
ORIGINAL RESEARCH
published: 10 February 2022

doi: 10.3389/fmed.2022.840319

Frontiers in Medicine | www.frontiersin.org 1 February 2022 | Volume 9 | Article 840319

Edited by:

Kuanquan Wang,

Harbin Institute of Technology, China

Reviewed by:

Yuyao Zhang,

ShanghaiTech University, China

Li Wang,

University of North Carolina at

Chapel Hill, United States

*Correspondence:

Qianli Ma

mars_qlma@163.com

Donglin Di

donglin.ddl@gmail.com

Specialty section:

This article was submitted to

Precision Medicine,

a section of the journal

Frontiers in Medicine

Received: 21 December 2021

Accepted: 17 January 2022

Published: 10 February 2022

Citation:

Ma Q, Yan J, Zhang J, Yu Q, Zhao Y,

Liang C and Di D (2022)

Cost-Sensitive Uncertainty

Hypergraph Learning for Identification

of Lymph Node Involvement With CT

Imaging. Front. Med. 9:840319.

doi: 10.3389/fmed.2022.840319

Cost-Sensitive Uncertainty
Hypergraph Learning for
Identification of Lymph Node
Involvement With CT Imaging

Qianli Ma 1*, Jielong Yan 2, Jun Zhang 3, Qiduo Yu 1, Yue Zhao 1, Chaoyang Liang 1 and

Donglin Di 2*

1Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China, 2 The School of Software, Tsinghua

University, Beijing, China, 3 Tencent AI Lab, Shenzhen, China

Lung adenocarcinoma (LUAD) is the most common type of lung cancer. Accurate

identification of lymph node (LN) involvement in patients with LUAD is crucial for

prognosis and making decisions of the treatment strategy. CT imaging has been

used as a tool to identify lymph node involvement. To tackle the shortage of high-

quality data and improve the sensitivity of diagnosis, we propose a Cost-Sensitive

Uncertainty Hypergraph Learning (CSUHL) model to identify the lymph node based

on the CT images. We design a step named “Multi-Uncertainty Measurement” to

measure the epistemic and the aleatoric uncertainty, respectively. Given the two types of

attentional uncertainty weights, we further propose a cost-sensitive hypergraph learning

to boost the sensitivity of diagnosing, targeting task-driven optimization of the clinical

scenarios. Extensive qualitative and quantitative experiments on the real clinical dataset

demonstrate our method is capable of accurately identifying the lymph node and

outperforming state-of-the-art methods across the board.

Keywords: lymph node involvement, CT imaging, hypergraph learning, cost-sensitive, lung cancer

1. INTRODUCTION

Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer death
worldwide (1, 2). About 2.1 million new lung cancer cases and 1.8 million deaths were predicted
in 2018 (3). In 2020, these two numbers rise to 2.2 million and 1.8 million, respectively, (2).
Lung adenocarcinoma (LUAD) is the most common type of lung cancer (4–6). The presence of
metastasis in the lymph nodes (7) is an important prognostic factor in lung cancer. Accurate
identification of lymph node (LN) involvement in patients with LUAD, as shown in Figure 1, is
crucial for prognosis and treatment strategy decisions (8, 9). Patients without metastatic lymph
nodes, or with only intrapulmonary or hilar lymph nodes, are generally considered candidates for
straightforward resection. Although the sub-types of LUAD are found related to the predictors
of LN metastasis, they are available postoperatively (10). Information of the preoperative LN
metastasis is valuable for the adequacy of surgical resection and the decision of the adjuvant
therapy (11). The accurate prediction of pathologic stage for patients with lung cancer is of
utmost importance. Pathologic tumor stage is considered a pivotal factor relating to survival in
NSCLC, and the 5-year survival rates vary from 83% in pathological stage IA to 23% in stage IIIA
tumors (12). Computed tomography (CT) is commonly used for the evaluation of pulmonary
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FIGURE 1 | It is difficult for humans to identify the difference between the LUAD with LN metastasis cases as well as the LUAD without metastasis cases based on

the general visualized CT images, as shown in the examples for comparison.

nodules (13, 14). Many studies were designed to determine
whether pulmonary nodules are benign or malignant. Zhong
et al. (15) propose to use relief-based feature method and
support vector machine to evaluate the impact of radiomics
features in predicting the prognosis of occult mediastinal lymph
node metastasis in lung adenocarcinoma. Dai et al. (16) find
that lymph node micrometastases are more frequently seen in
adenocarcinomas with a micropapillary component, which could
give suggestive prognostic information to patients with stage I
resected lung adenocarcinoma with a micropapillary component.
CT has been widely used as a noninvasive diagnostic modality
for diagnosis, clinical staging, survival prediction, surveillance of
therapeutic response in lung cancer patients (17, 18). However,
few studies have used chest CT to explore whether lymph node
metastasis in LUAD (19). Therefore, in order to make a better
decision on the prognosis and treatment strategies of lung cancer,
as well as more fully grasp the information of lymph nodes, in this
work, we utilize CT to predict whether LUAD has lymph node
metastasis.

There are two main challenges of identifying the lymph node
with CT imaging, listed below, that motivate our approach.

1. Noisy data, due to the collection of clinical CT images using
different reconstruction kernels and CT manufacturers, along
with possible patient movements;

2. The reliable sensitivity of diagnosis is relatively more
important and meaningful than other criteria in the clinical
scenario.

For the first challenge, a few current research works are proposed
to tackle the issue of clinical data quality, mainly focusing on
noise and artifact reduction, super resolution and other aspects
(20). Zhang and Yu (21) propose to train their convolutional
neural network using virtual metal-inserted CT images, targeting
on the noise of metal artifacts. Tan et al. (22) further utilizes the
SRGAN neural network to reconstruct super resolution images
from the original chest CT images to improve the resolution and
ultimately improve the classification results of COVID-19. Due
to the scale of available data in this task being limited, we adopt
the two uncertainty measurements (23) to improve the quality
of pathological representations, i.e., epistemic and the aleatoric
uncertainty, respectively, generated by the “Classifier Measuring”
and “Statistical Measuring.” In this manner, our model is
capable of allocating the different attentional weights combined
with the two uncertainty measurements. Due to ignoring the
underlying correlation between samples, some machine learning
methods such as Random forest, Boosting, or CNN are lacking
in effect, but graph learning and further hypergraph learning
methods can make up for this deficiency. Hypergraph Learning
methods (24–26) perform well on generate the high-order
representations for complex data, such as whole-slide images
(WSI) (27), CT imaging (23), drug-target interactions (28),
etc.Therefore, given the data with uncertainty weights, we further
propose an uncertainty hypergraph learning to extract the high-
order representations from the CT images, which augments the
pathological informative features effectively.
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With regards to the second challenge, several works have
made efforts on lymph node involvement. Zhou et al. (29)
studied one or a combination of machine learning methods
in Logistic regression, Random forest, XGBoost, and GBDT
to construct lymph node metastasis in patients with poorly
differentiated intramucosal gastric cancer. Supervised machine
learning methods including random forest classifier, artificial
neural network, decision tree, gradient boosting decision
tree, extreme gradient boosting, and adaptive boosting can
also be used to predict central lymph node metastasis in
patients with papillary thyroid cancer (30). Besides improving
the accuracy of overall prediction, we further focus on
boosting the performance on sensitivity by the designed “Two-
Stage Cost Sensitive Hypergraph Learning.” One stage is to
capture the cost sensitivity of negative cases in the latent
feature spaces, which will enable the hypergraph model to
allocate the lymph node involvement cases more weights.
The other is called “Supervising Cost Sensitivity,” making
the loss function supervise the hypergraph model with more
attached importance on the patients with LUAD for individual
preoperative prediction of LN metastasis. Combining the
structures introduced above, the overall framework we proposed,
named as “Cost-Sensitive Uncertainty Hypergraph Learning
(CSUHL)” has the ability to identify the lymph node accurately
and outperform state-of-the-art methods on our collected real
clinical dataset.

The main contributions of this paper are summarized
as follows:

1. We propose a framework—CSUHL to tackle the task of
identifying the lymph node, focusing on the uncertainty
measurement of clinical CT imaging, as well as the cost
sensitive hypergraph learning for identifying.

2. On our collected real clinical dataset, we conduct extensive
experiments to demonstrate the proposed method
consistently outperforms state-of-the-art methods across-the-
board, relatively improving the performance on the accuracy
(ACC), sensitivity (SEN), specificity (SPEC), Balance (BAC)
by up to 3.90, 8.00, 2.02, and 4.95%, respectively, compared
with the previous best method.

2. MATERIALS AND METHODS

In this section, we will first introduce the materials we collected
and the processing for extracting the initial features in details.
Thenwewill illustrate our proposed framework—“Cost-Sensitive
Uncertainty Hypergraph Learning (CSUHL),” as shown in
Figure 2, which is composed of three steps, i.e., “Pathological
Features Initialization,” “Multi-Uncertainty Measurement,” and
“Two-Stage Cost Sensitive Hypergraph Learning,” respectively.

2.1. Materials and Preprocessing
In this study, a total of 61 CT images were collected, including
35 from lymph node negative patients and the rest 26 from
lymph node positive patients. These images were provided by
the China-Japan Friendship Hospital. All the cases were acquired
from January 2017 to March 2019. The CT scanners used in this
study include Aquilion ONE from TOSHIBA, MEDICAL System
Revolution from GE, and SOMATOM Definition Flash from
SEMENS. The CT protocol here includes: 120KV, reconstructed
CT thickness is 1mm, and breath-hold at full inspiration. All
images were de-identified before sending for analysis. This
study was approved by the Institutional Review Board. Written
informed consent was waived due to retrospective nature of
the study.

FIGURE 2 | Illustration of our proposed Cost-Sensitive Uncertainty Hypergraph Learning (CSUHL) for identification of the LUAD with lymph node metastasis cases

with CT imaging.
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2.2. Cost-Sensitive Uncertainty
Hypergraph Learning
2.2.1. Pathological Features Initialization
In this stage, we extract the initial features from the patient’s CT
images, consisting of regional features and radiomics features.
We first apply the deep learning pre-trained method, named VB-
Net (31), to segment the left/right lung, 5 lung lobes, 18 lung
segments and infection lesions for each CT image in the portal
software. In the expression of regional features, we generate a
feature with a dimension of R96 for each patient, expressing
features such as the count of infected lesions and the mean
value of lesion area. When extracting the radiomics features, we
generated a feature with a dimension of R93 for each patient,
which means first-order intensity statistics and texture features.
In the end, we concatenate the regional features and radiomics
features obtained above to obtain an overall feature with a
dimension of RC (C = 191) representing patient information.

2.2.2. Multi-Uncertainty Measurement
As shown in Figure 2, there are two types of uncertainty
measurement in our method, namely “EpistemicWeighting” and
“Aleatoric Weighting,” respectively. The epistemic uncertainty
refers to the inability of model for classifying the lymph node
involvement in patients with LUAD. We utilize the general
Multilayer Perceptron (MLP) Neural Network with the dropout
variation inference to classify the data based on the initialized
features. Illustrated as the “Epistemic Weighting” module in
Figure 2, denoted as UE ∈ R

N×M , the effect of the dropout can
be attributed to imposing a Gaussian distribution on each layer
during the inference stage. For N samples, there are M layers
that, respectively, generate the epistemic uncertainty weights in
different levels. For the M layers, each case with x∗ features, is
predicted for K times, the final epistemic weight for each case
is calculated using the variance of these K values, formulated as
Equation (1):

U
E
q(y∗|x∗)

(
y∗

)
=

1

KM

K∑

k=1

M∑

l=1

ŷ∗(l)

(
x∗,ωk

)
(1)

where i denotes the ith sample and k denotes the kth test with
dropout. (l) denote the lth layer of the constructed MLP model.
ŷ∗ denotes the corresponding output of the input x∗. ωk = {Wi}

k

denotes the trainable variables for a model at the kth time.
We adopt a statistical measuring method to generate the

aleatoric uncertainty weights UA. As shown in Figure 2, the
dimension of aleatoric uncertainty weights is R

N×C, where
N and C denotes the number of samples and the scale of
features, respectively. For each feature, we estimate the weights
of aleatoric uncertainty by minimizing the Kullback-Leibler (KL)
divergence (32–34) between the standard feature distribution and
the predicted features. The detailed theoretical derivation and
demonstration of calculation can be found in UVHL (23) and the
main formulation is following:

U
A(xi) = σ 2

2(xi) = exp(α2(xi)) (2)

where σ 2
2 denotes the predicted variance. To avoid the potential

division by zero, α2(x) is the replacement of log σ 2
2(x).

Therefore, α2 :R
191 7→ R

1 is the module to yield the aleatoric
uncertainty score for each case.

2.2.3. Two-Stage Cost Sensitive Hypergraph Learning
To identify the LUAD cases with higher sensitivity, we
design a two-stage cost sensitive hypergraph learning in
the final step of our framework. Given the vertices with
initialized pathological features as well as the corresponding
two types of uncertainty weights, we sequentially construct
the uncertainty-vertex hypergraph and conduct cost-sensitive
hypergraph learning.

When constructing the uncertainty-vertex hypergraph, we
take each vertex v ∈ V denoting one sample with the
corresponding two types of uncertainty weights UE and UA. We
use V to denote the vertex set, E denoting the hyperedges set,
and W denoting the pre-defined matrix of hyperedge weights.
We adopt the k-nearest neighbors algorithm (KNN) to define the
relationships for each vertex. There are two groups of hyperedges,
respectively, stand for the regional features and radiomics
features, denoted as Ereg and Erad, which are represented by

the corresponding incidence matrices Hreg ∈ R
N×|Ereg | and

Hrad ∈ R
N×|Erad|. The final combined global incidence matrix

H ∈ R
N×(|Ereg |+|Erad|) can be formulated as Equation (3).

H(vi, ej) =

{
UA
i + UE

i , vi ∈ ej, ej ∈
[
Hreg‖Hrad

]

0, vi /∈ ej, ej ∈
[
Hreg‖Hrad

] (3)

where [·‖·] denotes the concatenating operation between two
matrices. Finish constructing the hyperedges, the uncertainty-
vertex hypergraph can be denoted as G = 〈V , E ,H,W,U〉, where
U is the summary matrix of UA and UE.

There are two stages of operating the cost sensitivity, namely
latent cost sensitivity and supervising cost sensitivity. When
measuring the epistemic uncertainty weights in the stage of
“Multi-Uncertainty Measurement,” we design the first latent
cost sensitivity by the modified cross-entropy loss function,
formulated as follows:

L =
1

N

N∑

i

−
[
λ · yi · log

(
pi

)
+ (1− λ) ·

(
1− yi

)
· log

(
1− pi

)]

(4)

where yi denotes the label of ith sample, whose value is 0 or 1
for negative case and positive case. λ ∈ (0, 1) is the parameter
to represent the degree of cost sensitivity, whose value larger
the more sensitivity. The other cost sensitivity for supervising is
designed in the procedure of hypergraph learning, formulated as:

QU(F) = argmin
F

{
�(F)+ ψR̃emp(F)

}
(5)

where �(·) and R̃emp(·) denote the smoothness regularizer
function and the cost-sensitive empirical loss term,
respectively. The hypergraph Laplacian matrix is
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2U = D
− 1

2
v HWD−1

e HTD
− 1

2
v . The smoothness regularizer

function is formulated as:

�(F,V ,U, E ,W) = tr(F⊤(U⊤ − U⊤2UU)F) (6)

The cost-sensitive empirical loss term is designed as:

R̃emp(F,U) =
K∑

k=1

[
λ‖F(:, k)− Y(:, k)‖2y=1

+ (1− λ)‖F(:, k)− Y(:, k)‖2y=0

]
(7)

where F(:, k) is the kth column of F. The λ in Equation (7) is same
with the role in Equation (1).

The uncertainty vertex-weighted hypergraph loss function
Remp(·) can be further rewritten as:

R̃emp(F,U, λ) = λ�

[
tr(F⊤U⊤UF+ Y⊤U⊤UY− 2F⊤U⊤UY)

]

(8)
Therefore, the target label matrix F can be obtained as:

F = λ�

[
ψ(U⊤ − U⊤2UU+ λU⊤U)−1U⊤UY

]
(9)

where � denotes the degree of cost-sensitive λ operating on the
following item, referring the effect in Equations 1 and 7. With
the generated label matrix F ∈ R

n×K (K = 2 in our task), the
new coming testing case can be identified as LUAD or normal
case accordingly.

3. EXPERIMENT

In this section, we will elaborate on the dataset, evaluation
metrics, implementation, comparison methods, experimental
results, and discussion.

3.1. Evaluation Metrics
In the experiment, we adopt six metrics to evaluate the accuracy
of the model.

(1). Accuracy (ACC) represents the proportion of correct
predictions by the model and can be calculated as ACC =

TP+TN
TP+TN+FP+FN . (2). Sensitivity (SEN), (3). Specificity (SPEC), (4).
Positive Predictive Value (PPV), and (5). Negative Predictive
Value (NPV), respectively, represent the proportion of correct
predictions among the positive sample values, negative sample
values, positive predicted values, and negative predicted values.
The calculation formulas can be found in Table 1. (6). Balance
(BAC) represents the mean value of SEN and SPEC.

Sensitivity, known as true positive rate, represents the
proportion of patients with lymph node involvement that are
successfully detected in the task. Specificity represents the
possibility of patients without lymph node involvement that
are excluded. Ideally, the model with both high sensitivity and
high specificity is what we most hope for, but in practice,
there is a trade-off between these two indicators. Compared
with specificity, higher sensitivity basically possesses greater
practical value.

TABLE 1 | The definition of the confusion matrix for identification of lymph node

involvement.

Classify as

lymph node

involvement

Classify as non

involvement

Lymph node

involvement

True Positive (TP) False Negative (FN) SEN = TP
TP+FN

Non involvement False Positive (FP) True Negative (TN) SPEC = TN
TN+FP

PPV = TP
TP+FP

NPV = TN
TN+FN

3.2. Implementation
The entire dataset contains 61 CT images, of which 26 are lymph
node involvement and the remaining 35 are on the contrary, are
randomly partitioned into 10 subsets when comparing our model
with the comparison models. In the task, the cross-validation
process is performed 10 times, each time a subset is selected as
the validation set, and the rest as the training set. To reduce the
impact of random data on the results, the value of each metric
in the experiment is an average of 10 times, and the standard
deviation is reported as a comparison. To prevent inductive bias,
each dimension of the training set features is normalized to [0, 1]
using its own mean and variance and samples in validation set
utilize the same parameters to normalize.

The uncertainty score Ui of each sample and the uncertainty
measurement model are generated by the overall training set. The
algorithm used to construct the incidencematrix of hypergraph is
K-nearest neighbors (KNN), which leads the choice of parameter
K to affect the effect. However, choosing K is not a easy job.
A hyperedge from a large K connects too many modes, which
may over-describe the relationship between the data and generate
noise. On the contrary, a hyperedge with small K means that the
number of connected nodes is small, which limits the exploration
ability of the high-order relationship of hypergraph and not
obtain full information.We conduct a strategy to learn the proper
parameter K automatically here. We put 2 to 20 in the candidate
pool of K to select the applicable K for the task. In one training
and testing, we cross-validate the training data 10 times for each
K in the candidate pool to obtain prediction values on different
K. The K with the highest predicted score will be used in testing,
so the whole process is the automatic selection of K. The total
training time for each fold is about 1 h, while the testing time is
extremely fast, only taking about 5 s.

3.3. Comparison Methods
The following methods are compared by our experiment:

1. Support Vector Machine (SVM) (35): It is a linear
classifier that uses supervised learning to perform two-
class classification of data. It relies on the convex quadratic
programming problem to separate the samples correctly and
away from the classification hyperplane.

2. Transductive Hypergraph Learning(tHL) (36): It is an
algorithm for hypergraph embedding and transduction
inference, mainly extending the spectral clustering technology
of graphs to hypergraphs.
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3. Multilayer Perceptron (MLP) Neural Network (37, 38): It
contains a multi-layer feedforward neural network that maps
multiple inputs to a single output.

4. GNN (39): It is a basic graph neural network that applies
the local first-order approximation of the spectral graph
convolution to determine the convolutional network structure
for semi-supervised classification.

5. UVHL (23): It is an uncertainty vertex-weighted hypergraph
learning method, which can reduce the problems caused
by noisy data and confusing cases with clinical or imaging
features.

6. B-GNN (40): It is a binary graph convolutional network,
in which some floating-point operations are replaced by
binary operations to achieve inference acceleration. A back-
propagation method based on gradient approximation is used
to train the binarized graph convolutional layer.

7. BC-GNN (40): It is an improved version of B-GNN, adding a
cost-sensitive loss function.

3.4. Experimental Results
The experimental mean results and phenomena of our model
and compared models can be seen in Figure 3; Table 2, and the
following can be observed:

1. Comparing all methods, our proposed model is in a leading
position in various metrics. Compared with non-graph-based
methods (SVM and MLP), our models has a great lead. There
are 12.04 and 38.89% improvements in ACC metric for the
two, respectively, which shows that hypergraph has the ability
to describe the correlation and handle this task.

2. In the GNN-based methods, compared with GNN, B-GNN,
BC-GNN in ACC, the improvement is 24.22, 5.26, and 3.90%,

FIGURE 3 | The statistic performance of CSUHL and other compared methods. The results show that CSUHL outperforms other methods for ACC, SEN, SPEC, and

BAC consistently.

TABLE 2 | Prediction accuracy comparison of different methods on our collected LUAD dataset.

Methods ACC SEN SPEC BAC PPV NPV

SVM (p-value) 0.85000 2.324e−5 0.92000 5.624e−4 0.80000 1.824e−4 0.86000 6.815e−5 0.76667 0.0498e−5 0.93333 6.781e−5

THL (p-value) 0.70238 1.173e−5 0.59167 1.438e−6 0.74667 4.235e−4 0.66917 1.037e−4 0.61667 0.1.237e−5 0.75333 3.283e−6

MLP (p-value) 0.68571 6.734e−4 0.59167 3.568e−5 0.72167 8.967e−3 0.65667 2.358e−4 0.61667 8.845e−4 0.74333 2.781e−5

GNN (p-value) 0.76667 4.891e−4 0.65385 6.784e−4 0.85294 3.578e−4 0.75339 3.567e−4 0.77273 9.487e−4 0.76316 7.034e−4

UVHL (p-value) 0.88333 2.346e−3 0.82143 7.624e−4 0.93750 6.78e−4 0.87946 1.895e−3 0.92000 - 0.85714 3.181e−4

B-GNN (p-value) 0.90480 7.823e−3 0.87500 2.135e−3 0.92300 7.895e−3 0.89900 8.233e−3 0.87500 9.356e−3 0.92300 9.392e−3

BC-GNN (p-value) 0.91667 4.721e−2 0.88889 1.468e−3 0.92857 2.568e−2 0.90873 9.134e−3 0.84211 7.804e−3 0.95122 -

CSUHL (std) 0.95238† ±0.0346 0.96000† ±0.0596 0.94737† ±0.0277 0.95368† ±0.0150 0.90654 ±0.0286 0.88235 ±0.0735

For each 10-fold, we compute the accuracy of the proposed method on testing data, and compare them with those of CSUHL via paired t-test to generate the p-values for each metric.

(“†” denotes significance level is reached as p− value < 0.05). The bold values represent the best values of the indicators in each set of experiments.
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respectively, which proves that our methods can describe
complex associations better.

3. Compared with hypergraph-based methods such as THL
and UVHL, the model has 35.59 and 7.82% rises on
the acc, respectively, which benefits from the uncertainty
measurement and multiple loss.

4. Except for ACC, our method is the only one that exceeds
and close to 95% on SEN and SPEC, respectively, which has
practical value for actual medical diagnosis.

5. From Figure 3, it can be observed from the standard deviation
that our model has more stable results compared to other
comparison methods, which shows that our model provides
more reliable and robust prediction results.

4. DISCUSSION

To evaluate the effectiveness of different uncertainty and different
hypergraphs and different cost sensitivity, in this section, we
conduct ablation experiments, respectively, to determine the
contribution of each component.

4.1. Study on Multi-Uncertainty
To evaluate the effectiveness of different uncertainty, we conduct
an ablation study, which uses aleatoric uncertainty or epistemic
uncertainty, respectively.

4.1.1. Aleatoric Uncertainty
Denoted as UA, the results of using aleatoric uncertainty
individually are shown in row 1 of Table 3.

We can find out that the use of both types of uncertainty
brings about 7.58, 4, and 10.53% growth in ACC, SEN, and
SPEC, respectively, than using aleatoric uncertainty. It is worth
mentioning that even with only aleatoric uncertainty, the model
is still higher than most comparison methods in ACC and better
than other methods in SEN according to Table 2.

More specifically, the pathological features with higher
aleatoric uncertainty weights are consistent with the clinical
experience, such as the distribution of different nodules, i.e.,
lobulated nodules, spiculate nodules, and globular nodules.

4.1.2. Epistemic Uncertainty
Denoted as UE, the results of using epistemic uncertainty
individually are shown in row 2 of Table 3.

It can be observed using epistemic uncertainty alone lags
behind 10.49, 7.85, and 12.54 than CSUHL in acc, sen, and
spec metrics, respectively. Compared with the results of using
aleatoric uncertainty, the indicators using epistemic uncertainty
are lower, indicating that aleatoric uncertainty plays a greater
role in our model. The combination of the two uncertainties
is better than the single-use, which proves the effectiveness of
multi-uncertainty.

4.2. Study on Types of Hypergraph
To evaluate the effectiveness of different hypergraphs, we conduct
an ablation study, using regional hypergraph or radiomics
hypergraph, which use regional features and radiomics features
from CT, respectively.

4.2.1. Regional Hypergraph
Denoted as Greg , the results of using regional hypergraph
individually are shown in row 4 of Table 3.

The regional hypergraph only has an accuracy rate of
about 80%, and the same for SEN and SPEC, indicating
that only extracting the regional features of CT has little
effect and the regional hypergraph cannot provide accurate
correlation information.

4.2.2. Radiomics Hypergraph
Denoted as Grad, the results of using radiomics hypergraph
individually are shown in row 5 of Table 3.

The results of radiomics hypergraph are much better than the
former, with ACC and SEN exceeding 90%, although there is still
a gap in the combination of two hypergraphs. It can be found
that the results in radiomics hypergraph have better sensitivity
than specificity, which proves that the radiomic hypergraph has
more advantages in identifying lymph node involvement. The
combined hypergraph is higher in all indicators than when used
alone, showing that it has the ability to utilize a variety of
different features.

TABLE 3 | Prediction accuracy comparison of different methods on our collected LUAD dataset.

Methods ACC SEN SPEC BAC PPV NPV

1) Aleatoric Uncertainty (UA) (std) 0.88525 ±0.1845 0.92308 ±0.2451 0.85714 ±0.1684 0.89011 ±0.1795 0.82759 ±0.0781 0.93750 ±0.1864

2) Epistemic Uncertainty (UE ) (std) 0.85246 ±0.0351 0.88462 ±0.0763 0.82857 ±0.0374 0.85659 ±0.0746 0.79310 ±0.0890 0.90625 ±0.0785

3) CSUHL (UA + UE ) (std) 0.95238† ±0.0346 0.96000† ±0.0596 0.94737† ±0.0277 0.95368† ±0.0150 0.90654 ±0.0286 0.88235 ±0.0735

4) Regional Hypergraph (Greg) (std) 0.80328 ±0.0567 0.80769 ±0.978 0.80000 ±0.1643 0.80385 ±0.0776 0.75000 ±0.1347 0.84848 ±0.1613

5) Radiomics Hypergraph (Grad ) (std) 0.90164 ±0.0891 0.92308 ±0.0346 0.88571 ±0.0917 0.90440 ±0.0176 0.85714 ±0.0783 0.93939 ±0.0635

6) CSUHL (Greg + Grad ) (std) 0.95238† ±0.0346 0.96000† ±0.0596 0.94737† ±0.0277 0.95368† ±0.0150 0.90654 ±0.0286 0.88235 ±0.0735

7) Latent Cost Sensitivity (std) 0.86885 ±0.0678 0.88462 ±0.0341 0.85714 ±0.0867 0.87088 ±0.1456 0.82143 ±0.1034 0.90909 ±0.0918

8) Supervising Cost Sensitivity (std) 0.91803 ±0.0451 0.92308 ±0.0813 0.91429 ±0.0561 0.91868 ±0.0971 0.88889 ±0.0936 0.94118 ±0.0771

9) CSUHL (std) 0.95238† ±0.0346 0.96000† ±0.0596 0.94737† ±0.0277 0.95368† ±0.0150 0.90654 ±0.0286 0.88235 ±0.0735

For each 10-fold, we compute and report the average performance of the proposed method on testing data. The bold values represent the best values of the indicators in each set of

experiments.
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4.3. Study on Cost Sensitivity
To evaluate the effectiveness of different cost sensitivity, we
conduct an ablation study, which uses latent cost sensitivity or
supervising cost sensitivity, respectively.

4.3.1. Latent Cost Sensitivity
The results of using latent cost sensitivity individually are shown
in row 7 of Table 3.

When only latent cost sensitivity is used, it is equivalent to
not using supervising cost sensitivity. As a result, the hypergraph
information cannot be captured in order that various indicators
are significantly reduced.

4.3.2. Supervising Cost Sensitivity
The results of using supervising cost sensitivity individually are
shown in row 8 of Table 3.

Compared with the combination of the two cost sensitivity,
the supervising cost sensitivity has an accuracy disparity of about
3.61%, but it is higher than latent cost sensitivity. It should
be noticed that cost sensitivity of using only supervising is the
highest among the three on NPV, indicating that the true label
is mostly negative in the samples identified as non lymph node
involvement. In general, using two cost sensitivities together is
better than using one of them, proving the effectiveness of cost
sensitivity component.

5. CONCLUSION

In this paper, we propose a cost-Sensitive Uncertainty
Hypergraph Learning (CSUHL) to identify lung adenocarcinoma
(LUAD) cases with lymph node (LN) metastasis from the
cases without lymph node (LN) metastasis. Confronting
the challenging issues from the shortage of high-quality
data and unreliable sensitivity of diagnosis, our proposed
method employs three stages, namely “Pathological Features
Initialization,” “Multi-Uncertainty Measurement,” and “Two-
Stage Cost Sensitive Hypergraph Learning” to represent the

complex clinical information and formulate the high-order
data correlation among the known LUAD with LN metastasis
cases and the LUAD without LN metastasis cases. Through the
epistemic and aleatoric uncertainty as well as the two types of
cost sensitivity (latent and supervising), our method is capable of
outperforming state-of-the-art methods on our collected LUAD
dataset across the board.

In future work, we will further investigate the practical
limitations on the computer-aid-diagnosis (CAD), such as
enhancing the speed of inference, transferring the model to learn,
and predicting the other related downstream clinical tasks.
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