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Abstract

Boolean networks have been used as a discrete model for several biological systems, including metabolic and genetic
regulatory networks. Due to their simplicity they offer a firm foundation for generic studies of physical systems. In this work
we show, using a measure of context-dependent information, set complexity, that prior to reaching an attractor, random
Boolean networks pass through a transient state characterized by high complexity. We justify this finding with a use of
another measure of complexity, namely, the statistical complexity. We show that the networks can be tuned to the regime
of maximal complexity by adding a suitable amount of noise to the deterministic Boolean dynamics. In fact, we show that
for networks with Poisson degree distributions, all networks ranging from subcritical to slightly supercritical can be tuned
with noise to reach maximal set complexity in their dynamics. For networks with a fixed number of inputs this is true for
near-to-critical networks. This increase in complexity is obtained at the expense of disruption in information flow. For a large
ensemble of networks showing maximal complexity, there exists a balance between noise and contracting dynamics in the
state space. In networks that are close to critical the intrinsic noise required for the tuning is smaller and thus also has the
smallest effect in terms of the information processing in the system. Our results suggest that the maximization of
complexity near to the state transition might be a more general phenomenon in physical systems, and that noise present in
a system may in fact be useful in retaining the system in a state with high information content.
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Introduction

Dynamical systems theory is being developed to understand

temporal behavior of complex systems. Groundlaying studies of

dynamical systems range from modeling of, e.g., genetic [1],

neuronal [2], and ecological [3] networks to structural analyses of

complex networks [4–6]. Results obtained for the function of a

dynamical network of a particular type are always subject to the

temporal behavior of the underlying dynamical units, which vary

substantially between objects of interest [7]. To this end, Boolean

network models have been used as a generic tool to study a wide

range of fundamental properties of dynamical systems. These

include features of attractor structure [8], information propagation

and processing [9–11], dynamical regimes [12], structure-function

relationship [13], and the ability to store information [14,15].

Although many of these aspects can be studied with a range of

other models (e.g., [16]) the strength of Boolean networks is that

they are based on simple building blocks that can give rise to

varied dynamics [17]. Random networks can be generated in such

a way that changing one or two parameters in how the networks

are generated makes the resulting network dynamics ordered,

critical, or chaotic [8]. Aspects of Boolean network dynamics have

been suggested as a model of biological network dynamics, such as

cell types determined in part by genetic regulatory networks [18],

and they have later proved efficient in, e.g., correctly reproducing

observed gene expression patterns [19].

A recent development in the field of information theory is the

normalized information distance [20], which can be applied to any

two objects stored on a computer (e.g., genome sequences,

networks, or state representations). This distance uniquely specifies

the informational difference between two objects and is defined in

terms of the Kolmogorov complexity. The Kolmogorov complex-

ity [21], K(x), of an object x is defined to be the length of a shortest

program to output x on a universal computer (i.e., on an all-

purpose machine). Intuitively, K(x) represents the minimal amount

of information required to generate x by any effective process and

can be thought of as the ultimately compressed form of x.

Although the normalized information distance, like the Kolmo-

gorov complexity itself, is not computable, it can nonetheless be

effectively approximated by using real-world data compressors.

Recently, a context-dependent measure of information, set

complexity, has been applied to quantify various aspects of network

topology and dynamics [22,23]. This measure assesses the

complexity of a set of strings in such a way that the approximate

Kolmogorov complexities of the strings are balanced by a function

of the pairwise normalized information distances within the set.

The motivation for this context-dependent measure of information

is that it should be able to quantify the total amount of non-

redundant information, rather than the overall complexity of the

data. This means that while a standard measure of information,

such as Kolmogorov complexity, is maximized for random data,
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the set complexity quantifies the trade-off between randomness

and identically repeated symbols.

The complexity of Boolean networks has hitherto been analyzed

using many approaches. These include, e.g., the computational

complexity of a Boolean network circuit [24,25], the entropy of the

basins of attractors [9], and the statistical complexity of the steady

state of a network or the complexity of single nodes averaged over

time [26]. However, the temporal complexity of the Boolean

network dynamics is still poorly understood. How does the

complexity of Boolean network dynamics vary in time? To what

extent does the complexity change when settling to an attractor? If

there are processes that allow transitions between attractors, how

do they affect the complexity? Is it by any means feasible to assess

the temporal complexity of Boolean networks? In our earlier study

[27] we shed light on some of the questions by applying the set

complexity measure to successive states of Boolean networks. We

found that the complexity of the dynamics was temporally

maximized near a transition to an attractor. This raised many

more questions, most important ones being whether this

phenomenon is real and whether the stage of maximal complexity

could be prolonged by introducing noise to the network. In the

present work we justify our findings using another complexity

measure, namely, the statistical complexity, which was originally

presented in [28] and refined in a series of papers by Shalizi

[29,30]. We also show that the high complexity can indeed be

retained just by tuning the system with a suitable amount of noise.

Noisy Boolean networks have been extensively studied with an

aspect to robustness and stability of the attractor states [31–33]. In

this work we employ the white noise model used in e.g. [31]. The

noise imposes a challenge for the information processing and

storage, and hence, we also consider the noise-induced disruption

in information flow in different networks with variable levels of

noise. We show that the networks near the critical regime can most

easily be added a noise component that elevates the steady-state

complexity value without making the dynamics too random.

Results

Complexity of noiseless Boolean network dynamics is
temporally maximized prior to an attractor

To attain the quantification of temporal complexity, we start by

reprising the study on dynamical complexity in [27], now in the

context of noiseless Poisson networks. Fig. 1 shows the complexity

of Poisson network dynamics as a function of time. Poisson

networks with different expected number of neighbors SKT obtain

statistically different dynamical complexities. As seen in [27] with

fixed-K networks, Fig. 1 shows that the critical (SKT~2) networks

possess a transient state where the set complexity of the dynamics is

maximized, and which is followed by a descent to an attractor level

value. The transient state is also observed in the slightly subcritical

(SKT~1:5) network, but not in the slightly supercritical

(SKT~2:5) network. The dynamical complexity in highly

subcritical (SKT~1) networks is quickly reduced to a steady low

value that represents attaining a short cycle attractor, whereas the

supercritical (SKT~2:5, 3) networks seldom reach an attractor by

the end of the simulation. Due to long transition period the

dynamics of slightly supercritical (SKT~2:5) networks seem to

exhibit higher steady-state complexity than critical networks

(Fig. 1). This is consistent with the finite size network results

reported by [11].

For reference, let us consider the extreme values for set

complexity empirically. The distribution of LZMA-estimated

values of C(x), where x is a random binary string of length

N~1000, is well approximated by a Gaussian distribution with

mean 224.14 and standard deviation 2.96 (data not shown) — the

maximum value we came across among all data of the present

work was 238. Thereby, Eq. 2 can be used to infer the maximal set

complexity value for networks of this size as Smax~59:5&60, as

the theoretical minimum is Smin~0. Fig. 1 shows that the range of

all possible set complexity values is fairly well covered by the

complexity values of RBN dynamics.

A moderate amount of noise elevates the complexity of
the network dynamics

To model the dynamical behavior under noisy conditions, we

study the effect of nonzero flip probability p. Fig. 2 shows

complexity trajectories of noisy networks with zero, moderate, and

high levels of noise. One can observe that for a moderate level of

noise the set complexity value does not fall to a low value that is

typical to a regime of noiseless ordered dynamics.

To explain this observation, we can analyze Eq. 2 to gain an

insight into how the differences in the set complexity values arise.

One can find three different causes for high values of set

complexity. Firstly, the average Kolmogorov complexity
1

N

X
k

C(xk) of the strings may be high, implying higher values

for set complexity. Secondly, the average value of the function of

NCDs (
1

N(N{1)

X
k

X
j=k

djk(1{djk)) may be high, likewise

increasing the set complexity. Greatest set complexities are

attained when the values of NCD (djk) are as close as possible to

0.5, which maximizes the inline function d(1{d). Third cause

would be a combinatory effect of these two such that, although the

mean values of both mentioned quantities were relatively small,

there may be a few strings xk with high Kolmogorov complexity

C(xk) that lie on average on a distance of 0.5 from most of the

other strings and hence raise the set complexity value. In Poisson

networks the Kolmogorov complexities C(xk) show little variation

across both time and network realizations as each string is,

ultimately, a random binary string with equal probabilities of 0

and 1. Therefore, the high values of set complexity must be due to

the values of NCD being close to 0.5. Fig. 3 shows the evolution of

the NCD distributions through time and explains the differences

observed between the set complexity curves of critical networks in

Fig. 2.

The temporal rise and descent of the complexity in Boolean

networks is not a property of the set complexity measure only. In

fact, we can observe similar behavior using a measure of statistical

complexity [30]. In this approach, the complexity is estimated as the

logarithm of the number of causal states of the system. The causal

states are unions of such past configurations that produce equal or

almost equal distribution of the future configurations. These

distributions have to be estimated from the data. The method is

not as such applicable to our network types, as even the fixed-K

networks have variation in the out-degree of the nodes. However,

the fixed-K networks can be modified with minimal changes to

produce fixed out-degree as well, and this allows the use of

statistical complexity measure, yet only in the case where past and

future are considered no more than one step away from the

present. Fig. 4 shows the statistical complexity time series for such

‘‘fixed-Kin-Kout’’ networks.

Let us next quantify the difference between the networks with

varying level of noise that can be observed in Fig. 2. We estimate

the average set complexity of the ‘‘steady state’’ of the network,

which we consider, in networks of this size, all but the first 100

time steps of the simulation. Fig. 5 shows the median of steady-

state set complexities in Poisson networks and fixed-K networks

with K~3. The set complexities are lowest in the regime of the
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Figure 1. Set complexity time series for random Poisson Boolean networks shows temporal maximum prior to reaching the
attractor in several networks with different mean number of inputs SSKTT. (A–B): Set complexity trajectories of single simulations of SKT~1
(A) and SKT~2 (B) networks. The first arrivals to the attractor are marked with stars. (C) The median set complexity of 100 simulation results for five
different SKTs. The stars above the curves show the median of the time instant of first arrival to the attractor.
doi:10.1371/journal.pone.0056523.g001

Figure 2. Noise can maintain the network in a high-complexity state. (A–B): Set complexity trajectories of single simulations of SKT~2

Poisson networks with moderate (p~2{8 , A) and high (p~1:25:2{5, B) levels of noise. (C): Medians of set complexity trajectories for noisy Poisson
networks with different degrees SKT and flip probabilities p. The complexity trajectory of the maximally noisy network that is identical for all SKT is
plotted in grey. 100 independent samples were used.
doi:10.1371/journal.pone.0056523.g002
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most ordered dynamics (low sensitivity s, low flip probability p).

Another stable set complexity value is found in the other extreme,

where the dynamics is either chaotic (large s) or random (p near to
1

2
), or both. Between these two extremes lies a region where the set

complexity is actually higher than either of these extremes. The

existence of this region is consistent for different system sizes

(validated with N~750 and N~2000, data not shown). A

corresponding plot of statistical complexity in fixed-Kin-Kout

networks can be found in supplementary data (Fig. S1).

We can observe that among fixed-K (K~3) networks the ones

near the critical network, which by Eqn. 1 is obtained by choosing

the bias as q~
1

2
{

ffiffiffiffiffi
1

12

r
&0:2113, produce the maximal steady-

state complexity. One can also observe that among Poisson

networks one always finds a suitable noise level to obtain a near-to-

maximal steady-state complexity (w55) as long as the sensitivity is

restricted (sv*1:1). Qualitatively the same result can be obtained

with asynchronous random Boolean networks, as Fig. 6 shows.

What is rather non-intuitive about Figs. 5 and 6 is the high

complexity of noisy low-SKT Poisson networks, where a large

proportion of the nodes receive zero inputs. The dynamics of these

nodes are purely an effect of the noise that occasionally pushes the

nodes from their constant output. The effect they have on the set

complexity values of the dynamics is twofold. Firstly, from the

temporal aspect these nodes lie somewhere between chaos and

order, as they most of the time have constant value but may

change their value temporarily. Secondly, although the surround-

ing nodes do not affect the dynamics of these nodes, these nodes

might still output to other nodes, and hence the noisy nature of

these nodes may contribute to the rest of the system. Clearly, we

would like to diminish the first-mentioned effect without removing

the latter aspect. Therefore, we repeat the set complexity

calculation of Fig. 5, but neglect the nodes that we know to

receive no input from the system. In other words, the dynamics of

the system remains untouched, but the complexity is calculated

only over those nodes that receive one or more inputs. Fig. 7 shows

the steady state set complexity values of such networks. One can

observe that the set complexity value for networks approaches zero

as SKT?0, which is due to the ever shortening strings xj — and

ever diminishing Kolmogorov complexity C(xj). What remains

unchanged from Fig. 5 is the high complexity of networks near to

criticality, where the critical and subcritical networks have to be

tuned with moderate level of noise in order to obtain the maximal

complexity and the slightly supercritical networks attain it with no

or little noise. One should note that in order to perform the

complexity analysis in this way we need external information on

the network structure, in the minimum the notion on which nodes

do not have any inputs. By contrast, when we assess the set

complexity of the dynamics using all available nodes, no

information on the structure of the network is required.

How great are these mentioned ‘‘moderate’’ levels of noise? In

critical SKT~2 Poisson networks the maximal steady-state set

complexity was attained with flip probability p~2{8, while in

subcritical SKT~1 and SKT~0 networks it is attained with

p~1:5:2{6 and p~1:25:2{5, respectively (Fig. 5). In the system

size N~1000 these levels of noise mean that in the subcritical

networks on average 39 (SKT~0) or 23 (SKT~1) nodes are

flipped every time step, and in the critical network on average 3.9

nodes. In the critical network also much smaller noise levels suffice

to attain 95% of the overall maximal steady-state complexity (the

least noise level for this is p~1:5:2{10, i.e., the states of 1.5 nodes

on average flipped every time step). The same cannot be said of

SKT~1 and SKT~0 networks, which attain the 95% of the

overall maximum set complexity at the noise levels of p~2{6 and

p~1:75:2{6, respectively.

The contribution of different levels of noise to the Boolean

network dynamics can also be characterized by their Derrida

curves (Eqn. 4). These are plotted for Poisson networks with

SKT[f0,1,2,3g in Fig. 8. For each network both noiseless and

noisy case are plotted, where the noise level is chosen as the one

that produces the maximal set complexity in Fig. 5. The critical

and chaotic (SKT~2,3) networks with noise are very similar to the

corresponding noiseless (SKT~2,3) networks in Derrida sense,

whereas the noisy subcritical networks (SKT~0,1) show greater

difference from the corresponding noiseless networks. The inset in

Fig. 8 shows the L1 difference between the noisy and noiseless

curve for each SKT. This value represents the average amount of

perturbation that is due to the noise, and can be considered the

perturbation-averaged disruption in information flow of the system. For

instance, the SKT~1 network with the noise level that produces

maximal complexity adds on average 3 percentage points to the

perturbation of the noiseless network, while the corresponding

values for SKT~2 and SKT~3 network are 0:3 and 0:05

Figure 3. The propagation of NCD distributions explains the
time course of the set complexity. The panels show the
distributions of NCD values on interval ½0,1� in noiseless (left),
moderately noisy (middle) and highly noisy (right) Poisson networks
with SKT~2. The time instant of observation grows downwards with
the figures plotted: The curve plotted for t~1 corresponds to the

distribution of off-diagonal elements of NCD matrix (djk)6
j,k~1 , while the

curve for t~2 corresponds to (djk)7
j,k~2 , and so forth. The distributions

are pooled across 100 network realizations and smoothened with a
Gaussian filter with standard deviation 0.02. The mean of the NCD
distribution in noiseless critical networks (left) passes 0.5 around time
instant t~10, as expected from the complexity peak at t~10 in Fig. 1.
The small peaks of noiseless networks in the regime of low NCD
correspond to point-attractors. In these attractors the state xk remains
constant, and since the Kolmogorov complexity of a dublicated string is
not much higher than that of the original (C(xx)&C(x)), the resulting
NCD values are very small. The mean of the NCD distribution in Poisson
networks with moderate noise (middle) approaches 0.5 as time passes,
accounting for the high set complexity values in the regime of large t in
Fig. 2. In highly noisy networks (right) the NCD distributions have only
values that are notably higher than 0.5 due to the excess of
randomness, and hence the low set complexity value for these
networks in Fig. 2.
doi:10.1371/journal.pone.0056523.g003
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Figure 4. Statistical complexity produces qualitatively similar temporal complexity as the set complexity. (A–B): Statistical complexity
trajectories of single simulations of noiseless (A) and noisy (B) critical networks. Both in- and out-degree of the nodes are fixed as K~3. (C): Mean
statistical complexity time series of subcritical (s~0:5), critical (s~1) and supercritical (s~1:5) networks over 50 repetitions. The noisy networks are
marked with dashed and the noiseless networks with solid line. The statistical complexity of the fully noisy (p~2{1) network is plotted with grey for
reference.
doi:10.1371/journal.pone.0056523.g004

Figure 5. Poisson networks can be set a noise level that maximizes the steady-state set complexity. The color of the plot shows the
steady-state set complexity of Boolean network dynamics for both Poisson networks (left) and fixed-K networks with K~3 (right) as functions of
sensitivity s and flip probability p. For each simulation, a median of set complexities is taken over time steps t~101,:::,400. Further averaged, the
color shows the median of 100 simulations, smoothened with bilinear interpolation. The lower panels show the maximum of the plane, taken over
the flip probability.
doi:10.1371/journal.pone.0056523.g005
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percentage points, respectively. This suggests that the chosen level

of noise for subcritical networks is too great for the network to

maintain the meaningful information in their dynamics.

Discussion

In this work we have shown that the steady-state complexity in

Boolean network models can be maximized by choosing the noise

level appropriately. In fixed-K networks with K~3 this is

plausible only for near-to-critical networks (Fig. 5, S1). For

Poisson networks this is possible for both sub-critical and near-to-

critical networks (Fig. 2, 5). However, the levels of noise that

maximize the set complexity in subcritical Poisson networks imply

large decrease in information flow compared to those near

criticality (Fig. 8). In addition, neglecting the nodes to which the

system does not contribute fades the high complexity of these

subcritical networks (Fig. 7). The results shown are qualitatively

robust to changes in system size N, and the main result is

confirmed with asynchronous Boolean networks (Fig. 6).

The complexity of dynamics is in this work primarily assessed

through a measure of context-dependent information, i.e., set

complexity [22], of successive states of the network. While a

measure of context-independent information (such as Kolmogorov

complexity) would increase with the unpredictability of the states,

that is with the flip probability, the context-dependent information

starts to decrease after reaching a certain level of noise (Fig. 5). We

have oserved a similar result for the saturation and descent of set

complexity in the context of a lattice gas system [27]. The shown

results suggest that maximization of the complexity at the edge of

chaos and order is robust to the choice of paradigm: One finds it

either by adding order into chaotical dynamics, as is the case when

a random Boolean network state approaches a short-cycle

attractor (Fig. 1), or by increasing randomness into a system with

ordered dynamics, as shown with the steady-state complexities of

noisy Boolean networks (Fig. 5).

The fact that the complexity measure is maximized at the edge

of chaos and order (and not in the totally unpredictable regime as

is the case with Kolmogorov complexity) is not characteristic of the

set-based complexity measure only, but is a design principle for

many other measures of complexity [34], [28], [35], [36]. The

common trend for complexity measures — stated even as a

requirement for complexity measure in [34] — is that they are

based on entropy or Shannon information, and are consequently

dependent on the underlying prior distribution of the strings whose

complexity is to be assessed. This prior knowledge is rarely at hand

in, for instance, applications of biology, as discussed in [22]. For

reference, we confirmed the main result with one such measure

applicable to time series data, namely, the statistical complexity

[30], where the state distributions are estimated from the data

(Fig. 4, S1). The presented method of estimating the statistical

complexity requires a fixed number of inputs and outputs for each

node, and hence it could not be applied to Poisson networks, nor

to fixed-K networks without modifications. In addition, the

structure of the network must be known in order to estimate the

statistical complexity. By contrast, the measure of set complexity is

very flexible and does not require any knowledge on the state

distributions nor the network structure. On the other hand, the set

complexity is based on the Kolmogorov complexity, which has

shown to be uncomputable in general. To this end, the use of

general data compression algorithms for aprroximation of

Kolmogorov complexity has proven to be a powerful tool. As an

example, phylogenetic trees and language family trees have been

successfully reconstructed in [37] and [20] using methods that

Figure 6. Asynchronous Poisson RBNs show qualitatively the
same set complexity statistics as the synchronous ones. The
color of the plot shows steady-state set complexities of asynchronous
Boolean network dynamics for Poisson networks as functions of
sensitivity s and flip probability p. The synchronous state update
described in the Methods section is replaced by N successive single-
node state updates. The node to update is picked by random every
time instant, and thereby after the N state updates some nodes have
most probably been updated several times and some nodes none. The
set complexities are calculated for states at the modulus-N time steps
fNt,N(tz1), . . . ,N(tzT{1)g. Similarly to the Fig. 5, a median of set
complexities is taken over time steps t~101,:::,400, and the color of the
plot shows the median of 40 simulations, smoothened with bilinear
interpolation. The lower panels show the maximum of the plane, taken
over the flip probability. A slight difference to Fig. 5 is that in
asynchronous networks the high-complexity regime extends more to
the chaotic (sw1) regime. This is in agreement with [46], where
networks with random asynchronous updating schemes were observed
to reside more often in an attractor than their synchronous
counterparts, suggesting that their dynamics be on average more
redundant.
doi:10.1371/journal.pone.0056523.g006

Figure 7. The subcritical Poisson networks lose their high
steady-state complexity when nodes with zero inputs are
neglected. In this figure, the set complexity is calculated similarly to
the Poisson network steady-state complexity in 5, but only states of
those nodes that receive at least one input from the system are
included in the strings xj .
doi:10.1371/journal.pone.0056523.g007
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approximate Kolmogorov complexity with data compressors. In

[20], the reconstruction is based on NCD estimated using several

different data compressors, as the authors of [37] utilize only

Lempel-Ziv algorithm for estimating the Kolmogorov complexity

but several similarity metrics closely related to NCD. Built upon

NCD, there is a great promise also in the set complexity measure.

Although it was originally proposed as a heuristic measure, the set

complexity has since then been shown to possess optimal

properties in, e.g., assessing the structure of complete bipartite

graphs [38].

The states with maximal complexity are of interest for several

reasons. As discussed in [22] with aspect to biological systems, a

high value of set complexity reflects large amount of meaningful

information. In our earlier work [27] and in Fig. 1 we have shown

that the temporal context-dependent information content in

noiseless systems is maximized prior to reaching the attractor.

This could mean that the system, if interpreted as a ‘‘decision

maker’’ of on which attractor to fall, performs the crucial decision

during this stage and not earlier when the dynamics are of low

information content due to the lack of context, nor later when the

dynamics are redundant. The interesting result reported in the

present paper is the effect of moderate level of noise on the

elevated steady-state complexity of the system. This suggests that a

moderate level of noise be helpful in retaining the system in an

agile state, i.e., ready to act in a meaningful way to different cues.

Our finding that asynchronous and synchronous random

Boolean networks have very similar steady-state complexity

behavior (Fig. 5 and Fig. 6) is a rather surprising result. Earlier

theoretical and computational analyses show grave differences

between these two model classes in, e.g., number of attractors [39]

and Derrida curves [40]. However, both of these aspects may

suffer from comparing the uncomparable. For instance, in

synchronous RBNs attractors can be either point or cyclic

attractors, as in asynchronous RBNs they are either point or loose

attractors. As for the Derrida-based analysis, the ways to define the

Derrida curve for asynchronous Boolean networks are many. The

authors of [40] choose to compare the two runs after one

synchronous update of a number m of nodes (m picked from a

uniform distribution from 1 to N), while it might be more relevant

to make the comparison after N updates of single node. By

contrast, our analysis, which is based on the amount of

redundancy in the steady-state dynamics, does not require a

definition of any intermediate parameter of the dynamics, but is

straightforwardly applicable to any discrete-time discrete-state

system. Ultimately, assessing the set complexity of the steady-state

dynamics could form a novel, intricate way of characterizing

complex networks.

In addition to models of Boolean networks, above analysis is

highly relevant also for understanding more complex dynamical

systems. Living cells for example, need to maintain their

homeostatic state under noisy environment. Early studies with

Boolean networks have addressed the question of homeostasis by

studying the effect of small perturbations [41]. We have shown

how the Boolean network model parameters together with noise

control information flow in the system. Our analysis in Fig. 8

shows that if too much noise is added to gain higher complexity,

the system can no longer maintain its dynamical function. This is a

hallmark event of the loss of homeostasis. The presented

framework could serve as a general basis for estimating the noise

levels that a given system can tolerate and still maintain its

dynamical function, or a homeostatic state.

Figure 8. Subcritical networks with maximal steady-state set complexity suffer from disruption in information flow. The figure shows
the Derrida curves of different networks according to Eq. 4. The networks are Poisson networks with SKT = 0,1,2,3, where for each network the noise
level is chosen such that the steady-state set complexity is maximized (dashed lines), and the corresponding noiseless networks (solid lines). The
noiseless SKT~0 network is not plotted, as it has the property that Vrt : rtz1~0. The thin grey line shows the diagonal rtz1~rt , which would

correspond to the state-preserving network xtz1~xt. Inset: The L1 norm between the noisy and the corresponding noiseless networks.
doi:10.1371/journal.pone.0056523.g008
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We have studied information flow in systems without external

stimuli, but an important and much more challenging question is

the homeostasis in systems that receive and transfer information.

This could correspond to the case where a system is not only

retaining current state information under noise but is also trying to

adapt and respond to systematic changes in the surroundings. In

doing this, the task is to filter useful information from the external

signals, which also include noise. A key question for future studies

is to analyze the connection between external and internal

information and noise in the system. The real signicance of

maximal complexity states could be in having suitable versatility to

perform the filtering task efficiently, and tuning the system by

noise may help in such filtering tasks as well.

Materials and Methods

Boolean networks
A synchronous Boolean network is defined as a collection of nodes

fV1, . . . ,VNg where at each time step t each node is assigned a

Boolean value xi(t), i.e.

Vt[N Vi[f1, . . . ,Ng : xi(t)[f0,1g:

Here, xi(t) is the state of the node Vi at time instant t. Each node

receives input from Ki[f0, . . . ,Ng nodes and the state of the node

at time instant tz1 is a Boolean function of the states of its input

nodes at time instant t:

xi(tz1)~fi(xIi1
(t), . . . ,xIiKi

(t)),

where Iij (j[f1, . . . ,Kig) are the indices of the input nodes of node

i.

In this work we use two types of synchronous random Boolean

networks. The first class of networks is such that the number of

inputs to a node is picked from a Poisson distribution and the input

nodes are picked by random, creating a Poisson distribution for

the outputs of the nodes as well. The update functions fi are also

picked by random, i.e., each combination of inputs is assigned an

output value 0 or 1 with equal probabilities q~ 1
2
. We refer to these

networks as Poisson networks. In the other class of networks the

number of input nodes is fixed. In this class functionally different

networks are obtained by changing the probability q (also called

the bias of the network) of Boolean function output being 0. We

call this class of networks fixed-K networks. The dynamics in both

Poisson and fixed-K networks can be characterized by sensitivity s,

which is calculated [42] as

s~2SKTq(1{q): ð1Þ

Networks with s~1 are considered critical, as lower and higher

sensitivity values correspond to subcritical and supercritical

dynamics, respectively [13]. Both types of networks can be

assigned a level of noise through a nonzero flip probability p: At

each time step for each node, there is a probability of p of getting

the opposite state than the one dictated by the deterministic

dynamics.

We consider networks of size N~1000 with variable levels of

noise. The complexity of network dynamics at time t is estimated

using the set complexity over T successive states: X (t), X (tz1),
…, X (tzT{1). The value of T used in the calculation

determines the time resolution obtained, and has to be selected

to correspond with the transient lengths observed. The results are

consistent for T ranging from 2 to 10 — in this work, we present

results for T~6. The complexity of dynamics is assigned for time

instants t~1, . . . ,400. The initial state of the network is picked by

random from a uniform distribution over the state space.

NCD and set complexity
We study the complexity of Boolean network dynamics

following the framework we presented in [27]. The dynamics of

a Boolean network is represented by a set of its successive states

that are read into strings. To the obtained set of strings one applies

the set complexity measure [22], defined as:

S(fx1,:::,xNg)~
X

j

C(xj)
1

N(N{1)

X
j=k

djk(1{djk): ð2Þ

The function C(xj) denotes the approximation of Kolmogorov

complexity of string xj . The variable djk represents the normalized

compression distance (NCD), a computable approximation of the

normalized information distance [20] of strings xj and xk, defined

as

djk~NCD(xj ,xk)~
C(xjxk){min(C(xj),C(xk))

max(C(xj),C(xk))
,

where xjxk is the concatenation of strings xj and xk. C(:) is

calculated using LZMA compression.

For the basic properties of the set complexity measure we refer

to [22], which shows, e.g., the effect of increasing level of noise on

the resulting set complexity value of identical strings. In this work,

we use the set complexity exclusively for time series data. We

therefore illustrate the behavior of the set complexity in the case of

random, periodic and quasiperiodic dynamics in the supplemen-

tary data of this paper (Fig. S2). These three types of dynamics are

relevant in our study, as the Boolean network dynamics is periodic

in the noiseless case (p~0) and random in the case of maximal noise

(p~ 1
2
). The dynamics in the case of moderate noise levels could be

viewed as quasiperiodic. In the example of Fig. S2, the periodic

dynamics produces the least set complexity values, while the

complexity of the quasiperiodic dynamics is on average higher

than either the periodic or random dynamics.

Generally, the framework of NCD allows the use of any lossless

data compression method for the estimation of Kolmogorov

complexity. However, in order to obtain reliable results the most

efficient — in terms of compression ratio — should be used when

possible. We have reviewed the use of different compressors for

estimating Kolmogorov complexity in our earlier work [16,43]. In

[43] the LZMA algorithm was found most efficient in compressing

long repeated strings. In [43] an adaptive packing algorithm called

prediction by partial matching (PPM) [44] was found in some

aspects superior to LZMA. However, PPM produced in many

cases NCD values larger than 1, which is not allowed when

computing the set complexity. We have not encountered such

problems with the use of LZMA algorithm. The LZMA software

used in this study is LZMA SDK 4.65.

Statistical complexity
The statistical complexity [29,30] is defined as the amount of

information in the statistic that is minimal and sufficient for

predicting the future of the process. This is done locally through

parametrization of the past states of the nodes that could affect the

state at hand, and similarly, the future states that the node at hand

could affect. These past states are referred to as the past light cone

and the future states as the future light cone — the past light cone

Balance between Noise and Information Flow

PLOS ONE | www.plosone.org 8 March 2013 | Volume 8 | Issue 3 | e56523



includes the state of the considered node at the present time step

[29]. The objects of interest are the conditional distributions

p(LzDL{), where Lz and L{ are the future and past light cones,

respectively. Whenever two past light cones produce the same

distribution of future light cones, these past light cones are

considered to belong to the same causal state. The statistical

complexity of the process at time t is calculated as the logarithm of

the number of causal states at that moment.

We follow the example given in [30]: We consider only one step

into the past and into the future and estimate the number of causal

states. To do this, we repeat each network simulation 50 times

from random initial state in order to estimate the conditional

distributions p(LzDL{) at each time step and apply Pearson’s x2-

test with p-value 0.05 to obtain the causal states from them. Both

in- and out-degree of the nodes are fixed to K in order to make the

comparison of distributions possible. Our method is, however,

different in one aspect. We quantify the states relative to the past

state. That is, we consider the state of node Vi as

~xxi(t)~xi(t)+xi(t{1) instead of the absolute state xi(t), where

+ represents the exclusive or (XOR). This choice is due to the

random choice of the Boolean functions: As we consider only one

step ahead, we can only expect the absolute future states to be

distributed as repeated Bernoulli distribution

p(x1, . . . ,xK )~q
P

x(1{q)K{
P

x, while the distribution of the

relative states successfully captures the dynamics of the system.

Derrida curves for Poisson networks
Derrida analysis [42] is a widely-used method for studying the

dynamical behavior of discrete systems. The Derrida curve shows

the average difference between the states of two identical networks

at time instant tz1 given their difference at time instant t. To

compute this curve we consider a noisy Poisson Boolean network,

initially at state x(0), and a perturbed run of the same network,

initially at state x0(0). The state update can be decomposed to two

discrete stages. The first stage (10) is the deterministic update

x̂x(tz1)~f(x(t)), and the second stage (20) is the possible bit flip,

defined as

P xi(tz1)~x̂xi(tz1)ð Þ~1{p:

The possible bit flips in the two runs occur independently of each

other. Let us denote the fraction of nodes whose states are different

in the two runs by r̂rtz1 (after 10) and rtz1 (after 20).

For simplicity, we consider networks in the limit of the system

size N??. The number of inputs to a node in the network is

distributed as Poisson: p(k)~
Lk

k!
e{L, k~0,1, . . ., where SKT is

represented by L for the sake of clarity. By the randomness in the

choice of function f, the probability of a node in the perturbed run

having a different value from the one in the reference run after 10

is

r̂rtz1~
1

2

X?
k~0

Lk

k!
e{L 1{ 1{rtð Þk

� �
: ð3Þ

In the stage 20 there is a probability of (1{p)2zp2 that the states

of the two runs stay the same with respect to one another, and a

probability of 2p(1{p) that exactly one of the two bits is inverted.

Hence we have

rtz1~r̂rtz1| (1{p)2zp2
� �

z(1{r̂rtz1)|2p(1{p),

which with Eq. (3) and a bit of algebra gives

rtz1~
1

2
{

1

2
(2p{1)2e{Lrt : ð4Þ

Note that we applied the assumption of independence of the state

x and the random function f in the derivation of Eq. (3). This

assumption is fully valid only during the first state update

x(0).x̂x(1).x(1). However, Derrida and Weisbuch [45] among

others have shown that this annealed approximation predicts many

aspects of network dynamical behavior to a fine degree.

Supporting Information

Figure S1 Networks near to critical can be tuned to
maximal statistical complexity. The color of the plot shows

the steady-state statistical complexity of fixed-Kin-Kout networks as

function of sensitivity s and flip probability p. See Fig. 4 for

reference. The result shown is the median of 65 network

repetitions, smoothened with bilinear interpolation. The lower

panel shows the maximum of the steady-state statistical complexity

over the flip probability p.

(EPS)

Figure S2 Set complexity time series for random,
periodic and quasiperiodpic dynamics. The upper panels

show the control signals, which are functions N?½0,1� that have

either random (left), periodic (middle) or quasiperiodic (right)

behavior. The periodic signal is chosen as
1

2
z

1

2
sin t:

ffiffiffi
p10
p :2p=10

� �
,

where t[N. The factor
ffiffiffi
p10
p

is added to ensure that the control

signal does not receive an exactly same value at distinct time points

in finite time. The quasiperiodic signal is chosen as an

interpolation of two periodic signals as
1

2
z

1

4
sin t:2p=10ð Þzsin(t:

ffiffiffi
p
p :2p=10

� �
. In each of the three cases

a set of N~1000 nodes are created, and each node is given a

random threshold between 0 and 1. When the control signal is

above the threshold, the node output is 1, and 0 otherwise. The

middle row panels show the dynamics of the nodes, black

representing 1 s and white 0 s. In the lower panels the curves

show the average values (100 repetitions) of the set complexity

trajectories of these systems. The set complexity is calculated using

20 successive time steps. The values of set complexity are lowest

for the periodic system, and second lowest for the random data,

while the quasiperiodic system produces the highest average set

complexity.

(EPS)
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