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Abstract

Surface-enhanced Raman scattering (SERS) nanoparticles have been engineered to generate unique fingerprint spectra and
are potentially useful as bright contrast agents for molecular diagnostics. One promising strategy for biomedical diagnostics
and imaging is to functionalize various particle types (‘‘flavors’’), each emitting a unique spectral signature, to target a large
multiplexed panel of molecular biomarkers. While SERS particles emit narrow spectral features that allow them to be easily
separable under ideal conditions, the presence of competing noise sources and background signals such as detector noise,
laser background, and autofluorescence confounds the reliability of demultiplexing algorithms. Results obtained during
time-constrained in vivo imaging experiments may not be reproducible or accurate. Therefore, our goal is to provide
experimentalists with a metric that may be monitored to enforce a desired bound on accuracy within a user-defined
confidence level. We have defined a spectral reliability index (SRI), based on the output of a direct classical least-squares
(DCLS) demultiplexing routine, which provides a measure of the reliability of the computed nanoparticle concentrations and
ratios. We present simulations and experiments to demonstrate the feasibility of this strategy, which can potentially be
utilized for a range of instruments and biomedical applications involving multiplexed SERS nanoparticles.
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Introduction

The field of biomedical optics has traditionally approached

disease detection by deducing tissue status through the measure-

ment of optical signals generated either intrinsically by tissue

constituents [1–12] or extrinsically by targeted probes with known

signatures [13–23]. In particular, diagnostic approaches involving

both intrinsic and extrinsic Raman scattering have seen much

success owing to the sharp separable features of Raman spectra.

Intrinsic Raman spectroscopy has been demonstrated to identify

malignant tissues with high sensitivity and specificity [2,6,8,10]

and has also enjoyed the benefit of expedited regulatory approval

since no external contrast agent is necessary. [8,9,11,12].

However, the spectral features of diagnostic value in intrinsic

Raman detection are generated by highly conserved chemical

constituents such as hydrocarbon, lipid, or nucleic acid bonds,

which may be difficult to relate to pathological or clinical

variables. Additionally, the acquisition time for intrinsic Raman

spectroscopy is necessarily long given the low efficiency of Raman

scattering and therefore presents a practical challenge for clinical

diagnostics and imaging.

Recently, a number of groups [13–19,21,23] have explored the

use of surface-enhanced Raman-scattering (SERS) nanoparticles

that are engineered to emit bright distinct spectra (Fig. 1). These

Raman-coded nanoparticles are available as different ‘‘flavors,’’

each emitting a characteristic spectral signature that may

potentially be targeted against various molecular biomarkers for

highly multiplexed molecular imaging. However, determining the

reliability of particle concentrations or concentration ratios

computed by spectral demultiplexing algorithms is a non-trivial

challenge facing experimentalists since other signals such as

detector noise, incomplete removal of excitation photons (laser

background) and autofluorescence background degrade the

accuracy of demultiplexing routines, especially as spectral overlap

becomes a concern with increasing numbers of flavors competing

within a limited spectral bandwidth.

Therefore, in this report, we propose a general method for

quantifying the reliability of particle concentrations and ratios that

are computed from a least-squares demultiplexing algorithm. First,

this method is developed through numerical simulations of various

mixtures of SERS nanoparticles in the context of noise and

background signals. We define a metric, the spectral reliability

index (SRI), which serves as a predictor of error in single- and

multi-flavor applications. We further provide results from well-

controlled experiments to assess the feasibility and accuracy of our

approach. While initial experiments are intentionally simplified to

verify the accuracy and reproducibility of these methods, our

strategy could potentially be of value for a range of technologies

that utilize targeted SERS-based nanoparticles to provide multi-

plexed measurements of molecular biomarkers both in vitro and

in vivo.
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Methods

Since our ultimate goal is to provide experimentalists with a

reliable measure of nanoparticle concentrations or concentration

ratios, we set out to simulate spectral measurements of SERS

nanoparticles under the varying noise and background conditions

that may be encountered experimentally. Simulated spectra were

generated first for single-flavor applications, then for two-particle

applications where the relative concentrations between particle

flavors ranged from 1:1 to 5:1, and finally for two-flavor ratios

within three-flavor mixtures. The rationale for a 5:1 maximum

range of relative nanoparticle concentrations is based on the

observation that signal contrast between tumor and normal tissues

rarely extends beyond a factor of five for in vivo preclinical and

clinical molecular imaging studies [14,24,25].

It bears mentioning that actual measurements of SERS

nanoparticles in cells and tissues can include endogenous Raman

background signals from tissues as well as variable autofluores-

cence and laser background components. With this in mind, our

study makes a few assumptions that are often relevant for

biomedical spectroscopy with SERS nanoparticles: 1) background

signals are spectrally broadband and do not contain sharp

narrowband spectral features that are morphologically similar to

the spectral peaks generated by SERS nanoparticles (i.e., we

assume that endogenous Raman signals are orders of magnitude

weaker than the signals from SERS nanoparticles); 2) since the

Stokes shift of Raman signals is higher than fluorescence signals,

autofluorescence background signals are due to the slowly varying

(broadband) tail at the long-wavelength side of the autofluores-

cence spectra; 3) a significant amount of stray laser light

contributes to a broadband background at the CCD detector

despite efforts taken to filter out the illuminating laser radiation

(see section 2.5).

2.1. Spectral Simulations
In order to simulate a realistic spectral measurement, pure

spectra from single- or multi-flavor particle mixtures were mixed

with varying magnitudes of broadband background signals and

zero-mean Gaussian-distributed white noise (Eq. (1)). Note that

Eq. (1) incorporates all broadband background signals (e.g. laser

background and autofluorescence background) into a single

spectral component, B. Furthermore, Eq. (1) combines shot noise

and other stochastic noise sources (e.g., detector readout noise and

dark counts) into a single Gaussian-distributed noise term, denoted

d. See Supplementary Material for example source code (Source S1).

X~
X

n

cn
:FnzkBzd ð1Þ

X = simulated spectrum

cn = concentration of SERS nanoparticle n

Fn = known reference spectrum of SERS nanoparticle flavor n

k = scaling factor for background signal magnitude

B = known reference spectrum of broadband background

d = noise

2.2. Demultiplexing SERS Spectra using DCLS
Other than sources of noise, it is assumed that each measured

spectrum consists of a weighted sum of fixed nanoparticle spectra

(Fn) and broadband background signals (B). Based on the

assumption that the combination is linear, we employ a linear

least-squares algorithm in MATLAB (MathWorks) to compute the

relative nanoparticle weights (wn). A third-order polynomial is

included to account for broadband background signals that are not

captured by the broadband noise reference spectrum (B) [26]. See

Supplementary Material for example source code (Source S2).

S~
X

n

wn
:FnzkBz

X
m

am
:PmzR ð2Þ

S = measured spectral data

wn = weight of SERS flavor n

Fn = known reference spectrum of SERS nanoparticle flavor n

k = scaling factor for background signal magnitude

B = known reference spectrum of broadband background

am = weight of mth-order polynomial term

Pm = mth-order polynomial term (for baseline correction)

R = residual (minimized by least-squares algorithm)

2.3. Quality Metrics
Below we describe metrics called ‘relative fitting error’ (RFE)

and ‘spectral reliability index’ (SRI). RFE and SRI are ‘‘goodness-

of-fit’’ metrics that quantify how well the simulated spectra can be

decomposed into the reference spectra defined a priori.

A common approach to quantify the reliability of a spectral

fitting routine is to compare the norm of the fit to the norm of the

Figure 1. Surface-enhanced Raman scattering (SERS) nanoparticles. (a) Multiple flavors of nanoparticles exist where each nanoparticle
contains a gold core coated with a Raman-active layer, encased in a silica shell. (b) Raman spectra of five nanoparticle flavors. (c) Example result from
a least-squares routine showing the ability to demultiplex two different nanoparticles from a mixture under noisy conditions.
doi:10.1371/journal.pone.0062084.g001
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input signal, a metric that has previously been termed the relative

fitting error, RFE, given in Eq. (3) [27]. An RFE of 1 indicates a

perfect fit and approaches zero as the fit degrades (i.e. the optimal

fit lacks the ability to represent the input signal as a linearly

weighted sum of the references supplied). However, in cases where

the particle signals are weak in comparison to the broadband

background signals, the reported RFE may be biased towards 1

due to the fact that the background and baseline signals are fit with

high fidelity even if the fit for the nanoparticle components is poor.

We therefore modify the RFE metric to ignore non-particle

components so that they do not contribute to the apparent

reliability of the least-squares fit. We call this modified measure the

spectral reliability index (SRI), as shown in Eq. (4).

RFE~
S{Rk k

Sk k ð3Þ

SRI~

S{R{ kBz
P
m

am
:Pm

� �����
����

S{ kBz
P
m

am
:Pm

� �����
����

ð4Þ

Although both RFE and SRI are informative consolidated

measures of goodness of fit, the biomedical application of these

fitting algorithms requires us to examine errors in the actual

nanoparticle weights computed. For single-particle cases, we use

the standard percent error definition. In cases with more than one

particle, we compute each individual particle’s error and generate

a single value that we call the composite error for the entire

mixture (Eq. (5)). This will be discussed further in section 2.4.

Composite error for n flavors

~100:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

wi,computed {wi,actual
wi,actual

� �2

n

vuuut ð5Þ

An example of the difference between RFE and SRI is shown in

Fig. 2. In this example, varying levels of noise, d, are

superimposed on a fixed-magnitude spectrum representing the

pure Raman signals from two SERS nanoparticle flavors. In

addition, these simulated spectra contain either a low magnitude

of a broadband background, B, or an order-of-magnitude higher

level of background, 10B. Increasing levels of noise (d) in the

simulated spectra result in degraded spectral quality and lower

levels of the quality metrics, RFE and SRI. However, the

simulation demonstrates that SRI is relatively insensitive to the

magnitude of the broadband background. In contrast, the RFE is

highly sensitive to the background level and is biased towards 1

when this background dominates the signal. In other words, the

RFE does not provide a good indication of the ‘‘goodness-of-fit’’ of

the SERS particles themselves. Rather, the RFE indicates a

‘‘goodness-of-fit’’ for a spectrum as a whole, which can be

dominated by background components instead of the components

of interest (SERS nanoparticles).

2.4. Measurement Error and Confidence
In an ideal situation, an experimentalist would obtain a single

measurement and assume that the nanoparticle weights computed

by a DCLS routine are accurate and reproducible in subsequent

measurements. In reality, the randomness of the noise and

broadband background signals results in a distribution of

measurement errors. Thus, the goal of our simulations is to

provide researchers with a minimum necessary SRI value to

guarantee a maximum bound on concentration error (e.g., 10%

error for any single measurement). To achieve this, a measure of

confidence must be assigned to the maximum bound on

concentration error that is desired for a single measurement. We

first note that the concentration errors generated by the DCLS

routine are normally distributed (Gaussian) for any single

nanoparticle flavor. Second, we define a composite error for

multi-flavor mixtures, which is the root-mean-squared error of all

nanoparticle flavors (Eq. (5)). Defining the composite error in this

way implies that the composite error for a mixture of nanoparticle

flavors (n .1) is described by a gamma distribution [28].

In order to assign a level of confidence to the error of a single

measurement that an experimentalist may perform, we simulate

50,000 spectral measurements corresponding to a particular SRI,

process them through a DCLS demultiplexing routine, and then

construct a histogram of concentrations errors (results shown later

in section 3.2). After fitting a Gaussian (n = 1 flavor) or gamma (n

.1 flavor) distribution to this histogram of concentration errors,

the error value, e80, corresponding to a certain percentile (in our

case, 80%) of the cumulative distribution function is found. In

other words, since 80% of the possible error values corresponding

to a particular SRI are less than this error value, e80, an

experimentalist who has taken a single measurement and obtained

an SRI value from the DCLS routine can be 80% confident that

the error in their measurement is at most e80 (results shown later in

section 3.2).

Figure 2. Quality Metrics. Simulations of composite error as a
function of two different spectral quality metrics, RFE (Eq. (3)) and SRI
(Eq. (4)). Note that the RFE metric is highly sensitive to the broadband
background level (B vs. 10B) whereas the SRI metric is relatively
insensitive to these variations in background and provides a better
indication of the ‘‘goodness-of-fit’’ for the SERS nanoparticles them-
selves.
doi:10.1371/journal.pone.0062084.g002
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2.5. In Vitro Experiments
Various flavors of SERS nanoparticles were obtained from

Cabot Corporation, formerly Oxonica Materials (Mountain View,

CA). Droplets (5 mL) of varying nanoparticle concentrations and

mixtures between 0.8 and 800 pM were placed on a glass slide and

point measurements were obtained using a custom fiberoptic

probe (Fiberguide Industries, Stirling, NJ) that is angled at ,45

degrees to the glass slide to minimize specular reflections. On the

illumination side of the device, light from a 785-nm diode laser

(30 mW) is first filtered with a narrow-bandpass filter (Semrock,

LD01-785) prior to being coupled into the illumination fiber at the

center of the fiber bundle. This removes off-resonant laser noise

(including amplified spontaneous emission) that may be collected

by the multimode fibers and contribute background signal and

shot noise to the Raman spectra. Raman signals are collected via a

bundle of 36 close-packed multimode fibers (200-mm core)

surrounding one singlemode illumination fiber (Fig. 3a). These

multimode fibers are reconfigured into an 8-mm tall linear array at

the proximal end of the bundle, which serves as the entrance slit

into a spectrometer.

Experiments are performed with a custom spectrometer from

Bayspec (RamSpec NIR) outfitted with a cooled deep-depletion

spectroscopic CCD (Andor DU920P-BR-DD). The Bayspec

spectrograph utilizes low-f/# optics (f/1.8 or NA = 0.28) to

effectively image Raman signals from the multimode collection

fibers (NA = 0.21) onto a proprietary volume phase grating and

then onto the Andor CCD. The Andor DU920P CCD contains

1024 x 256 pixels, with a 6.2-mm height (256-pixel dimension)

that is exactly matched to the height of the image of our linear

fiber bundle array with 4:3 de-magnified imaging between the

entrance slit and the CCD detector (the NA increases from 0.21 to

0.28). Since a large amount of the laser light (785-nm illumination

wavelength) is collected by our multimode collection fibers, a relay

extension is built into the front of the spectrograph to allow for the

placement of a longpass interference filter (Semrock LP02-830RU-

25) to reject illumination light at 785-nm, as well as any

autofluorescence background at shorter wavelengths than the

Raman peaks (,830-nm). This 4:3 demagnification relay exten-

sion contains a 150-mm slit on the far end where the image of the

linear array of fibers is refocused. This slit spatially filters out the

diffuse stray light in the relay chamber from photons that are

rejected by the longpass filter (Fig. 3a). However, this spatial filter

is not perfect and still allows a significant amount of stray laser

light into the spectrometer, which contributes to the broadband

background seen by the CCD.

The reference spectra of the nanoparticles (Fn) as well as the

background reference spectrum (B) are background-corrected to

remove detector offset due to readout noise. Spectra are acquired

through full-vertical binning of the pixels in each column of the

CCD using the full dynamic range of the CCD sensor to minimize

digitization noise. For experimental validation of simulations,

particle concentrations are varied to monitor the effect of

background and detector noise on the accuracy of demultiplexing.

Note that at our measurement conditions (full vertical binning at

100 ms integration times), using a cooled detector at 265 deg C,

detector readout noise dominates over dark counts (thermal noise).

Deeper cooling may be necessary to suppress dark counts at longer

integration times, at the expense of a slightly reduced quantum

efficiency in the near infrared. Figs. 3b and 3c show two

Figure 3. Measurement apparatus. (a) A spectrometer with CCD detector is used to capture Raman signals from a nanoparticle sample
illuminated with a 785-nm laser source. See text for details. (b) Example of a strong signal with a high SRI and (c) a weak signal with a lower SRI, in
which noise and broadband background signals increasingly dominate over the SERS signals. Representative SERS peaks are numbered 1–4 and the
peak of the broadband background is labeled with a star.
doi:10.1371/journal.pone.0062084.g003
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example spectra obtained experimentally at high and low particle

concentrations, respectively, along with the least-squares fitted

spectra (S). Note that in the low-concentration condition shown in

Fig. 3c, the spectral features from the SERS nanoparticles are

increasingly obscured by the broadband background and noise

(detector readout noise and shot noise).

Results and Discussion

3.1. Single-flavor Concentrations: Simulations and
Experiments

Experiments were first conducted with single nanoparticle

flavors at various concentrations. Fig. 4a demonstrates the

linearity of these measurements. Fig. 4b shows the normal

distribution of errors for 5000 experimental measurements at a

specific particle concentration. The shaded region indicates the

range within which 80% of the errors lie (e80). Finally, Fig. 4c
shows how the percent error (at 80% confidence; e80) varies as a

function of SRI. A comparison between simulations and exper-

iments (Fig. 4c) reveals excellent agreement and demonstrates the

predictive power of the simulations. We find that for any single

measurement in this particular experiment, spectral data with an

SRI of 0.57 is necessary to guarantee an error #10% with 80%

confidence.

3.2. Dual-flavor Concentrations: Simulations and
Experiments

Next, a dual-flavor mixture is analyzed through simulations and

experiments (Fig. 5). In Fig. 5a, simulated histograms are shown

of composite errors for a dual-flavor mixture of nanoparticles.

Note that the composite-error histograms obey a gamma

distribution, as described previously, and that we choose to use

the 80th percentile (80% confidence level) for our analyses (e80). By

constructing composite-error histograms (e.g. Fig. 5a) over a

range of SRI conditions, we calculate how composite error varies

as a function of SRI. In Fig. 5b, both a 1:1 equimolar mixture as

well as a 5:1 mixture of particle flavors is simulated and

experimentally validated at a range of concentrations (and

subsequently a range of SRI values). Note that a higher SRI is

required for a 5:1 mixture, compared to a 1:1 mixture, to

guarantee an identical requirement for error of #10% with 80%

confidence. This is due to the fact that in the 5:1 case, although the

lower-concentration flavor is fit with less fidelity than the higher-

concentration flavor, the latter component dominates the overall

spectrum and therefore dominates the SRI value as well. Fig. 5c is

Figure 4. Spectral quality characterization of single-flavor samples. (a) Weights returned by the least-squares routine are linear over the
range of measured concentrations. (b) Errors from multiple measurements of the same single-flavor sample are normally distributed. Shaded region
indicates where 80% of the errors lie. (c) A plot of error vs. SRI, in which the reported error is the 80% confidence bound (e80). The simulations agree
well with the results found experimentally.
doi:10.1371/journal.pone.0062084.g004
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a plot (simulation) of the minimum SRI that is required to

guarantee a composite error of #10% with 80% confidence, over

a range of mixture ratios between two particle flavors (from 1:5 to

5:1). This plot shows how the minimum required SRI depends on

the mixture ratio. In other words, in order to calculate the

minimum SRI necessary to ensure a desired level of accuracy, one

must also take into account the relative ratio of the particle flavors.

This will be further elaborated in section 4 of this paper.

3.3. Triple-flavor Ratios: Simulations and Experiments
Finally, a triple-flavor mixture is investigated via simulations

and experiments, and the error in the concentration ratios is

presented (Fig. 6). In practice, the ratio between various

nanoparticle flavors is likely to be more important than absolute

concentrations for in vivo molecular imaging studies. This is due to

the fact that with both topical and systemic delivery, absolute

particle concentrations are affected by a host of nonspecific effects,

such as uneven particle delivery and washout of unbound probes,

non-chemical enhanced-permeability-and-retention (EPR) effects,

nonspecific chemical binding, as well as variations in optical

alignment and working distance. Ratiometric measurements of

particles targeted against various biomarkers that are referenced

against nontargeted control particles offer the ability to quantify

specific vs. nonspecific binding in spite of these confounding

Figure 5. Spectral quality characterization of two-flavor mixtures. (a) Composite errors for multi-particle mixtures are gamma-distributed.
Vertical lines indicate bounds for the 80th percentile of error values (e80) that may occur for a particular SRI. (b) A plot of error (e80) vs. SRI for a 1:1
mixture of particle flavors and a 5:1 mixture of flavors. Simulations (solid lines) closely predict experimental results. (c) A plot of the minimum SRI
required to ensure a composite error #10% with 80% confidence. This dual-flavor example shows how the minimum SRI value depends upon the
mixture ratio.
doi:10.1371/journal.pone.0062084.g005

Figure 6. Spectral quality characterization of three-flavor
mixtures. The plot shows percent error (e80) in the ratio between
particle flavors as a function of SRI.
doi:10.1371/journal.pone.0062084.g006
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factors [29] as well as to quantify binding potentials [30].

Therefore, in a multiplexing application involving n targets, it is

typically desirable to include an untargeted (nonspecific) negative

control agent to serve as a single reference for the n targeted

particles. Figure 6 demonstrates a three-particle simulation and

experiment where one particle in the mixture (S440) is assumed to

be a negative control for a weak target (S421) as well as a strong

target (S420). The weak target does not exhibit elevated expression

relative to the negative control (1:1 ratio) whereas the strong target

exhibits a 5-fold overexpression relative to the negative control.

Summary and Conclusions

In summary, we have presented an analysis of the accuracy of

least-squares demultiplexing for spectral measurements of SERS

particle mixtures. In particular, we have proposed and demon-

strated the feasibility of a spectral reliability index (SRI) that

correlates with measurement accuracy. The flowchart shown in

Fig. 7 illustrates how the SRI may be employed to ensure desired

measurement accuracy in a multiplexed molecular imaging study

with SERS nanoparticles. The required inputs for this reliability

analysis are: 1) raw spectra acquired from a Raman detection

probe; 2) reference spectra (Fn) of nanoparticle flavors; 3) reference

spectrum (B) of the background; and 4) a user-defined error

threshold (a maximum error at a defined confidence level). A

DCLS fitting algorithm takes the first 3 inputs listed above and

computes a number of parameters, including the weights (wn) of

the SERS particle flavors and the ratios between flavors. The

results of the DCLS algorithm are also used to calculate an SRI for

each spectral measurement according to Eq. (4). The main

decision point depicted in the flowchart (purple diamond) involves

taking the computed SRI, along with the computed particle ratios,

to determine if the data satisfies the user-defined reliability criteria.

Note that both the SRI and the particle ratios are needed to make

this determination, as shown earlier in Fig. 5c, since measurement

accuracy is a function of both.

In practice, a set of look-up tables could be generated through

simulations in order to establish the relationships between error vs.

SRI and particle ratios. This would allow one to rapidly assess the

reliability of spectral demultiplexing measurements in real time.

These simulations and look-up tables would be different for every

device, experimental application (e.g., number of particle flavors),

and user-defined error threshold since the relationship between

error and SRI depends upon all of these instrument- and

application-dependent factors. However, the general algorithm

depicted in the flow chart in Fig. 7 applies for a range of

Figure 7. Algorithm summary. A flowchart illustrating how SRI may be used in practice to ensure that a SERS-based multiplexed molecular
diagnostic is reliable. See text for details.
doi:10.1371/journal.pone.0062084.g007
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applications utilizing SERS-coded nanoparticles for multiplexed

molecular diagnostics. If spectral data do not satisfy the user-

defined reliability criteria, the data may be discarded or the

experiments may need to be repeated to improve the quality of the

data, possibly through averaging or by changing system param-

eters (e.g., detector integration times, laser powers, etc.).

As SERS-coded nanoparticles gain popularity in animal studies

and eventually for clinical diagnostics, the reliability of demulti-

plexing algorithms will need to be constantly assessed. Although

spectroscopy is powerful in its ability to convey large amounts of

information, performing accurate spectroscopic measurements is

far from trivial. It has been our intent to develop a general metric

and algorithm for rapidly assessing the experimental accuracy of

spectral measurements involving multiplexed SERS nanoparticles.

While we have performed simulations and experiments to

demonstrate the basic feasibility of this approach using well-

controlled experimental conditions under the simplifying assump-

tions mentioned in section 2, future studies are needed to

demonstrate the accuracy and utility of these methods in a variety

of biomedical applications such as in vitro diagnostics or in vivo

molecular imaging.

Supporting Information

Source S1 Simulating acquired spectra.
(M)

Source S2 Demultiplexing experimentally-acquired
spectra.
(M)
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