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Abstract

Background: Findings about sex differences in the field of fear conditioning and fear extinction have been mixed.
At the psychophysiological level, sex differences emerge only when taking estradiol levels of women into
consideration. This suggests that this hormone may also influence sex differences with regards to activations of
brain regions involved in fear conditioning and its extinction. Importantly, the neurobiological correlates associated
with the use of hormonal oral contraceptives in women have not been fully contrasted against men and against
naturally cycling women with different levels of estradiol. In this study, we begin to fill these scientific gaps.

Methods: We recruited 37 healthy men and 48 healthy women. Of these women, 16 were using oral
contraceptives (OC) and 32 were naturally cycling. For these naturally cycling women, a median split was
performed on their serum estradiol levels to create a high estradiol (HE) group (n = 16) and a low estradiol (LE)
group (n = 16). All participants underwent a 2-day fear conditioning and extinction paradigm in a 3 T MR scanner.
Using the 4 groups (men, HE women, LE women, and OC users) and controlling for age and coil type, one-way
ANCOVAs were performed to look at significant activations within the nodes of the fear circuit. Using post-hoc
analyses, beta-weights were extracted in brain regions showing significant effects in order to unveil the differences
based on hormonal status (men, HE, LE, OC).

Results: Significant main effect of hormonal status group was found across the different phases of the experiment
and in different sub-regions of the insular and cingulate cortices, amygdala, hippocampus, and hypothalamus.
During conditioning, extinction and recall, most of the observed differences suggested higher activations among
HE women relative to men. During the unconditioned response, however, a different pattern was observed with
men showing significantly higher brain activations.

Conclusions: Our data further support the important contribution of estradiol levels in the activation of brain
regions underlying fear learning and extinction. The results highlight the need to document gonadal hormonal
levels, menstrual cycle phase as well as oral contraceptive use in women in order to avoid overlooking sex
differences when investigating the neurobiology of emotional regulation.
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Background
The neural correlates of the acquisition and extinction
of conditioned fear are relatively well described in
humans. The amygdala, hippocampus, insular cortex,
and dorsal anterior cingulate cortex (dACC) are regions
known to show significant activations in response to the
presentation of conditioned fear cues [1–6]. The hypo-
thalamus, amygdala, hippocampus, orbitofrontal cortex,
and medial prefrontal cortex are also known to show
significant activations during unconditioned fear cues
[7]. Subsets of these brain areas along with the ventro-
medial prefrontal cortex (vmPFC) show robust activa-
tions during extinction learning and extinction memory
recall [5, 8, 9]. Resting metabolism and functional coup-
ling within this fear extinction network are associated
with the expression of conditioned responses in healthy
individuals [10, 11].
Importantly, the pathophysiology of numerous anxiety

and fear-based disorders has been associated with dys-
functional activations of this network in the context of
fear extinction [12–15]. It is also well established that
the prevalence of anxiety and fear-based disorders is
higher in women [16–19] and that the brain regions
noted above are sexually dimorphic [20–22]. Reports re-
lated to sex differences during fear learning and extinc-
tion are often inconsistent, highlighting the need to
examine biological factors that may contribute to this in-
consistency [22–27]. These studies call for a better un-
derstanding of how sex differences may emerge during
fear conditioning and extinction, as well as how sex hor-
mones may mediate some of these differences [23–30].
Estrogens are a class of gonadal hormones that include
estrone, estriol and estradiol. Estradiol is the predomin-
ant and most potent circulating estrogen during the re-
productive years in non-pregnant women.
A recent preliminary study using functional mag-

netic resonance imaging (fMRI) reported sex differ-
ences in the activation of the amygdala, dACC, and
vmPFC during fear conditioning, extinction, and recall
[23]. Despite the lack of sex differences in skin con-
ductance responses during fear conditioning and ex-
tinction memory recall, women exhibited significantly
greater activation within the amygdala and dACC
during fear conditioning while men showed signifi-
cantly greater activation of the vmPFC during extinc-
tion recall [23]. When taking into account the
hormonal milieu, it has been shown that elevated es-
tradiol levels are associated with increased vmPFC,
amygdala, and hippocampal activation during extinc-
tion recall in women [29]. In addition, exogenous ad-
ministration of estradiol to women [28, 30] and to
female rats [27, 28, 31] has been shown to increase
the consolidation of extinction memory. What re-
mains to be tested is how variance in estradiol levels

in women could contribute to the presence, or ab-
sence, of sex differences during fear regulation.
The studies mentioned above examined the role of es-

tradiol in fear extinction in naturally cycling subjects.
Relatively few studies have examined the effects of hor-
monal contraceptive use on fear extinction. Combined
oral contraceptives contain ethinyl estradiol and proges-
tin, which inhibit ovulation by decreasing ovarian pro-
duction of estrogens and progesterone. This leads to a
sustained reduction in the level of circulating estrogens
comparable to levels found in naturally cycling women
during the early follicular (i.e. low gonadal hormones)
phase of the menstrual cycle [32]. As mentioned above,
oral contraceptives contain ethinyl estradiol, a synthetic
estrogen that binds to estrogen receptors at levels high
enough to prevent ovulation through negative feedback
at the hypothalamus and pituitary gland [32]. It is there-
fore unclear if oral contraceptive use exacerbates or di-
minishes sex differences in the reactivity of the fear
extinction network.
In the present study, we conducted a comprehen-

sive analysis of fMRI data from a cohort of women
who underwent extinction learning either during high
or low estradiol states or while using oral contracep-
tives. We also included a cohort of men. All subjects
underwent a validated 2-day fear conditioning and ex-
tinction paradigm [23, 28, 29]. Some of the psycho-
physiological and fMRI data pertaining to fear
extinction have been previously published [28–30]. In
the present study, we focused our analysis on brain
activation to specifically explore the presence or ab-
sence of sex/hormonal status differences in response
to unconditioned and conditioned stimuli during fear
and extinction learning and extinction recall. We pri-
marily studied the activation of the insular cortex,
cingulate cortex, amygdala, hippocampus, vmPFC, and
hypothalamus. We analyzed the brain activation to
the conditioned stimuli during the fear acquisition,
extinction learning, and extinction recall phases
as well as the unconditioned responses during the
conditioning phase. Moreover, comparisons of the
psychophysiological data across the different groups
of women and men have been previously reported
[23, 28, 30] and as such will not be included in the
present study.

Methods
Participants
Data from a total of 85 healthy right-handed individuals
were selected from a large pool of subjects that had par-
ticipated in studies within our lab over the past few
years. All participants were without neurologic, endo-
crine, or other medical conditions and were evaluated
and screened for Axis I mental disorders via the
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Structured Clinical Interview for DSM-IV [33, 34]. No
participants were using psychoactive or other potentially
confounding drugs or medications. There were a total of
37 men and 48 women. The selection of all women out
of our large database was based on our knowledge of
their levels of estradiol and/or our documented data on
their oral contraceptive use. Thus, women from whom
we did not have these data were excluded from the ana-
lysis. The composition of the women included 32 natur-
ally cycling women and 16 women using monophasic
oral contraceptives (OC) for at least 3 months. The nat-
urally cycling group was divided into 2 groups based on
serum estradiol levels measured at the day of fear extinc-
tion learning just prior to the fMRI scan. A median split
of 108 pg/mL was used to separate the 32 naturally cyc-
ling women into 16 high estradiol women (HE) and 16
low estradiol (LE) women. The average estradiol level of
naturally cycling women was 138 pg/mL (SD = 116.5)
and the average estradiol level per group was 222.6 pg/
mL (SD = 109.0) and 53.7 pg/mL (SD = 30.9), respect-
ively. Mean age and years of education as a function of
group are summarized in Table 1. One-way MANOVAs
performed on age and years of education with Group
(men, HE, LE, OC) as the between-subject factor confirmed
a significant effect of group for age, F(3,80) = 7.52, p < 0.001.
Age was therefore added as a covariate for all analyses.
All procedures were approved by Partners Healthcare Insti-
tutional Review Board and written informed consent was
obtained from all participants in accordance with require-
ments of the Partners Healthcare Human Research Com-
mittee. As mentioned above, portions of these data from
the cohorts included in our analyses were used for prior
publications by our group [28, 30].

Fear conditioning, extinction, and recall procedures
All participants underwent our validated 2-day fear con-
ditioning and extinction procedure that has been previ-
ously described [23, 28, 29]. Day 1 consisted of the
habituation, fear conditioning, and extinction phases.
Approximately 24 h later, subjects underwent the

extinction recall test. The conditioned stimuli (CSs) were
pictures of lamps (i.e. blue, red, and yellow lights) that
appeared within 1 of 2 rooms (i.e. an office or library)
that served as the fear conditioning and extinction learn-
ing contexts. The unconditioned stimulus (US) was a
mild electric shock delivered to the second and third fin-
ger of the subjects’ right hands. The subjects selected
their own level of shock that they found to be “highly
annoying but not painful.” At the initiation of the experi-
ment, subjects underwent 6 trials of habituation (CS
alone) immediately followed by a total of 32 trials during
the conditioning phase. In the fear-conditioning phase, 2
of the CSs were each presented 8 times with 62.5 % par-
tial reinforcement (CS + s, five shocks for each), while
the third CS was never followed by a shock (CS-).
The CS- was presented 16 times intermingled with the 2
CS + s. In each trial, the context images were presented
for a total of 9 s: 3 s with the lights off followed by 6 s
with the light on. The mean inter-trial interval was 15 s,
with a range of 12 s to 18 s. The shock delivery occurred
immediately at the offset of the CS+ and lasted for 0.5 s.
The conditioning phase was immediately followed by ex-
tinction learning during which one of the CS + s was
presented without the US, in a different context than the
one used during conditioning (i.e. the extinction con-
text). During this phase, the CS+ that was extinguished
(CSE) was presented 16 times intermingled with 16 pre-
sentations of the CS-. The following day, extinction
memory recall was tested by presenting all 3 CSs (CSE,
CS-, and the unextinguished CS+ (CSU)) without any
US in the extinction-learning context.

Image acquisition
A 3.0 Tesla Siemens MAGNETOM Trio, whole body
MRI system imaging device (Siemens Medical Systems,
Iselin, New Jersey) was used to acquire whole brain im-
ages with conventional 12-channel or 32-channel head
coils. Subjects were instructed to lie as still as possible
and head movement was restricted with foam cushions.
After an automated scout image was obtained, a high-
resolution T1-weighted anatomic image was acquired
using three-dimensional magnetization-prepared rapid
acquisition multi gradient echo (MEMPRAGE) for struc-
tural reference to facilitate spatial normalization. fMRI
blood oxygenation level dependent (BOLD) images were
acquired with an interleaved T2*-weighted EPI sequence
(TR = 3000 ms, TE = 30 ms, Flip angle = 90°), oblique
axial along with the anterior-posterior commissure line
to cover the whole brain using the 12-channel coil. For
the 32-channel coil, images were acquired with the fol-
lowing parameters (TR = 2560 ms, TE = 30 ms, Flip
angle = 90°) collected to cover the whole brain. Here is
the distribution of subjects as a function of coil type: 26
men with 12-channel coil and 11 men with 32-channel

Table 1 Demographic information for the study population

N Age (SD) Education (SD) Estradiol (SD)

Men 37 29.8 (8.8) 16.4 (2.2)

Women 48 23.3 (2.4) 15.9 (1.1)

Women HE 16 23.0 (2.7) 15.8 (1.0) 222.6 (109.0)

LE 16 23.4 (2.6) 15.9 (1.2) 53.7 (30.9)

OC 16 23.6 (1.8) 15.9 (1.2)

All 85 26.2 (6.8) 16.1 (1.7)

Sample size (n) and means for age, years of education, and estradiol levels as
a function of group are indicated. SD = standard deviations. Age showed a
significant effect of Group and was therefore added as a covariate in
all analyses

Hwang et al. BMC Psychiatry  (2015) 15:295 Page 3 of 12



coil; 16 LE women with 12-channel coil; 16 HE women
with 12-channel coil; 9 OC users with 12-channel coil
and 7 OC users with 32-channel coil. Given the unequal
distribution of subjects as a function of head coil, this
factor was used as a covariate in the fMRI between-
group analyses.

Functional MRI data analysis
Image processing and statistical analyses were performed
using Matlab v2012b (The Mathworks Inc, Natick, Mas-
sachusetts, USA) and Statistical Parametric Mapping
(SPM8; Wellcome Trust Centre for Neuroimaging,
www.fil.ion.ucl.ac.uk) for all MRI data. Structural images
were segmented and spatially normalized to the Mon-
treal Neurological Institute (MNI) T1 template. Func-
tional images were corrected for slice timing, realigned,
co-registered with the structural image, normalized into
MNI space using parameters obtained from the struc-
tural normalization process, and finally smoothed with
an 8 mm full width half-maximum Gaussian kernel to
increase the signal-to-noise ratio and account for ana-
tomical variations between subjects. High-pass temporal
filtering with a cutoff of 128 s was applied to remove
low frequency signal drift. Serial correlations in the fMRI
time series due to aliased biorhythms were accounted
for using an autoregressive AR(1) model. Artifact detec-
tion toolbox (ART, http://gablab.mit.edu) was applied to
detect a spike and spiking motion in the functional tem-
poral data. The motion artifact data detected by ART
were used in the first-level analysis as regressors with
movement parameters (x, y, z, roll, pitch, and yaw) from
the realignment process. Data from subjects that exhib-
ited movement greater than 3 mm or 3° were excluded
from all subsequent analyses. For the remainder of the
subjects, motion regressors were generated using the
ART-tool with condition of movement 1 mm and rota-
tion 0.087 radian in SPM and applied to all first-level
analyses. These criteria resulted in the exclusion of 13
subjects (4 men, 1 HE, 4 LE, and 4 OC) for condition-
ing, 17 subjects (6 men, 2 HE, 5 LE, and 4 OC) for ex-
tinction, and 16 subjects (9 men, 2 HE, 3 LE, and 2 OC)
for the recall phase of the fMRI analysis.

First-level model
After preprocessing, each subject’s functional time
series was modeled for each experimental phase using
a general linear model specifying the condition onsets.
For the conditioning phase, these conditions included
all CS+ trials, CS- trials, shocks (i.e., the 0.5 s shock
delivered at the offset of 10 of the 16 CS+ trials), and
CS- offsets (the offset of the 16 CS- trials, when the
shock was never expected and was never delivered).
Extinction phase onsets were modeled for the late
CSE and CS-, i.e., the last 8 trials of the 16 CSE trials

and the last 8 trials of the 16 CS- trials. Extinction
recall phase onsets were modeled for the first four
trials of CSE and CSU. Movement parameters from
the realignment step and ART regressor (described
above) were included in the model to remove re-
sidual motion-related noise. Activated voxels in each
experimental phase were identified using a statistical
model containing event-related design functions
representing each of the experimental conditions
with the SPM canonical hemodynamic response
function.
Based on prior literature, we focused our attention on

4 different contrasts of interest: 1) the unconditioned re-
sponse during the fear conditioning phase (UCR: Shock
vs. CS- offset) in order to examine activations associated
with the sensation of the shock; 2) the conditioned re-
sponse during the fear conditioning phase (Condition-
ing: CS+ vs. CS-) in order to examine fear conditioning-
induced activations; 3) the late extinction phase (last 8
trials of CSE vs. last 8 trials of CS-) in order to examine
fear extinction learning–induced activation towards the
end of extinction learning; and 4) the early extinction re-
call phase (first 4 trials of CSE vs. first 4 trials of CSU)
in order to examine extinction memory-induced brain
activation during the early phase of recall.

Second-level model and ROI selection
The first-level contrasts listed above were obtained
for each subject, and were modeled at the second-
level using a general linear model and random effect
analysis. Our main objective was to examine how
hormonal status affects the activation of the fear
network. To this end, we first conducted a main-
effect analysis with a one-way ANCOVA across all
groups (men, HE, LE and OC). Because age and coil
type differ between groups, they were used as covari-
ates to control any potential confounding effects on
activations in the fear extinction network. Based on
prior literature, we were specifically interested in the
insular cortex, cingulate cortex (both middle [MCC]
and anterior [ACC]), amygdala, hippocampus, and
hypothalamus. A p < 0.05 threshold with a minimum
of 20 contiguous voxels criterion was used to detect
any significant results within these regions. Clusters
detected within these regions that survived small
volume family-wise error (FWE) correction (p < 0.05)
were considered significant. For those clusters that
survived the correction, we extracted beta weights
using REX (region of interest extraction) toolbox
(http://web.mit.edu/swg/software.htm) (representing
BOLD effect) for each region of interest (ROI) found
to exceed the threshold noted above. Bonferroni
post-hoc t-tests were conducted on the extracted
beta values to assess significant group differences
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between men, HE, LE and OC women. SPSS (v21)
software was used for post-hoc group comparisons
of the extracted beta values.

Correlations between estradiol levels and brain
activations
For the sake of completeness, we performed a regression
analysis for each of the above-mentioned contrast. Im-
portantly, serum estradiol levels were only documented
in naturally-cycling women and we therefore combined
those two subgroups for that specific analysis and used
serum estradiol levels as a regressor. Age was added as a
covariate. Note that coil type was not used as a covariate
here given that all naturally cycling women were
scanned with 12-channel coil. An initial threshold of 20
contiguous voxels and p < 0.05 was used to detect posi-
tive or negative correlations in the brain regions in-
volved in fear acquisition and extinction. Clusters
detected with this initial threshold that survived small
volume FWE correction (p < 0.05) were considered
significant.

Results
Overall, the insular and cingulate cortices showed sig-
nificant differences in terms of activation as a function
of Group across the different phases of the experiment
(conditioning, extinction, and extinction recall). In
addition, the amygdala and the hypothalamus showed
significant differences among the groups only during the
conditioned response of the fear-conditioning phase.
During the unconditioned response of the fear-
conditioning phase, significant effects were revealed in the
hippocampus and the insular cortex. Details of these re-
sults are described below. Note that p values reported are
FWE corrected. The cluster size reported is the number of
voxels that survived the FWE correction, thus explaining
why some cluster sizes are smaller than 20.

Sex differences in the insular cortex
Across the 3 phases of the study (conditioning, extinc-
tion, and extinction recall), the one-way ANCOVAs re-
vealed a significant main effect of Group in different
sub-regions of the insular cortex (IC) (Fig. 1). During

A B C

Fig. 1 Insular cortex activations as a function of hormonal status grouping and phases of the fear conditioning and extinction paradigm.
Significant functional activations of the insular cortex are displayed as a function of the different phases: fear conditioning (a), late extinction
learning (b), and early extinction recall (c). The Montreal Neurological Institute (MNI) coordinates are listed below each functional activation, along
with the corresponding statistics (note that the reported p values are FWE corrected). The lower panel indicates the BOLD signal extracted from
the corresponding cluster as a function of the different groups during conditioning (a), late extinction (b), and early recall (c). FWE: family-wise
error, M: men, HE: high estradiol women, LE: low estradiol women, OC: oral contraceptive users. Significant differences are noted
(* p 0.05 ** p < 0.01)
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fear conditioning, a main effect of Group was noted in
the posterior IC (left: −40, −40, 16; cluster size = 23;
F(3,66) = 6.03, FWE p = 0.029 (data not shown), right: 44,
−36, 26; cluster size = 130; F(3,66) = 7.29, FWE p = 0.010,
Fig. 1a). Post-hoc comparisons on the extracted beta
values revealed that the HE group had significantly
higher activation in the insular cortex relative to men
(left: p = 0.002, right: p < 0.001) and OC users (left: p
= 0.267, right: p = 0.020) (Fig. 1a lower panel). During
late extinction, a main effect of Group was revealed
in the anterior region of the left insular cortex (−24,
24, 2; cluster size = 70; F(3,62) = 7.88, FWE p = 0.004,
Fig. 1b upper panel). Post-hoc analyses performed
on the extracted beta values revealed that HE
women had significantly greater activation in that
region when compared to men (p = 0.007) and LE
women (p = 0.024) (Fig. 1b lower panel). During the
early extinction recall phase, a main effect of Group
was revealed in the insular cortex bilaterally (left:
−42, 4,10; cluster size = 17; F(3,63) = 4.94, FWE p = 0.023,
right: 50, −2, 8; cluster size = 6; F(3,63) = 3.066,
FWE p = 0.013 (data for right not shown). Post-hoc
analyses showed that HE women had significantly

greater activation in that region when compared
to men (left: p = 0 < 0.001, right: p = 0.001, Fig. 1c
lower panel).

Sex differences in the cingulate cortex
Significant group effects were observed in various
sub-regions of the cingulate cortex (CC) as a function
of the experimental phase (Fig. 2). During fear condi-
tioning, a main effect of Group was revealed in the
MCC (−14, −22, 48; cluster size = 200; F(3,66) = 9.45,
FWE p = 0.002). Post-hoc analyses showed that the
HE group had higher MCC activation during condi-
tioning when compared to men (p < 0.001) and to OC
users (p < 0.001) (Fig. 2a lower panel). During late ex-
tinction, the rostral portion of the cingulate cortex
(rACC) showed a significant effect of Group (−14, 42,
10; cluster size = 6; F(3,62) = 3.74, FWE p = 0.038).
Post-hoc analyses revealed that HE women had sig-
nificantly higher activation in the rACC relative to
men (p < 0.001, Fig. 2b lower panel). During early re-
call, there was a trend toward significance in the
MCC (14, −14, 46; cluster size = 14; F(3,63) = 3.43,
FWE p = 0.095), which was driven by HE women

A B C

Fig. 2 Cingulate cortex activations as a function of hormonal status grouping and phases of the fear conditioning and extinction paradigm.
Significant functional activations of the cingulate cortex are displayed as a function of the different phases: fear conditioning (a, MCC), late
extinction learning (b, rACC), and early extinction recall (c, MCC). The Montreal Neurological Institute (MNI) coordinates are listed below each
functional activation, along with the corresponding statistics (note that the reported p values are FWE corrected). The lower panel indicates the
BOLD signal extracted from the corresponding cluster as a function of the different groups during conditioning (a, MCC), late extinction (b, rACC),
and early recall (c, MCC). FWE: family-wise error, M: men, HE: high estradiol women, LE: low estradiol women, OC: oral contraceptive users, MCC:
middle cingulate cortex, rACC: rostral anterior cingulate cortex. Significant differences are noted (* p < 0.05 ** p < 0.01)
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having significantly higher activation in that region
relative to men (p = 0.001, Fig. 2c lower panel).

Sex differences in other regions during fear acquisition
The amygdala and hypothalamus both showed significant
group differences only during fear learning (amygdala: 22,
0, −30; cluster size = 50; F(3,66) = 6.47, FWE p = 0.009,
Fig. 3a; hypothalamus: −10, −6, −10; cluster size = 181;
F(3,66) = 12.06, FWE p < 0.001, Fig. 3b). Post-hoc analyses
revealed that HE women exhibited significantly higher
activation in the amygdala compared to all other
groups (p = 0.018 for men, p = 0.001 for LE, and p = 0.003
for OC, Fig. 3a lower panel). With regards to the hypotha-
lamus, post-hoc analyses revealed significantly higher acti-
vation in the HE group compared to both men (p < 0.001)
and to OC users (p = 0.02) (Fig. 3b lower panel).

Sex differences in response to shock delivery
During the Shock vs. CS- offset contrast of the fear-
conditioning phase, the hippocampus (left: −24, −14,
−26; cluster size = 1; F(3,66) = 2.81, FWE p = 0.045,
Fig. 4a) and the posterior insular cortex (−42, −28,
12; cluster size = 40; F(3,66) = 5.33, FWE p = 0.021,
Fig. 4b) both yielded a main effect of Group. The
post-hoc analyses indicated that men had signifi-
cantly higher activation in the hippocampus relative
to all other groups during the unconditioned re-
sponse (p = 0.015 for HE, p = 0.03 for LE, and p =
0.007 for OC, Fig. 4a lower panel). Similarly, men
also exhibited significantly higher activation in the
posterior insular cortex relative to OC users during
that same phase (p = 0.017, Fig. 4b lower panel).

Brain activations associated with estradiol levels (Table 2)
During fear conditioning, a positive correlation was

found between estradiol levels and the following brain
regions: posterior cingulate cortex (12, −34, 46; clus-
ter size = 70, t(24) = 3.10, FWE p = 0.033), posterior
IC (44, −38, 24; cluster size = 116, t(24) = 3.22, FWE
p = 0.034), amygdala (16, 2, −12; cluster size = 140,
t(24) = 3.32, FWE p = 0.037), hypothalamus (−12, 0,
−8; cluster size = 33, t(24) = 2.71, FWE p = 0.039) and
anterior IC (36, 28, 6; cluster size = 138, t(24) = 3.09,
FWE p = 0.051). A negative correlation was found
during conditioning in the following regions: orbito-
frontal cortex (−16, 34, −24; cluster size = 21, t(24) =
3.21, FWE p = 0.038) and subgenual ACC (−6, 18,
−18; cluster size = 48, t(24) = 3.00, FWE p = 0.039).
For the unconditioned responses, a positive correl-

ation was found between estradiol levels and the
hypothalamus (8, 4, −32; cluster size = 357, t(24) =
4.11, FWE p = 0.015) as well as the middle IC (−40,
2, 8; cluster size = 311, t(24) = 3.53, FWE p = 0.040).
There was, however, a negative correlation detected

in the orbitofrontal cortex (−14, 34, −18; cluster
size = 44, t(24) = 3.40, FWE p = 0.011).
During late extinction, a positive correlation was found

between estradiol levels and the subgenual ACC (−14,
26, −14; cluster size = 30, t(22) = 2.88, FWE p = 0.028)
whereas a negative correlation was found in the IC (−36,
4, 16; cluster size = 62, t(22) = 3.27, FWE p = 0.024).
During early extinction recall, positive correlations

were found in the following brain regions: parahippo-
campus (−30, 2, −20; cluster size = 183, t(24) = 5.35,
FWE p = 0.001), subgenual ACC (10, 12, −18; cluster
size = 64, t(24) = 4.39, FWE p = 0.002), anterior IC
(right: 32, 18, 12; cluster size = 82, t(24) = 4.35, FWE
p = 0.003 and left: −62, 10, 0; cluster size = 1595,
t(24) = 5.34, FWE p = 0.005), dorsal ACC (10, 24, 40;
cluster size = 91, t(24) = 4.13, FWE p = 0.005), vmPFC
(−14, 40, −26; cluster size = 572, t(24) = 4.37, FWE p =
0.014), MCC (−4, 0, 36; cluster size = 76, t(24) = 3.33, FWE
p = 0.024), and orbitofrontal cortex (−16, 52, −18; cluster
size = 572, t(24) = 3.94, FWE p = 0.034). No significant
negative correlations were yielded between serum es-
tradiol levels and brain activations during early ex-
tinction recall.

Discussion
In this study, we evaluated sex differences as a function
of hormonal status in the neural correlates of condi-
tioned and unconditioned fear responses, extinction
learning, and extinction recall. In fact, measuring estra-
diol levels in women enabled us to examine how vari-
ance in levels of this gonadal hormone may contribute
to observed sex differences during fear conditioning and
extinction. We observed significant effects of hormonal
status across the different phases of the experiment and
in different sub-regions of the insular and cingulate cor-
tices, amygdala, hippocampus, and hypothalamus. Our
data showed that the high estradiol (HE) group was the
major contributor to these significant effects, with
women from that group exhibiting higher activation in
these brain regions during fear conditioning, late extinc-
tion learning, and early extinction recall. For most of the
effects, HE women had significantly higher activation
than men. In some instances, they also significantly dif-
fered from LE and OC women. During the shock deliv-
ery of the fear-conditioning phase, the pattern was
somewhat different; men exhibited significantly higher
activations (for a summary of the results, see Table 3).
To complete these results, we have also performed re-
gression analyses that allowed to pinpoint activations of
brain regions that correlated with estradiol levels in nat-
urally cycling women across the different phases. Taken
together, these results confirm that the brain structures
known to be key for fear learning and extinction are not
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only sexually dimorphic, but are also modulated by
estradiol levels.
The elevated responses in different sub-regions of

the insular and cingulate cortices in HE women are
consistent with previous reports. For example, we
have previously reported elevated vmPFC as well as
dACC activations in HE women compared to LE
women [24]. Elevated activation in the arousal cir-
cuitry, which includes the hypothalamus, the amyg-
dala, and the cingulate cortex, has also been
documented in HE women in response to emotional
stimuli [7]. The elevated activation reported in this
study in HE women may be related to enhanced
memory consolidation associated with the different
phases of the experiment. High levels of estradiol
have been shown to enhance memory consolidation

in a number of different paradigms as well as en-
hance long-term potentiation in hippocampal neurons
during contextual fear learning [17, 24].
We have previously shown that, at the psychophysio-

logical level, the magnitude of extinction memory was com-
parable between men and HE women, and that both of
these groups showed superior extinction retention relative
to LE women [29]. We have also shown that extinction
memory was significantly reduced in women using oral
contraceptives compared to HE women [30]. Based on
these data, we had anticipated that brain activations be-
tween men and the HE group would be the most compar-
able whereas the LE and OC groups would differ the most
from men. The findings, however, were not consistent with
our predictions nor with our previously reported psycho-
physiological data from the same women analyzed in the

Fig. 3 Amygdala and hypothalamus activations as a function of hormonal status grouping during fear conditioning. Significant functional activations
of the amygdala (a) and the hypothalamus (b) during fear conditioning are displayed. The Montreal Neurological Institute (MNI) coordinates are listed
below each functional activation, along with the corresponding statistics (note that the reported p values are FWE corrected). The lower panel
indicates the BOLD signal extracted from the corresponding cluster as a function of the different groups during conditioning for the amygdala (a) and
the hypothalamus (b). FWE: family-wise error, M: men, HE: high estradiol women, LE: low estradiol women, OC: oral contraceptive users. Significant
differences are noted (*p < 0.05 **p < 0.01)

Hwang et al. BMC Psychiatry  (2015) 15:295 Page 8 of 12



current study. One possible explanation for this finding is
that men and women achieve the same behavioral outcome
but by using different neurobiological networks. These im-
portant data highlight the need of understanding how men
and women consolidate fear-related memories differently
so that treatment for anxiety and mood disorders may be
specifically tailored to the different sexes, while taking into
account the hormonal status.
LE and OC women exhibit similar brain activations, yet

their estradiol levels differ: LE women have temporarily low
levels of natural estradiol whereas OC women have both
constantly low levels of natural estradiol and constantly ele-
vated levels of synthetic estradiol. These data suggest that
the cyclicity of estradiol may be key in enhancing the acti-
vation of brain regions involved in both fear learning and
extinction. An alternative interpretation is that endogenous
estradiol may have a different or more efficacious influence
on this brain network activation when compared to

synthetic estradiol. A growing amount of research
demonstrates that OC use may lead to structural
modifications in brain regions implicated in high-
order cognitive function [35], including regional gray
matter volumes in regions associated with the fear
extinction network such as the prefrontal cortex, an-
terior cingulate gyrus, cerebellum, and the hippo-
campus [36, 37]. Several studies have noted
functional differences in OC users during the resting
state [38] as well as during face and reward process-
ing [39, 40]. A recent study reported that OC users
performed behaviorally like naturally cycling women
during two numerical tasks, but actually displayed
male-like brain-activation patterns [41]. This appar-
ent discrepancy is similar to our findings showing a
discrepancy between the OC users’ behavior and
their brain activation patterns, in which there may
be a somewhat ‘masculinizing’ effect of OC use on

Fig. 4 Hippocampus and insular cortex activations as a function of hormonal status grouping in response to shock delivery. Significant functional
activations of the hippocampus (a) and the insular cortex (b) during shock delivery of the fear-conditioning phase are displayed. The Montreal Neurological
Institute (MNI) coordinates are listed below each functional activation, along with the corresponding statistics (note that the reported p values are FWE
corrected). The lower panel indicates the BOLD signal extracted from the corresponding cluster as a function of the different groups during shock delivery
for the hippocampus (a) and the insular cortex (b). FWE: family-wise error, M: men, HE: high estradiol women, LE: low estradiol women, OC: oral
contraceptive users. Significant differences are noted (*p< 0.05 **p< 0.01)
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brain activation. Together, these data suggest that OC
use may cause structural reorganization and lead to
differences in activation in response to a wide array
of tasks; and this may in turn induce changes in be-
havioral output and brain activation. Beyond such re-
search implications, this area of study is also critical
because there appear to be effects of OC use on brain
structure, function, and behavioral output. Notably,
80 % of women of reproductive age in the United
States use oral contraceptives for birth control, with
the average age of first OC use rapidly decreasing
into the early years of adolescence, a time especially
sensitive to neuroplasticity [42].
We note a few limitations of the present study that

should be considered. First, we did not collect other
hormonal data, such as cortisol levels. In fact, corti-
sol has been shown to interact with estrogens and
influence sex differences, fear learning, and fear ex-
tinction [43]. Second, the effects reported in this
manuscript pertain to monophasic OC users. These
factors should therefore be considered in future
work attempting to replicate and build upon the
findings of the present study.

Table 3 Summary table for subgroup comparisons throughout
the different experimental phases of the paradigm

Unconditioned Conditioning Extinction Recall

Insular cortex M > OC HE >M HE >M HE >M

HE > OC HE > LE

MCC n.s. HE >M n.s. HE > M

HE > OC

rACC n.s. n.s. HE > M n.s.

Amygdala n.s. HE >M n.s. n.s.

HE > LE

HE > OC

Hypothalamus n.s. HE >M n.s. n.s.

HE > OC

Hippocampus M > OC n.s. n.s. n.s.

‘Unconditioned’ refers to the contrast Shock vs. CS- offset during fear
conditioning, ‘Conditioning’ refers to the CS+ vs. CS- contrast during fear
conditioning, ‘Extinction’ refers to the late CS+ vs. late CS- of the extinction
training, and ‘Recall’ refers to the early CS + E trials vs. early CS + U trials of the
extinction recall test. (n.s. = no significant main effect of group)

Table 2 Brain regions activations that correlate with estradiol levels in naturally cycling women throughout the different
experimental phases of the paradigm

Experimental phase Correlation Brain regions x y z Cluster size t value p value FWE

Fear conditioning Positive Posterior cingulate cortex 12 −34 46 70 3.10 0.033

Posterior insular cortex 44 −38 24 116 3.22 0.034

Amygdala 16 2 12 140 3.32 0.037

Hypothalamus −12 0 −8 33 2.71 0.039

Anterior insular cortex 36 28 6 138 3.09 0.051

Negative Orbitofrontal cortex −16 34 −24 21 3.21 0.038

Subgenual anterior cingulate cortex −6 18 −18 48 3.00 0.039

Shock delivery (unconditioned responses) Positive Hypothalamus 8 4 −32 357 4.11 0.015

Middle insular cortex −40 2 8 311 3.53 0.040

Negative Orbitofrontal cortex −14 34 −18 44 3.40 0.011

Late extinction learning Positive Subgenual anterior cingulate cortex −14 26 −14 30 2.88 0.028

Negative Middle insular cortex −36 4 16 62 3.27 0.024

Early extinction recall Positive Parahippocampus −30 2 −20 183 5.35 0.001

Subgenual anterior cingulate cortex 10 12 −18 64 4.39 0.002

Anterior insular cortex 32 18 12 82 4.35 0.003

Anterior insular cortex −62 10 0 1595 5.34 0.005

Dorsal anterior cingulate cortex 10 24 40 91 4.13 0.005

Ventromedial prefrontal cortex −14 40 −26 572 4.37 0.014

Middle cingulate cortex −4 0 36 76 3.33 0.024

Orbitofrontal cortex −16 52 −18 572 3.94 0.034

For each experimental phase (fear conditioning, unconditioned responses ‘shock delivery’, late extinction learning and early extinction recall), correlations between
brain activations and estradiol levels are listed. ‘Positive’ and ‘negative’ refer to the direction of the correlation. For each brain region, Montreal Neurological
Institute (MNI) coordinates are reported along with cluster size, t value and p value (family-wise error corrected). Note that all these analyses were performed only
in naturally cycling women (excluding men and women using oral contraceptives). Only brain regions from the fear conditioning and extinction networks
are reported
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Despite these limitations, a key contribution of the
present study is to highlight the potential to entirely over-
look sex differences in the neurobiology of fear extinction
based upon the composition of the sample of women
tested. Our findings of multiple HE-driven sex differences
would have been occluded if our sample population con-
sisted of mainly OC users and/or LE women. This finding
may also contribute to discrepancies between studies in this
area of research in which some reports note sex differences
and others do not. Our paper emphasizes the importance
of considering whether or not women are naturally cycling,
what their hormone levels are during their participation,
and their use of hormonal contraceptives when examining
the neurobiology of fear extinction.

Conclusions
The present study demonstrates that estradiol levels may
influence the degree of activation in the brain’s fear-
extinction network. It is therefore important to consider
gonadal hormonal status, oral contraceptive use, and men-
strual cycle phase when investigating sex differences in the
context of fear conditioning, fear extinction, and other
emotional regulation tasks. As these factors contribute to
the endocrine milieu, taking them into account may serve
to reduce the variability and seemingly contradictory find-
ings among different studies on sex differences in emotion
regulation.
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