ending] intervention time, i.e. the first [resp. last] time instant at which the control u∗(t)
assumes the value umax . The knowledge of such time instants allows to immediately
obtain the control time-profile. Indeed, except for the case u∗(t) ≡ 0 when the best
strategy is to ‘do nothing’, from Theorem 2 it follows that the following four possible
control profiles are allowed:

(i) τ1 = 0 and τ2 = T , i.e. u∗(t) ≡ umax ,

123



   36 Page 12 of 21 L. Bolzoni et al.

(ii) τ1 > 0 and τ2 = T , i.e. τ1 is the only switching time and u∗(t) changes its value
from 0 to umax (say, delayed control),

(iii) τ1 = 0 and τ2 < T , i.e. τ2 is the only switching time and u∗(t) changes its value
from umax to 0 (say, reactive control),

(iv) τ1, τ2 ∈ (0, T ) are two switching times and u∗(t) changes its value from 0 to umax

and again back to 0.

We also prove that the control profile (i) is the only admissible if onewants tominimize
just the epidemic size and not also the isolation efforts, namely A = 0 in the objective
functional (7).

Corollary 3 If A = 0 in the objective functional (7), then the optimal solution u∗(t) to
the OC problem is constantly equal to umax .

Proof Let us resume the proof of Theorem 2 and consider the case A = 0. Then, the
switching function reads

ψ = −
n∑

k=1

λYk Yk .

At the extinction time T , ψ(T ) = −λYn (T )Yn(T ) < 0 (see (11)–(23)). From (12), it
follows that u(T ) = umax .

By contradiction, let τs be a switching time for u(t) from u(t) = 0 to u(t) = umax .
By definition, ψ(τs) = −∑n

k=1 λYk (τs)Yk(τs) = 0, implying that there exist at least
two indexes k1, k2 ∈ {1, . . . , n} such that λYk1

(τs) < 0 < λYk2
(τs). However, this

in contrast with the sign of the adjoint variables (28). As a consequence, it must be
u(t) ≡ umax , which is the assert. 	


5 Numerical results

As far as the numerical simulations are concerned, the shape of admissible optimal
controls allows us to adopt a simple ad hoc numerical scheme, which generalizes those
implemented by Bolzoni et al. (2017, 2019). Such a scheme is based on the idea of
identifying each bang–bang solution u∗(t) with two real parameters: the starting and
ending intervention times. Therefore, the functional J (u) to be minimized can be seen
as the function that links the pair of characteristic intervention times to the objective
integral (7) of the OC problem:

J : (τ1, τ2) → Aumax (τ2 − τ1) +
∫ T

0
βSYndt .

An optimal control u∗(t) will be identified by the pair (τ1, τ2) such that
(τ1, τ2)=argminJ . The numerical solution will be computed by evaluating the func-
tion J (τ1, τ2) over a suitable interval and looking for its minimum value. Of course,
if the minimum value of J is greater than the corresponding value in absence of con-
trol (i.e.

∫ T
0 βSYndt as predicted by system (2) with u(t) ≡ 0), then the method
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selects for u∗(t) ≡ 0 as the optimal isolation policy. For the numerical integrations
of the Cauchy problem (2)–(5) the fourth-order Runge–Kutta scheme with uniform
time steps is used. For a detailed discussion of the implemented numerical method see
Bolzoni et al. (2017).

5.1 Parametrization

Under the assumption of different shapes in the distribution of the infectious period
in model (2), we numerically investigate the optimal isolation strategies focusing on
highly contagious livestock diseases, such as foot and mouth disease (FMD) and
highly-pathogenic avian influenza (HPAI). However, thanks to the generality of the
proposed framework, the obtained results can be qualitatively applied to different con-
texts, like that of non-pharmaceutical interventions (such as self-isolation) in human
epidemics. As in Bolzoni et al. (2019), we assume the farm as the unit of observation,
since the control measures in livestock diseases are generally implemented at farm
level (Probert et al. 2016). Moreover, our choice to work at farm level is strengthen
by the finding obtained by Ferguson et al. (2001), who estimated that the infectious
period of a farm infected by FMD can be described through an Erlang distribution
with n � 1.

The initial conditions for model (2) variables are set to a single infected unit
(Yk,0 = 1, ∀k = 1, . . . , n) in a totally susceptible population (S0 = 2000). By setting
Yk,0 = 1, ∀k = 1, . . . , n, we assume that the infection is introduced in the population
through a newly infected farm, i.e. I1,0 = 1 and Ik,0 = 0, k = 2, . . . , n. While this
assumption seems obvious when the epidemiological units are represented by farms,
other assumptions on the initial conditions can be reasonable when the epidemiolog-
ical units are represented by individuals (e.g. in human diseases). Thus, we also test
the effects on the optimal control of different assumptions on the initial conditions.
Specifically, we derive the optimal solutions by varying the stage of infection of the
first infected unit (say, k0), which corresponds to assume Yk,0 = 0, 1 ≤ k < k0 and
Yk,0 = 1, k0 ≤ k ≤ n.

We set the infectious period, corresponding to the average time a unit stays infected
before recovering, to 1/5months. Thus, the recovery rate (γ = μ/n) inmodel (2) is set
to γ = 5 month−1. The chosen value of infectious period falls into the range of those
obtained both for FMD and HPAI (Boender et al. 2007; Bouma et al. 2003; Haydon
et al. 1997; Rossi et al. 2017; Sharkey et al. 2008). We set the basic reproduction
number (R0), which represents the average number of secondary infections produced
by a single infected in a completely susceptible population (Hethcote 2000), toR0 = 4
(Bouma et al. 2003; Haydon et al. 1997; Sharkey et al. 2008; Stegeman et al. 2004).
Since R0 in model (2) can be written as R0 = βS0/γ (Hethcote 2000), we set
β = 0.01 farm−1 month−1. As in Bolzoni et al. (2019), we set the maximum isolation
effort to umax = 1 month−1 and ε = 0.5. Hansen and Day (2011) pointed out that
any value of ε smaller than one fits the purpose of the analysis, while Bolzoni et al.
(2019) showed in a similar framework that the shape of the optimal control does not
significantly depend on the chosen value of ε.
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(a) (b)

Fig. 1 Numerical simulations of model (2) with no control (u(t) ≡ 0). a Infected units in the first k stages
of infection Yk , k = 1, . . . , n, by assuming n = 1 (black solid line) and n = 10 (gray solid lines); dash–
dotted vertical lines denote the corresponding extinction time T . b Extinction time T and time of peak tp
(Yn(tp) = max(Yn)) as functions of n ∈ {1, . . . , 20}. In box: maximum number of infected units, max(Yn),
as functions of n ∈ {1, . . . , 20}. Parameters Yk,0 = 1, ∀k = 1, . . . , n; unspecified parameters as in Sect. 5.1

In our simulations, we also test the sensitivity of the optimal control solutions to
different combinations of the number of stages of infection n and the control parameter
A (which represents the ratio between the costs per time unit of the isolation effort
and the costs of a single new infection).

5.2 Simulations

Hethcote and Tudor (1980) observed that changing the distribution of the infectious
period does not lead to significant differences in the asymptotic behavior of SIR-like
epidemic models. However, it can crucially affect the quantitative predictions of the
epidemic model on disease burden, epidemic duration, and effectiveness of disease
control strategies, as shown by Wearing et al. (2005).

In Fig. 1, we display the numerical simulations of model (2) infected dynamics in
the absence of control (i.e. u(t) ≡ 0). Figure 1a shows the dynamics of the infected
state variables Yk , k = 1, . . . , n, as a function of time (t), for n = 1 (black curve)
and n = 10 (gray curves). (Thick curves represent the total number of infected, Yn .)
In Fig. 1b, we display the values of the extinction time (T ), the time at which the
epidemic peak occurs (tp = argmax(Yn)), and the total number of infected at the peak
(max(Yn), see the box) obtained in the simulations as functions of the number of stages
of infection n. Similarly to previous results obtained with SIR-like epidemic models
(Wearing et al. 2005), our numerical analyses on model (2) in the absence of control
confirm that the shape of the infectious period distribution quantitatively affects the
model predictions. Specifically, an Erlang-distributed model (n > 1) predicts a faster
initial increase of the infected curve, a larger peak of infection, and a faster extinction
time with respect to the exponential-distributed one (n = 1). From n = 1 to n = 20,
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(a) (b)

(c) (d)

Fig. 2 Numerical simulations ofOCproblem. Infected units in the first k stages of infectionYk , k = 1, . . . , n
(gray solid lines), and optimal control function u∗(t) (black solid lines), by assuming n = 1 (a), n = 5 (b),
n = 10 (c), n = 20 (d). Dash–dotted vertical lines denote the corresponding extinction time T . Parameters
A = 0.1, Yk,0 = 1, ∀k = 1, . . . , n; unspecified parameters as in Sect. 5.1

(a) (b)

(c) (d)

Fig. 3 Numerical simulations ofOCproblem. Infected units in the first k stages of infectionYk , k = 1, . . . , n
(gray solid lines), and optimal control function u∗(t) (black solid line), by assuming n = 1 (a), n = 5 (b),
n = 10 (c), n = 20 (d). Dash–dotted vertical lines denote the corresponding extinction time T . Parameters
A = 10, Yk,0 = 1, ∀k = 1, . . . , n; unspecified parameters as in Sect. 5.1

123



   36 Page 16 of 21 L. Bolzoni et al.

the peak of infection increases by about 74% (808 vs. 1407 infected units), while the
disease extinction time decreases by about 54% (2.321 vs. 1.066 months).

In Fig. 2 (resp. Fig. 3), we show the numerical solutions of the OC problem for four
values of the number of stages of infection: n ∈ {1, 5, 10, 20}, by setting the relative
cost in the objective functional (7) equal to A = 0.1 [resp. A = 10]. Gray curves rep-
resent the temporal dynamics of the infected state variables Yk , k = 1, . . . , n, black
curves those of the optimal isolation strategies u∗(t). Figures 2 and 3 show that, analo-
gously to that observed in the uncontrolled model, different assumptions on the shape
of the infectious period distribution quantitatively affect the optimal control solutions.
Specifically, OCmodels assuming exponentially distributed infectious periods tend to
overestimate the costs associated to control (we estimate an increase of about 50% in
the case of n = 1 with respect to n = 10, see Figs. 2, 3).

In addition to the quantitative differences described above, our numerical analyses
show that different assumptions on the distribution of the infectious period can affect
qualitatively the solutions of the OC problem. In Fig. 4, we display the values of the
starting (τ1) and ending (τ2) intervention times and the extinction time (T ) for the
optimal solutions as functions of the relative cost A, by setting n = 1 (black curves)
and n = 10 (gray curves). From Fig. 4, we notice that for a wide range of A values
(approximately from A = 2 · 10−2 to A = 10−1) the optimal control problem selects
for a constant control u∗(t) ≡ umax (i.e. τ1 = 0 and τ2 = T ) when n = 1, while the
optimal control admits a one-switch reactive solution (i.e. τ1 = 0 and τ2 < T ) when
n = 10. Furthermore, for more limited ranges of A, we show that the optimal control
problem can: (i) admit a one-switch solution when n = 1, while it admits a two-
switches solution when n = 10 (see A ≈ 10−1 in Fig. 4); (ii) admit a two-switches
solution when n = 1, while it selects for u∗(t) ≡ 0 when n = 10 (see the black and
gray dash-dotted lines in Fig. 4). Interestingly, for both n = 1 and n = 10, the starting
and ending intervention times are monotone (increasing and decreasing, respectively)
functions of A, while the disease extinction time T is increasing for a wide range of
A and then starts to decrease when A approaching the value above which u∗(t) ≡ 0.

Finally, we also consider variations with respect to the initial conditions of the
OC problem. Specifically, we set the relative cost A = 10, the number of stages of
infection n = 10, and vary the stage entered by the first infected unit (k0). Namely,
Yk,0 = 0, 1 ≤ k < k0, Yk,0 = 1, k0 ≤ k ≤ n. The values of the starting (τ1) and
ending (τ2) intervention times and the extinction time (T ) for the optimal solutions
are displayed in Fig. 5. We notice that different assumptions on the initial class k0 of
the first infected do not substantially change the shape of the optimal solution. Both
the intervention times and the extinction time slightly increase with k0: from k0 = 1
to k0 = 10 the growth is approximately 0.065 months.

6 Discussion and conclusion

In this work, we investigate optimal isolation strategies in an SIR model with Erlang
distribution of the infectious period. We adopt the method of stages (Cox and Miller
1965), by splitting the infected compartment in n fictitious stages in series (n ∈ N+);
infected units at any stage are isolated with time-variant bounded rate u(t) (here, units
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Fig. 4 Numerical simulations of OC problem. Starting intervention time τ1, ending intervention time τ2 and
extinction time T as functions of A in semi-logarithmic scale. Black solid lines: simulations by assuming
n = 1. Gray solid lines: simulations by assuming n = 10. Dotted vertical lines denote the A values for which
u∗(t) passes from a two-switches control to u∗(t) ≡ 0. Parameters Yk,0 = 1, ∀k = 1, . . . , n; unspecified
parameters as in Sect. 5.1

Fig. 5 Numerical simulations of OC problem. Starting intervention time τ1, ending intervention time τ2
and extinction time T as functions of k0, the stage entered by the first infected unit, with k0 ∈ {1, . . . , 10}.
Parameters n = 10, A = 10, Yk,0 = 0, 1 ≤ k < k0, Yk,0 = 1, k0 ≤ k ≤ n; unspecified parameters as in
Sect. 5.1

represent individuals or farms). The aim of the optimal control (OC) problem is to
jointly minimize the costs associated to the control efforts and the epidemic size.

By characterizing optimal control shapes according to Pontryagin’s minimum prin-
ciple (Pontryagin et al. 1962), we prove that, for both n = 1 (exponential distribution
of the infectious period) and n > 1 (non-exponential distribution of the infectious
period), the OC problem admits only bang–bang solutions with at most two switches.
When the optimal control u∗(t) is constant for the whole time horizon [0, T ], it can be
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either null or equal to its maximum value umax . When only one switch is admitted, the
OC problem can select for both reactive isolation (characterized by u∗(0) = umax and
u∗(T ) = 0) and delayed isolation (characterized by u∗(0) = 0 and u∗(T ) = umax ).
When the optimal solution admits two switches, then the OC problem selects for con-
trols where isolation is implemented within a temporal window between times τ1 and
τ2 (with τ1 < τ2 and τ1, τ2 ∈ (0, T )).

Numerical analyses show that increasing in the number of stages of infection n
is positively associated to faster, but with higher peaks, epidemic outbreaks both in
absence and in presence of control.When optimal isolation strategies are implemented,
even if, a priori, the spectrum of admissible control profiles is the same for any n,
the optimal solutions vary both quantitatively and qualitatively. Specifically, the OC
problem in the case n = 1 can select for solutions with a different number of switches
(if any) with respect to the case n > 1. In addition, we observe that the control costs
associated to the epidemic significantly decrease with n, as a consequence of the
reduced epidemic lengths.

We also test the sensitivity of the optimal control solutions to the weight parameter
A in the objective functional, that is the ratio between the costs per time unit of the
isolation effort and the costs of a single new infection. From numerical simulations
(see Fig. 4), we observe that, by increasing A, u∗(t) passes from a control constantly
equal to umax (that is the unique admissible solution in the special case A = 0, see
Corollary 3), to a reactive control up to a two-switches control. Lastly, when A is
sufficiently large, the best strategy is to ‘do nothing’ (i.e. u∗(t) ≡ 0). While it seems
unrealistic to expect that stakeholders and policy-makers can express their preferences
on specific values of parameter A, the outputs of the optimization problem can identify
the parameter regions where the benefits of a control campaign outweigh the costs and
those where the costs outweigh the benefits, thus helping stakeholders and policy-
makers in their evaluations.

To the best of our knowledge, our work is the first attempt to use an SIRmodel with
non-exponential distribution of the infectious period in an optimal control framework.
As is widely known, for many infectious diseases the infectious period distributions
are not exponential. Hence, models with exponential distributions may lead to biased
outcomes in both the understanding of behaviors of disease dynamics and the eval-
uations of disease control programs. The Erlang distribution proved to be a valuable
compromise between realism and analytical tractability, and was largely used to esti-
mate infectious period distributions by fitting with empirical data (see, just to mention
few papers, Eichner and Dietz 2003; Ferguson et al. 2001; Wearing et al. 2005).

This work serves as a proof-of-principle verification of the impact on optimal isola-
tion strategies of different assumptions about the distribution of the infectious period.
Our analytical and numerical results stress the conclusion that simple epidemic mod-
els, such as the ones assuming exponential distribution on the infectious period or
homogeneous mixing in the host population, can not provide reliable solutions to
real-world cases of disease control from the quantitative point of view. However, the
theoretical findings provided by thesemodels can be used to informmore complex sim-
ulation models developed for specific epidemiological scenarios where more realistic
descriptions of the biological, ecological and epidemiological processes are included.
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We investigate the specific control problem where the costs of control are pro-
portional to isolation efforts instead of to the overall number of units isolated. This
assumption fits the scenarios where the costs linked to the activities of surveillance
and testing aimed at detecting the units to isolate (which depend on the effort and not
on the target population) are larger than the costs of isolating the infected units. We
find that the optimal solutions obtained under this assumption substantially differ from
those obtained for optimal control problems where the control costs are proportional
to the number of infected units (Morton and Wickwire 1974; Wickwire 1975).

Roughly speaking, there are two alternative formulations for the cost of the control
campaign in the objective functional: (i) control costs proportional to the overall control
activities, that is the control rate multiplied by the units to whom it is addressed (e.g.,
in our notations, u(t)S in case of vaccination, u(t)I in case of isolation or treatment,
see e.g. Behncke 2000; Morton and Wickwire 1974; Wickwire 1975); (ii) control
costs proportional to control efforts (that is the control rate u(t) as considered here,
see e.g. Behncke 2000; Bolzoni et al. 2014; Zhou et al. 2014). The assumption (i)
was largely adopted in OC applications to the SIR model under different control
strategies. In such a case, the problems only support the trivial solutions of applying
the maximal effort for the entire epidemic (u∗(t) ≡ umax ) (Wickwire 1975) or having
at most one switch from u∗(t) = umax to u∗(t) = 0 (reactive control) (Behncke
2000; Morton and Wickwire 1974). These are also the only admissible solutions for
optimal vaccination policies when the assumption (ii) is adopted (Zhou et al. 2014).
Conversely, we prove here that optimal isolation policies under the assumption (ii)
are not necessarily active since the initial time of the epidemic. Namely, the optimal
starting intervention time could be postponed, which yields delayed controls or even
two-switches controls (depending on if the ending intervention time coincides or not
with the disease extinction time).

The biological explanation for the optimality of delayed [resp. two-switches] con-
trol when the costs are proportional to the control efforts relies on the remark that,
when the maximum effort admissible (i.e. umax ) is not large enough to significantly
flatten the epidemic curve, employing resources to find infected units at the begin-
ning [resp. the beginning and the end] of the epidemic may not be efficient, since
several susceptible units would be screened/tested in the face of few infected ones.
The described scenario is similar to the case where the disease control is applied only
when the number of infected (or new infections) exceeds a given threshold, which can
be mathematically investigated through sliding models (Bolzoni et al. 2020; Qin et al.
2016).
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