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Abstract: Metabolic syndrome (MetS) is a group of several metabolic conditions predisposing to
chronic diseases. Individuals diagnosed with MetS are physiologically heterogeneous, with signif-
icant sex-specific differences. Therefore, we aimed to investigate the potential sex-specific serum
modifications of amino acids and acylcarnitines (ACs) and their relationship with MetS in the Mexi-
can population. This study included 602 participants from the Health Workers Cohort Study. Forty
serum metabolites were analyzed using a targeted metabolomics approach. Multivariate regression
models were used to test associations of clinical and biochemical parameters with metabolomic
profiles. Our findings showed a serum amino acid signature (citrulline and glycine) and medium-
chain ACs (AC14:1, AC10, and AC18:10H) associated with MetS. Glycine and AC10 were specific
metabolites representative of discrimination according to sex-dependent MetS. In addition, we found
that glycine and short-chain ACs (AC2, AC3, and AC8:1) are associated with age-dependent MetS.
We also reported a significant correlation between body fat and metabolites associated with sex-age-
dependent MetS. In conclusion, the metabolic profile varies by MetS status, and these differences are
sex-age-dependent in the Mexican population.

Keywords: sexual dimorphism; metabolism; acylcarnitines; amino acid; uric acid

1. Introduction

Metabolic syndrome (MetS) is a group of several metabolic conditions that predisposes
to chronic diseases such as osteoarthritis and specific gastrointestinal cancers, including
colon cancer and hepato-cellular carcinoma [1–3]. The prevalence of MetS is increasing
worldwide and it varies between 21% and 38% around the word [4]. The Mexican National
Nutrition Survey (ENSANUT), according to the Adult Treatment Panel III (ATP III) criteria,
reported that the prevalence of MetS in Mexican adults is >50% and rises with age in
a sex-specific manner [5]. Women are more frequently affected than men due to the
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higher central obesity, physiological alterations, and hormonal changes during and after
menopause [6]. MetS risk factors include age, heredity, lifestyle habits, and low physical
activity [7]. Heritability studies have estimated from 13–30% for MetS and more than 50%
for some specific metabolic components [8].

In chronic metabolic disorders like MetS, the phenotype is complex and dynamic
because of several interactions among heritable and environmental factors. In this context,
metabolomics is a powerful phenotyping tool. It offers metabolic profiles representing an
integrated view of metabolism because it allows sensitive detection of molecular modifica-
tions over time, resulting from the interaction between intrinsic and extrinsic causes. Also,
metabolomics provides a comprehensive signature or biomarkers to reveal early metabolic
dysfunctions [9]. Individuals diagnosed with MetS are physiologically heterogeneous
because of the complex nature of the syndrome, inducing discrepancies in the diagnosis
and therapeutic approach [10].

Furthermore, significant clinical differences between men and women with MetS have
been reported [11,12]. According to previous reports, the human metabolism is turned sex-
specific; for example, women store more adipose tissue and have higher insulin sensitivity
than men, while men tend to oxidize more lipids than women [13]. In healthy French
volunteers, higher concentrations of creatinine, branched-chain amino acids (BCAAs), and
small-chain acylcarnitines (ACs) were observed in men versus women [14]. In addition, it
has been observed that the metabolism of BCAAs could be impacted not only by sex but
also by ethnicity and gene expression [15–17].

In this context, studies with a metabolomic approach have tried to uncover insights
into the pathology behind obesity, T2D, cardiovascular disease, and MetS [18–20]. It has
been suggested that BCAAs are involved in insulin resistance [21]; together with aromatic
amino acids (AAAs), BCAAs could aid as biomarkers to predict the start of MetS [22]. In
addition, histidine and lysine have been shown to have antioxidant properties, decreasing
the inflammatory burden and oxidative stress in MetS [23,24]. Conversely, alterations of
circulating ACs are related to metabolic disorders [25,26]. Some reports have found that
ACs attenuate MetS by modulation of tissue fatty acids [27] and decreasing inflammatory
factors [28]. On the contrary, it has also been suggested that ACs may be involved in
metabolic dysfunction, increasing fasting triglycerides and glucose and reducing insulin
sensitivity [29].

Currently, there are no studies that have explored the possible changes in the serum
metabolites and their association with MetS in a sex-specific manner in the Mexican popu-
lation. Therefore, we aimed to investigate the potential sex-specific serum modifications of
amino acids and ACs and their relationship with MetS in the Mexican population. This
approach could become a powerful method for identifying individuals in subclinical stages,
with a high risk of disease, besides identifying biomarker molecules related to the MetS
disease mechanisms.

2. Materials and Methods
2.1. Health Workers Cohort Study (HWCS)

This is a prospective open-label cohort study with follow-up investigations averaging
six years and including participants enrolled between 2004 and 2018. The design and details
of the study have been published previously [30]. In summary, the study aimed to analyze
the influence of genetic and lifestyle factors on the occurrence of diverse chronic diseases.
The blood samples and data were collected from health workers in various professions
and their relatives from standard care clinics in Cuernavaca, Morelos. For this analysis,
602 subjects aged ≥18 with blood samples who had participated in the third wave between
2016 and 2018 were selected. The protocol was approved by IMSS (No. 12CEI 09 006 14,
17 May 2016) and the National Institute of Genomic Medicine (346–05/2018/I, 5 August
2018), following the Declaration of Helsinki (13/LO/0078). All participants provided
written informed consent. Age was categorized as <45 and ≥45 years old because, based
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on previous studies, there are endocrine changes affecting metabolic traits in women and
men around 45 years [31–33].

2.2. Metabolic Syndrome Criteria

MetS and its components were evaluated according to the ATP III criteria. The diagno-
sis of MetS was established by the presence of three or more of the following five criteria:
(1) abdominal obesity (waist circumference [WC] ≥ 102 cm for men or ≥88 cm for women);
(2) triglycerides ≥ 150 mg/dL and/or drug treatment for elevated triglycerides; (3) high-
density lipoprotein cholesterol (HDL-c) < 40 mg/dL for men, and <50 mg/dL for women;
(4) systolic blood pressure (BP) ≥ 130 or diastolic BP > 85 mmHg or antihypertensive medi-
cation treatment and/or a history of hypertension; and (5) fasting glucose ≥ 100 mg/dL,
and/or treatment with medications for T2D [34].

2.3. Covariates

Height, weight, WC, and BP were measured using standardized procedures (repro-
ducibility was evaluated, resulting in a concordance coefficient of 0.83–0.90). Body weight
was measured with a calibrated electronic scale (model BC-533; Tanita), height using a
conventional stadiometer (SECA), and WC with a standard steel measuring tape (SECA
brand). BP was measured after 5 minutes of rest in a sitting position with an electronic
digital BP monitor. Two BP measurements were obtained and the mean was used. Body
composition (lean mass and fat mass) was measured by dual-energy X-ray absorptiometry
using a Lunar DPX NT instrument (Lunar Radiation Corp.) following standard procedures.
All DXA scans were performed by certified and trained technicians, who positioned the
participants in a supine position with their hands level with their hips and feet slightly
apart. Daily quality controls were performed according to the guidelines provided by the
manufacturer.

2.4. Other Measurements

Serum samples for measuring glucose, transaminases (alanine aminotransferase [ALT]
and aspartate aminotransferase [AST]), total cholesterol [TC], HDL-c, and triglyceride
levels were obtained after overnight fasting. The clinical measurements were determined
using commercial tests that have been previously reported [30]. All biomedical assays
were performed at the IMSS laboratory in Cuernavaca with procedures standardized
according to the proceedings of the International Federation of Clinical Chemistry and
Laboratory Medicine [35]. Demographic characteristics and detailed past medical history
were obtained using a self-administered questionnaire.

2.5. Targeted Metabolomics Analysis

Concentrations of forty serum metabolites (ACs, free carnitine (AC0), and amino
acids) were measured using the approach of targeted metabolomics as previously de-
scribed [36]. NeoBase MSMS kit is intended for the quantitative determination of ACs:
Free carnitine (AC0), Acetyl acylcarnitine (AC2), Propionyl acylcarnitine (AC3), Butyryl
acylcarnitine (AC4), Isovaleryl acylcarnitine (AC5), Tiglyl acylcarnitine (AC5:1), Hex-
anoyl acylcarnitine (AC6), Adipoyl acylcarnitine (AC6DC), Octanoyl acylcarnitine (AC8),
Octenoyl acylcarnitine (AC8:1), Hexadecanoyl acylcarnitine (AC16), Hexadecenoyl acylcar-
nitine (AC16:1), Hydroxy Hexadecenoyl acylcarnitine (AC16:1OH), Hydroxy Hexadecanoyl
acylcarnitine (AC16OH), Decanoyl acylcarnitine (AC10), Decenoyl acylcarnitine (AC10:1),
Decadienoyl acylcarnitine (AC10:2), Dodecanoyl acylcarnitine (AC12), Dodecenoyl acylcar-
nitine (AC12:1), Tetradecanoyl acylcarnitine (AC14), Tetradecenoyl acylcarnitine (AC14:1),
Tetradecadienoyl acylcarnitine (AC14:2), Hydroxy tetradecenoyl acylcarnitine (AC14OH),
Octadecanoyl acylcarnitine (AC18), Octadecadienal acylcarnitine (AC18:1), Hydroxy oc-
tadecenoyl (AC18:1OH), Octadecadienal acylcarnitine (AC18:2), and Hydroxy octadecanoyl
(AC18OH); amino acids: Glycine, Alanine, Valine, Leucine, Methionine, Phenylalanine, Ty-
rosine, Ornithine, Citrulline, Arginine, and Proline; and the ketone Succinylacetone. Briefly,
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20 µL of serum were poured onto filter paper cards (Whatman 903, Dassel, Germany) and
dried at room temperature. The spot was cut into 2-mm circles and placed in a 96-well
plate. The extraction solution was added to the plate and incubated for 30 min at 30 ◦C
at 650× g. Finally, 10 µL of each sample was injected into the flow at 4-min intervals. The
Micromass Quattro equipment (Waters Inc., Milford, MA, USA) was coupled with an ESI
source in positive mode. Nitrogen gas was used for desolvation and nebulization, and
argon was the collision gas.

2.6. Statistical Analyses

Sociodemographic and clinical characteristics of individuals by sex and age groups
were compared using Wilcoxon test and Pearson’s Chi-square test for continuous and
categorical variables, respectively. All datasets were normalized. The selected methods
were Row-wise normalization: Normalization to constant sum; Data transformation: Log10
Normalization; and Data scaling: Mean Centering. We used partial least-squares discrim-
inant analysis (PLS-DA) to identify discrimination among samples. Permutation testing
was conducted to minimize the possibility that the observed separation on PLS-DA was
by chance. Additionally, to the cross-validation, a model validation was performed by
a 2000 times permutation test. A loading scatter plot was constructed to determine the
variables discriminating between the groups. Variable importance in projection (VIP) plot
was performed for ranking the metabolites based on their significance in discerning studies
from both groups. VIP cutoff > 1.0 was designated since the number of variables in this
study was less than 100. Unsupervised hierarchical clustering heatmaps were performed.
The 25 top metabolites obtained by ANOVA analysis were selected to be shown. All statis-
tical analyses were performed using MetaboAnalyst 5.0 (McGill University, Toronto, ON,
Canada) [37].

3. Results
3.1. Demographics and Clinical Characteristics of the Study Population

Baseline characteristics of 602 participants are summarized in Figure 1. In the overall
population, the median age was 60 years (range 50–68), and 75.9% were females. The
prevalence of overweight and obesity was 66%. Thirty-seven percent met the criteria for
MetS, according to the ATP III criteria. The prevalence of MetS-ATP III was higher in
women than men (40.3% vs. 29.7%, p = 0.022). Both men and women with MetS were older
and had a higher prevalence of obesity, BP, glucose, triglycerides, and liver transaminases
than those without MetS (Table 1).

3.2. Serum Metabolite Profile According to Metabolic Syndrome

A total of 40 serum metabolites were quantified. The PLS-DA score plots showed slight
evidence of separation according to MetS status (Figure 2A). Despite this slight difference
between groups (accuracy 0.63; R2 0.096; Q2 0.027: permutation p value < 5.0) (Appendix A;
Figure A1), the VIP plot revealed that AC14:1, AC10, citrulline, AC5:1, AC18:1OH, glycine,
and succinyl acetone are responsible for discrimination between the groups, which made
them potentially useful for discrimination (Figure 2B). These metabolites are decreased in
the +MetS group (Figure 2B).
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Table 1. Baseline characteristics of the study population. 

 Overall Female Male 
Characteristics  −MetS +MetS  −MetS +MetS  
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Age, (years) a 60 (50–68) 58 (49–65) 63 (57–71) <0.001 55 (46–63) 59 (49–67) 0.365 
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47.2 
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35.1 
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DBP, (mmHg) a 75 (69–82) 74 (67–79) 76 (69–83) 0.0009 77 (71–82) 85 (79–91) <0.001 
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(42.3–59.8) 
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(49.7–65.4) 

47.7 
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(40.8–54) 

39.5 
(34.7–48) 

0.001 
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Figure 1. Clinical characteristics of the 602 individuals belonging to the Health Workers Cohort.
(A) Summary of MetS parameters measured. Each outlined square indicates a different data type
and schematically describes the different measurements. (B) Percentage of individuals with MetS
according to the NCEP-ATP III criteria. Left: global percentage, purple: subjects with the condition,
dark green: subjects without the disease. Right: subdivided into males and females. Light green:
<45 years subjects, blue: ≥45 years subjects. (C–G), percentage of individuals with each of the five
criteria used for MetS diagnosis is displayed in a similar style to (B): yellow designates subjects with
glucose intolerance.

3.3. Metabolic Profile According to Sex-Dependent MetS

It has been reported that there are significant clinical differences between males
and females with MetS. An unsupervised hierarchical clustering of abundance heatmap
revealed differences by sex and among the MetS groups (Figure 3A). Interestingly, AC3
concentration was MetS-dependent and independent of sex. Arginine and AC16:1 were
higher only in females without MetS; meanwhile, AC8:1 was higher only in females with
MetS. The PLS-DA score plots showed slight evidence of separation according to MetS and
sex (Figure 3B). The explained variances are shown in brackets (accuracy 0.48; R2 0.155;
Q2 0.086: permutation p value < 5.0) (Appendix A; Figure A1). The VIP plot showed that
AC10 (higher in −MetS groups, regardless of sex) and glycine (higher in −MetS groups,
regardless of sex) are helpful for discrimination between groups (Figure 3C).

3.4. Metabolic Profile According to Age-Dependent MetS

As mentioned above, metabolic disorders are age-dependent. An unsupervised hi-
erarchical clustering of abundance heatmap showed differences according to age and
MetS status (Figure 4A). Glycine and AC10 concentrations were age-independent and
MetS-dependent. Leucine and Methionine concentrations were higher in younger subjects
independent of MetS presence. The PLS-DA score plots revealed slight evidence of separa-
tion according to MetS and age (Figure 4B). The explained variances are shown in brackets
(accuracy 0.51; R2 0.086; Q2 0.040: permutation p value < 5.0) (Appendix A; Figure A1).
The VIP plot showed that AC2, AC3, and AC8:1 are useful for discrimination between
groups (Figure 4C). The +MetS groups showed higher concentration of AC2, AC3, and
AC8:1 (Figure 3C).
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Table 1. Baseline characteristics of the study population.

Overall Female Male

Characteristics −MetS +MetS −MetS +MetS

n = 602 n = 273 n = 184 p value n = 102 n = 43 p value

Age, (years) a 60 (50–68) 58 (49–65) 63 (57–71) <0.001 55 (46–63) 59 (49–67) 0.365

BMI, (kg/m2) a 26.0
(24.1–30.5)

25.3
(22.9–28.3)

29.5
(26.8–33.4) <0.001 25.4

(23.3–27.6)
30.1

(27.2–32.4) <0.001

Overweight, % 39 37.7 39.1 0.762 45.1 32.6 0.162

Obesity, % 27.2 16.1 46.2 <0.001 11.8 53.5 <0.001

WC, (cm) a 93 (86–100) 86 (81–94) 98 (92–104) <0.001 94 (89–99) 106 (99–109) <0.001

Body fat (%) 42.8
(36.1–47.8)

43.4
(38.9–47.7)

47.2
(43.0–50.8) <0.001 30.9

(28.1–33.8)
35.1

(33.1–38.3) 0.0001

DBP, (mmHg) a 75 (69–82) 74 (67–79) 76 (69–83) 0.0009 77 (71–82) 85 (79–91) <0.001

SBP, (mmHg) a 120 (109–134) 114 (105–123) 127 (116–142) <0.001 120 (111–132) 132 (122–145) <0.001

Fasting plasma
glucose, (mg/dL) a 99 (92–109) 96 (89–102) 105 (95–120) <0.001 98 (93–107) 108 (95–119) 0.015

Total cholesterol, (mg/dL) a 198
(169–224)

198
(172–225)

199
(172–235) 0.666 194

(162–222)
199

(162–220) 0.843

HDL-c, (mg/dL) a 50.7
(42.3–59.8)

55.7
(49.7–65.4)

47.7
(41.1–56.2) <0.001 46.7

(40.8–54)
39.5

(34.7–48) 0.001

LDL-c, (mg/dL) a 113.1
(90.9–135.8)

115.1
(93.3–134.9)

110.1
(88.1–139) 0.416 118.3

(90.3–138.9)
102.9

(87.3–131.7) 0.101

Triglycerides, (mg/dL) a 141
(105–197)

123
(94–150)

181
(139–226) <0.001 129

(99–175)
196

(166–282) <0.001

Uric acid, (mg/dL) a 5.2 (4.4–6.2) 4.7 (4.1–5.5) 5.4 (4.6–6.4) <0.001 5.8 (5.2–6.8) 6.7 (5.7–7.8) 0.010

AST, (U/I) a 25 (21–32) 24 (21–30) 27 (23–35) 0.002 26 (22–32) 30 (23–43) 0.057

ALT, (U/I) a 26 (19–37) 29 (24–37) 35 (24–65) 0.004 29 (24–37) 35 (24–65) 0.016
a Median (P25–P75). Abbreviations: Alanine aminotransferase (ALT); Aspartate aminotransferase (AST); Body
Mass Index (BMI); Diastolic blood pressure (DBP); High-density Lipoprotein-cholesterol (HDL-c); Low-density
Lipoprotein-cholesterol (LDL-c); Systolic blood pressure (SBP); Waist circumference (WC). U Mann-Whitney test
was used. p < 0.05 was considered statistically significant.

3.5. Metabolic Profile According to Sex-Age Dependent MetS

An unsupervised hierarchical clustering of abundance heat map showed a separation
between groups by sex and age (Figure 5A). The male cluster was age-associated regardless
of MetS diagnosis. Interestingly, both men and women ≥ 45 years +MetS show a similar
pattern in AC5 concentrations and liver enzymes (ALT and AST) (Figure 5A). Furthermore,
we observed that women with MetS, regardless of age, have the same ACs pattern (AC2,
AC3, and AC8:1). For BCAAs (Leucine and Valine), uric acid (UA), and proline, we
observed a gender-dependent cluster independent of MetS diagnosis (Figure 5A). The
explained variances are shown in brackets (accuracy 0.375; R2 0.133; Q2 0.081: permutation
p value < 5.0) (Appendix A; Figure A1). The VIP plot showed AC2 (higher in women with
MetS, regardless of age, and younger men with MetS diagnosis), ALT (higher in men with
MetS, regardless of age, and younger women with MetS diagnosis), AC3 (higher in MetS
groups, regardless of sex), UA (higher in men with MetS diagnosis regardless of age), and
glycine (higher in women −MetS group, regardless of age) are suitable for discrimination
between groups (Figure 5B).

After adjustment for sex and age, metabolites such as glycine, AC10, arginine, and
AC2 remained significant (Table 2; Appendix A: Table A1 and Figure A2).
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Figure 2. Serum metabolic profile according to MetS status. (A) PLS-DA plot shows differences
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MetS), +MetS (with MetS).
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and +MetS (dark blue). Red and green show increasing and decreasing concentration, respectively.
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for MetS diagnosis and age: −MetS < 45 years (green), −MetS ≥ 45 years (red), +MetS < 45 years
(yellow), and +MetS ≥ 45 years (blue), red and green show an increase and decrease concentration,
respectively. (B) PLS-DA plot shows separation between groups: −MetS: <45 years (green) and
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in brackets (accuracy 0.51; R2 0.086; Q2 0.040: permutation p value < 5.0). (C) VIP analysis represents
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MetS), +MetS (with MetS).
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and ≥45 years (yellow). Males: −MetS: <45 years (dark blue) and ≥45 years (light blue); +MetS: <45 years
(purple) and ≥45 years (orange). The explained variances are shown in brackets (accuracy 0.375; R2 0.133;
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Table 2. Linear models with covariate adjustments.

LogFC Abundance t p Value Adj. p Value β

Glycine −0.027 −8.04 × 10−18 −4.19 3.19 × 10−5 0.0004 1.128
AC10 −0.019 −3.84 × 10−18 −3.57 0.0003 0.0024 −1.191

Arginine −0.018 −3.53 × 10−18 −2.92 0.0036 0.0156 −3.283
AC2 0.031 −6.29 × 10−18 2.44 0.0146 0.0477 −4.541

AC16:1 −0.008 2.99 × 10−18 −2.03 0.0421 0.1084 −5.453

3.6. Correlation between Body Fat and Metabolites Associated with Sex-Age Dependent MetS

Previous studies have reported that as body fat mass increases, abdominal fat mass and
percentage of whole-body fat mass are related to MetS components such as BP, dyslipidemia,
obesity, and T2D [38–40]. Correlations between body fat mass and metabolites associated
with sex, age, and MetS were performed (Table 3). In healthy women (−MetS) and aged
women with MetS, arginine and glycine were negatively correlated with body fat mass.
The AC10 levels in younger (<45 years) healthy (−MetS) women and aged men with MetS
significantly correlates with body fat mass (−0.36 and 0.40, respectively).
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Table 3. Pearson correlation between body fat mass and metabolites associated with MetS.

Females Males

−MetS +MetS −MetS +MetS

<45 years ≥45 years <45 years ≥45 years <45 years ≥45 years <45 years ≥45 years

Arginine r −0.50 −0.26 0.38 −0.31 0.32 0.10 −0.68 0.27

95% CI −0.67 to −0.27 −0.38 to −0.13 −0.24 to 0.78 −0.44 to −0.16 −0.16 to 0.67 −0.12 to 0.31 −0.96 to 0.28 −0.11 to 0.57

p value 0.0001 0.0001 0.219 <0.0001 0.186 0.386 0.134 0.163

Glycine r −0.66 −0.16 0.45 −0.17 0.30 0.05 −0.42 0.25

95% CI −0.79 to −0.49 −0.29 to −0.03 −0.16 to 0.81 −0.31 to −0.01 −0.17 to 0.66 −0.16 to 0.27 −0.92 to 0.58 −0.12 to 0.56

p value <0.0001 0.014 0.136 0.031 0.200 0.614 0.396 0.186

AC10 r −0.36 −0.06 0.35 −0.06 0.16 0.06 −0.72 0.40

95% CI −0.57 to −0.11 −0.20 to 0.06 −0.27 to 0.77 −0.22 to 0.09 −0.31 to 0.57 −0.15 to 0.28 −0.96 to 0.21 0.05 to 0.67

p value 0.005 0.331 0.255 0.407 0.506 0.565 0.106 0.027
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4. Discussion

In the present study, a targeted metabolomic approach was applied to characterize
the sex-age-specific serum amino acids and ACs and their relationship with MetS in the
Mexican population. Timely identification of MetS physiological disruptions should allow
pinpointing individuals at the highest risk of developing T2D, cardiovascular disease,
and multi-organ damage. In addition, understanding the factors contributing to these sex
and age differences may help reduce disparities in outcomes observed across age- and
sex-based subgroups. A complete understanding of the metabolic changes across age- and
sex-based subgroups are needed to improve our mechanistic and clinical knowledge of
such differences.

ACs are derived from mitochondrial and peroxisomal Acyl-CoA metabolites by sub-
stituting the carnitine moiety for CoA. They are synthesized by the enzyme carnitine
palmitoyltransferase 1 (CPT 1). The general role of ACs is to transport fatty acids into
the mitochondrial matrix to produce energy. This process is known as β-oxidation [41,42].
Incomplete fatty acid oxidation results in elevated ACs concentrations [43], which is used
in newborn screening to detect metabolic disorders [44]. Higher concentrations of ACs in
individuals with obesity and T2D have been associated with incomplete fatty acid oxidation
(FAO). The proposed mechanism is related to an increase in β-oxidation; it causes an accu-
mulation of acetyl-CoA, which exceeds the tricarboxylic acid (TCA) cycle rate, leading to an
incomplete β-oxidation [45,46]. Also, higher ACs concentrations cause imbalances between
the synthesis and secretion of insulin, which consequently causes β-cell dysfunction [47].

AC2 is classified as a short-chain AC. This is produced by the mitochondrial matrix
enzyme, CrAT, from carnitine and acetyl-CoA, a molecule that is a product of both fatty
acid β-oxidation and glucose oxidation and can be used by the acid TCA for energy
generation [48]. Alterations in AC2 levels were already reported in prediabetic states [49].
Pujos-Guillot et al. suggest ACs levels could be used to predict MetS [39]. Also, high
levels of ACs are associated with fatty liver and cardiovascular disease [50,51]. In our
study, men, and women under 45 years of age without and with MetS, show the highest
concentrations of AC2 compared to the other groups. This finding could indicate a risk
for the future development of MetS in the case of men who have not yet developed MetS.
Future longitudinal studies will be necessary to corroborate this hypothesis.

AC10 is classified as a medium chain AC. These are formed either through esterifi-
cation with L-carnitine or through the peroxisomal metabolism of longer chain-AC [52].
The Carnitine octanoyltransferase enzyme (CrOT) is responsible for the synthesis of all
medium-chain AC (AC5–AC12) in peroxisomes [53]. Many medium-chain ACs can serve
as useful markers for inherited disorders of fatty acid metabolism. In particular, AC10 is
elevated in the blood or plasma of individuals with obesity in adolescence [54].

In our study, AC10 was associated with body fat percentage negatively in healthy
younger women and positively in aged men with MetS. Our results agree with other
studies on male adults with obesity [49,50,55]. During obesity, incomplete oxidation of
FAO results in a broadscale increase in plasma ACs intermediates (short and medium-chain
ACs) [56,57]. In contrast, in this study, younger women with lower body fat percentages
showed higher concentrations of AC10. Previous studies have found similar results in
children and adolescents [57]. The researchers propose that, unlike adults with impaired
FAO characterized by obesity and insulin resistance, obese adolescents with T2D have
lower concentrations of ACs intermediates and higher rates of β-oxidation. This finding is
attributed to the chronicity of obesity and the consequent and gradual evolution of failure
of mitochondrial adaptive mechanisms as the obese individual transitions from youth to
adulthood and forward with continued obesity [56,57]. It is important to point out that the
presence of greater adiposity in young women without a diagnosis of MetS shows higher
concentrations of AC10, which could indicate a risk for the future development of obesity
or insulin resistance.

However, Sunny et al. indicated that insulin stimulation resulted in higher oxidation
rates of BCAAs, contributing to higher levels of AC5 in plasma [58]. The increased con-
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centrations of BCAAs overload the catabolic pathways in the liver and skeletal muscle,
increasing the production of succinyl-CoA and propionyl-CoA, reducing the β-oxidation
of fatty acids and the catabolism of glucose. Therefore, the loss of efficiency in oxidative
metabolic pathways amplifies the oxidation of partially oxidized products, increasing
mitochondrial stress, reducing insulin sensitivity, and altering circulating glucose con-
centrations [59,60]. In the present study, men under 45 years diagnosed with MetS have
the highest concentrations of BCAAs and proline. Our findings agree with recent studies
reporting impaired BCAAs metabolism in many metabolic diseases associated with obesity,
insulin resistance, and T2D [61–63].

On the other hand, when comparing subjects of both sexes older than 45 years with
MetS, it was observed that women have lower concentrations of BCAAs and proline.
Recent studies found that males had significantly higher BCAAs, AAAs, proline, and
ornithine [15]. The authors suggest that the differences observed in BCAAs levels show sex-
related heterogeneity in BCAA catabolism [64]. Regarding proline concentrations, several
authors indicate that a high proline profile is associated with obesity, insulin resistance,
hypertriglyceridemia, and decreased glucose-stimulated insulin secretion [22]. Our results
agree with the literature; when we separated the gender groups and their insulin sensitivity,
the women who presented lower sensitivity to the hormone regardless of the presence
of MetS showed higher concentrations of proline (Appendix A: Table A1). In addition,
chronic exposure to proline in β-cells has been associated with impairment in insulin gene
transcription and mitochondrial oxidative phosphorylation [65].

UA is associated with the risk of developing MetS, and it has even been proposed that
it could be used as an additional marker in MetS [51,66,67]. Regarding UA concentrations
in our study, younger men diagnosed with MetS had the highest UA concentrations. Unlike
men, regardless of age and MetS diagnosis, women had lower UA concentrations. Our
results agree with many studies that point to clear sex-specific disparities regarding the
UA concentration, owing to various factors [68]. Potential explanations for sex differences
in the UA level include genetic background for urate production and renal and intestinal
excretion, certain bacteria residing in the gut that can metabolize one-third of the daily
urate load produced endogenously, and the exogenous urate from dietary purines [69].
Recently, an enrichment of the enzyme’s glycine dehydrogenase subunit and the glycine
reductase complex were observed in the intestinal microbiota of patients with gout. The
authors propose that the gut microbiome of gout patients not only contributes to nucleotide
salvage and de novo purine biosynthesis pathways but also performs vital functions in the
de novo synthesis of purine precursors (such as glycine) [69].

In healthy individuals, glycine is biosynthesized in the body from the amino acid
serine. Serine is mostly derived from the diet, but it can also be produced from glucose via
3-phosphoglycerate, especially in kidneys. In addition to being synthesized from serine,
glycine can also be derived from threonine, choline, or hydroxyproline via inter-organ
metabolism of the liver and kidneys [70].

Glycine is a precursor for porphyrins, purines, creatine, and sarcosine, it inhibits
protein glycation, it increases hepatic pyruvate production, and it plays an essential role in
DNA methylation, intracellular redox balance, and bile acid conjugation [71]. In addition,
lower glycine concentration is associated with hepatic steatosis and can predict impaired
glucose tolerance, dyslipidemia, and T2D [72–74]. In the present study, after adjusting
for age and gender, lower glycine levels were significantly associated with MetS, ALT,
AST, and T2D diagnosis. Decreased blood glycine and serine levels have previously been
shown in adult patients with asymptomatic hyperuricemia or gout compared with healthy
adult controls. Furthermore, in clinical and population studies, ALT has been shown to
predict T2D and MetS, given its relationship with insulin resistance and central obesity.
This result supports the hypothesis that liver injury can be induced by metabolically active
intra-abdominal fat [40]. Moreover, serum glycine concentration has been considered
the only homeostatic assessment–insulin resistance (HOMA-IR)-associated predictor of
adiposity in functionally limited overweight elders [75].
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On the other hand, arginine is an essential amino acid. Infants are unable to effectively
synthesize arginine, making it nutritionally essential for infants. However, in adults the
major TCA cycle intermediate α-ketoglutarate is at the heart of generating multiple amino
acids. In particular, the interconversion of glutamate to α-ketoglutarate allows the genera-
tion of several amino acids, including arginine. In addition, Ornithine aminotransferase
(OAT) generates ornithine, which can generate arginine through the urea cycle [76].

This amino acid is involved in the synthesis of various products responsible for
regulatory functions in the body. In particular, nitric oxide (NO) regulates carbohydrate
and lipid metabolism [77]. The arginine is involved in multiple NO-dependent pathways
that favor the whole-body oxidation of fatty acids and glucose [78], enhancing insulin
sensitivity. In addition, recent studies have demonstrated that arginine activates the
mammalian target of rapamycin (mTOR) cell signaling pathway in skeletal muscle to
enhance protein synthesis and whole-body growth [70]. Therefore, the preceding could
indicate that those individuals with the highest body fat percentage would present lower
muscle mass, which could have lower insulin sensitivity. Interestingly, glycine and arginine
negatively correlate with body fat percentage in healthy women regardless of age (without
MetS) and aged women with MetS. However, this correlation was not observed in males
and younger females with MetS; this could be attributed to changes in hormonal secretion
and loss of estrogen in menopause, which causes an accumulation of visceral fat, leading to
abdominal obesity [79,80]. Abdominal obesity is responsible for insulin resistance and the
development of MetS [81]. Another possible explanation for the observed discrepancy can
be attributed to sampling size, particularly in men with MetS.

This study identified a sex-dependent metabolomic signature associated with MetS.
It is essential to mention that current treatments do not consider sex as a biological vari-
able; yet, as we observed, there are apparent differences in metabolites. Therefore, these
findings suggest starting to consider treatments with a sex-dependent approach. However,
replication studies and knowledge of normal levels of individual metabolites in serum are
necessary before translating these results into clinical practice.

This study has some limitations. First, the participants are a select group of health
workers recruited from the Central region of Mexico (Cuernavaca, Morelos), and this may
not reflect the health behavior of the entire Mexican population; therefore, additional
studies are necessary before the observed findings can be generalized to individuals from
other areas of Mexico. Second, the sample size of the men included in the work could limit
the analysis to detect metabolites with minor effects on MetS and sex-specific effects. Third,
although we analyzed the diet of individuals (one of the main determinants of human blood
metabolites), we did not observe a dietary pattern associated with the metabolite profile,
possibly due to insufficient sample size. Fourth, our cohort is very heterogeneous. Future
studies need to consider the stratification of the population with common characteristics
to minimize inter-individual variations and improve the predictive value. The present
study has several strengths. First, to our knowledge, this is the first targeted metabolomics
study on MetS in the Mexican population. The population study involved in this study
includes men and women, which raises the consistency of our results. Second, some of
the metabolites (e.g., glycine and AC10) identified in this analysis have been previously
related to serum glucose levels and central obesity, components of MetS. This reference
supports the confidence of our findings and could represent a good and exciting metabolite
set related to MetS. Further studies, including a larger group of men and a broader panel of
metabolites, are needed to confirm our results and clarify possible molecular pathways for
associations detected between identified serum metabolites, fat mass, and MetS.

5. Conclusions

In summary, we used a targeted metabolomic analysis to identify plasma metabolic
profiles in MetS patients. We found two ACs (AC2 and AC10) and two amino acids
(glycine and arginine) that showed good potential to distinguish MetS patients from
healthy individuals. We found in this study that ACs and amino acids are biomarkers
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that possibly provide a risk prediction and a novel tool for monitoring disease progression.
Given the increase in the prevalence of MetS observed in the Mexican population, studies
investigating the incidence of MetS and its characteristics from the point of view of omics
technologies will be essential to unravel the pathophysiological mechanisms underlying the
disease. Further studies should focus on evaluating the role of body fat in early metabolic
health, insulin resistance, UA levels, and their role in the development of MetS.
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Appendix A

Proline Levels and Glucose Tolerance

Women with lower glucose tolerance have significantly higher concentrations of
proline. In the men group, regardless of the presence of MetS, no significant changes were
observed in proline concentrations relating to glucose tolerance.

Table A1. Proline concentration according to glucose tolerance.

<45 Years ≥45 Years

No Intolerance No Intolerance T2D

Males 256.4 ± 18.48 294.6 ± 27.40 210.7 ± 8.60 237.7 ± 13.76 238.3 ± 11.58
Females 197.8 ± 60.51 239 ± 63.48 * 200.5 ± 64.21 b 205.3 ± 61.75 b 223.2 ± 59.02 a

* Females < 45 years: None vs. Intolerance; Different letters indicate significant differences among groups
(Females ≥ 45 years). p ≤ 0.05.
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