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Abstract: In cytoplasm, protein γ-tubulin joins with various γ-tubulin complex proteins (GCPs) to
form a heterotetramer γ-tubulin small complex (γ-TuSC) that can grow into a ring-shaped structure
called the γ-tubulin ring complex (γ-TuRC). Both γ-TuSC and γ-TuRC are required for microtubule
nucleation. Recent knowledge on γ-tubulin with regard to its cellular functions beyond participation
in its creation of microtubules suggests that this protein forms a cellular meshwork. The present
review summarizes the recognized functions of γ-tubulin and aims to unite the current views on
this protein.
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1. Introduction

Microtubules are highly enriched in a family of GTPases called the tubulins. In humans, there
are five known tubulin isoforms: α-tubulin, β-tubulin, γ-tubulin, δ-tubulin, and ε-tubulin [1]. Among
the members of the tubulin GTPase superfamily, only the α-, β-, and γ-tubulins are ubiquitous,
implying that these proteins perform essential cellular functions that might be conserved throughout
the eukaryotes. The first tubulin genes were discovered in the 1970s [2], and since then several genes
coding for α- and β-tubulin have been described. In humans, α- and β-tubulin are encoded by 19
genes (10 and 9 genes, respectively) (http://genome.ucsc.edu/) [3]. Subsequent research identified
γ-tubulin as a regulator of microtubule assembly in the fungus Aspergillus nidulans [4]. In eukaryotes,
the number of genes encoding for α- and for β-tubulin varies considerably, whereas the number
encoding γ-tubulin ranges from 1 to 3, with two genes found in mammals and up to three genes
in flowering plants [3]. The disparity in the number of genes encoding the various members of the
tubulin family suggests that part of the fine tuning of the functions of α-tubulin and β-tubulin in
microtubules is the result of the variation in the expression of different α- and β-tubulin genes in the
different tissues, but, because there are fewer TUBG genes, γ-tubulin has to perform housekeeping
functions that are more conserved among the species.

In eukaryotes, the α-, β-, and γ-tubulins work together in the formation of microtubules.
Heterodimers of α- and β-tubulin assemble microtubules, and two main complexes containing
γ-tubulin—the γ-tubulin small complex (γ-TuSC) and the γ-tubulin ring complex (γ-TuRC)—assist in
microtubule nucleation [5–7]. In humans, γ-TuSC consists of two γ-tubulin molecules in combination
with one γ-tubulin complex protein 2 (GCP2) and with one GCP3. γ-TuSCs, together with additional
GCPs, form the larger complex γ-TuRC. γ-TuSC and γ-TuRC are found in cytoplasm and centrosomes
and are also associated with cellular membranes [8–11].
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Here, we review and discuss the possible functions of γ-tubulin as a cellular meshwork based on
recent advances in the field.

2. γ-Tubulin Is an Essential Protein

To date, nothing is known about a species that lacks γ-tubulin, and about half of the studied
species contain a single TUBG gene [3]. In mice, TUBG1 is the predominantly expressed gene, although
TUBG2 is expressed up to the blastocyst stage during embryonic development and in the brain [8].
The TUBG2-knockout mice are viable and fertile, but exhibit some defects, including abnormalities in
their circadian rhythm and in painful stimulation [8]. In contrast, the TUBG1-knockout mice survive to
the morula/blastocyst stage. Cells from cultured TUBG−/− embryos show cell division arrest with
unaligned and abnormally condensed chromosomes [8]. Additionally, in such embryonic cells, the
microtubules are stable and the mitotic spindles are deformed and abnormal, carrying condensed and
unaligned chromosomes, and the cells contain only one pericentrin (a centrosomal marker) rich center.
These characteristics suggest that they have defects in the microtubules dynamics and centrosome
duplication. Interestingly, TUBG1−/− embryos contain parental γ-tubulin 1 that is progressively diluted
during the division of the fertilized egg. These embryos also express γ-tubulin 2, but the protein is
not present in the centrosomes [8], which may result in disorganized spindles and the subsequent
impairment of both nuclear division and centrosome replication (Figure 1). Inasmuch as similar
phenotypes have been reported in other systems, the TUBG genes are considered essential [8,12–21].
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Figure 1. The levels and location of γ-tubulin protein that influences the proliferation capacity of
mammalian cells. Schematic representation [22] showing how changes in the levels of the γ-tubulin
protein (γ-tubulin 1 and γ-tubulin 2) in different cell compartments affect a proliferating cell. Cells
with γ-tubulin levels of >50% divide normally, whereas those with levels of <50% arrest in interphase
and ultimately die of apoptosis. Thereafter, selective depletion of γ-tubulin 1 protein reduces the pool
of centrosome-associated protein, which leads to mitotic arrest due to impaired centrosome duplication
and aberrant mitotic spindles.
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Although γ-tubulin was regarded as a low-abundant protein when first discovered [17], today
it is known that γ-tubulin is ubiquitously expressed in mammalian cells and appears in abundance
in all cellular compartments [8,9,11,14,23–27]. In human and mouse cell lines, targeting the TUBG1
and TUBG2 with a single-guide (sg) or with short interference (si) RNA techniques induces a 50%
drop in the levels of γ-tubulin protein, which leads to apoptotic death (Figure 1) [13,14,24,28]. The
live imaging of TUBG sgRNA-expressing cells has demonstrated that when the levels of γ-tubulin
decrease, cells divide normally for several days but subsequently they arrest in the interphase and
die [14].

Based on previous work, it is surprising that the concomitant knockdown of both TUBG genes
arrest cells in interphase and not in mitosis [8,15–17,19,21]. A plausible explanation for this effect is
that the level of unconsumed parental γ-tubulin present in TUBG sgRNA-expressing cells is sufficient
to aid execution of both interphase and mitosis, but, because each cell division halves the amount
of γ-tubulin, the resulting γ-tubulin levels in the offspring cells cannot suffice to support interphase
and thus the cells die in interphase. In contrast, in TUBG1−/− embryos, the amounts of parental
γ-tubulin 1 and the expressed γ-tubulin 2 are enough to permit interphase progression, but, as the
levels of parental γ-tubulin 1 drop, there is a concomitant decrease in the centrosome-associated pool
of γ-tubulin, which results in mitotic failure [8]. Consequently, cell division in TUBG-knockdown
cells will continue as long as the inherited γ-tubulin pool is sufficient to allow the execution of the
following interphase [14], whereas cell division in TUBG1−/− embryos will proceed as long as the
inherited centrosome-associated γ-tubulin pool is adequate for the execution of the subsequent mitosis
(Figure 1) [8].

3. Is γ-Tubulin a Sticky Protein or a Meshwork?

Despite considerable progress in understanding the functions and location of γ-tubulin, the
views regarding their functions have broadened. Initial genetic and biochemical experiments
suggested that cellular γ-tubulin is either soluble or is associated with the following cellular structures:
microtubule-organizing centers (centrosomes in animal cells and spindle pole bodies in fungi), the
mitotic spindle, the kinetochore, midbodies, and microtubule arrays [29–35]. Different studies have
found that part of the soluble γ-tubulin pool is in a complex with chaperonin containing TCP-1 (CCT),
which is involved in the correct folding of tubulins [36,37]; part of it is in a complex with pericentrin, a
cytosolic and pericentriolar matrix (PCM) protein [38]; and the rest of γ-tubulin is organized in either
γ-TuSCs or γ-TuRCs [5–7]. Notably, γ-tubulin is detected in all biochemically divided fractions of cells
and has, therefore, been considered to simply represent the contamination caused by the sticky nature
of the protein.

A number of studies in recent years have broadened this view of γ-tubulin [9–11,14,23–28,39–43].
In some cell lines and primary cells, a pool of γ-tubulin in the nuclear compartment [27,44,45] has
been detected and found to be associated with Rad51, C53, GCP2, GCP3, E2F1, and lamin B1 [23–28].
Moreover, γ-tubulin affects the proper positioning and biogenesis of the Golgi apparatus, and it is
also associated with endosomes and the endoplasmic reticulum [9,11,14]. Together, the reported
data demonstrate that γ-tubulin is associated with all of the following: the nucleus, the Golgi, the
endoplasmic reticulum, the mitochondria, the centrosomes, and the cytoplasm [9–11,14,25,27,44–46].

Within the PCM, γ-tubulin–pericentrin complexes form strings [38]. γ-Tubulin produced by
bacteria assembles in vitro a meshwork of threads called γ-strings that support the formation of lamin
B3 protofilaments [28]. Additionally, nuclear assembly experiments using extracts of Xenopus laevis
eggs and mammalian cell lines have demonstrated that a nuclear boundary of γ-strings at the transition
between cytosolic and chromatin-associated γ-tubulin serves as a supporting scaffold for the formation
of the lamina and for the recruitment of the nuclear membrane [28]. An in vivo analysis of zebrafish
embryos and in vitro experiments have shown that part of the cellular γ-tubulin pool is folded into
γ-strings by the chaperonin CCT [39]. Experiments on the plant Arabidopsis thaliana have confirmed
and further clarified the structure of γ-strings [43]. γ-Strings are 4 to 6 nm in diameter [14,28,39,43]
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and, in animal cells, span from the cytosolic compartment through the membranes and into the
chromatin [14,28].

The γ-tubules represent another cellular structure that consists of γ-tubulin (Figure 2). γ-Tubules
were first described as filaments formed upon the overexpression of γ-tubulin in monkey kidney Cos
cells [47]. A recent characterization of γ-tubules in mammalian cells demonstrated that γ-tubulin
assembles γ-tubules, which are cytosolic fibers containing γTuRCs and pericentrin [13]. In addition
to γ-tubules and γ-strings, other γ-tubulin-rich structures are the centrosomes. In summary, the
mentioned observations imply that γ-tubulin in mammalian cells is associated with all cellular
compartments and, due to its self-polymerizing features, can be further organized in PCM, γ-strings,
and γ-tubules. The cited findings also suggest that the sticky nature of γ-tubulin is the result of the
self-polymerizing ability of the protein in combination with its presence in all cellular compartments.
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Figure 2. γ-Strings, γ-tubules, and centrosomes are interlinked to form a cellular meshwork. To
determine whether γ-tubules are interconnected with centrosomes and γ-strings, and to capture
the faintest signals emitted by thin γ-strings (Ø 4–6 nm), an Airyscan super-resolution microscopy
was performed to reveal the details in the γ-tubulin meshwork. The U2OS cells were fixed, and
endogenous γ-tubulin was immunostained with an anti-γ-tubulin antibody [48]. The sequential
Airyscan super-resolution images were collected at 0.2-µm intervals. A 3D thinning algorithm was
applied to the Z-stack images to find the centerlines (skeleton) of structures in the input images [49].
The projection of the obtained Z-stack-tagged skeleton is shown (3D Z-stack skeleton). The 3D Z-stack
skeleton images illustrate γ-strings that emanated from both γ-tubules and centrosomes interlinking
the meshwork [13]. White boxes indicate the areas magnified in the inset. The final figure is a schematic
representation of the interlinking that γ-strings establish between γ-tubules and centrosomes. The
white arrowheads, and white arrow, and the yellow arrow point out centrosomes, γ-tubules, and
γ-strings, respectively. The illustrated images are representative of at least six experiments. Scale bar:
1 µm.

The γ-Tubulin Meshwork

Within an animal cell, the self-polymerizing ability of γ-tubulin results in the formation of
γ-strings, and γ-tubules, and the γ-strings associated with the centrosome, which suggests that these
components are interlinked to form a cellular meshwork in both the cytosol (including all cellular
organelles) and the nuclear compartment.

Z-stack images captured by Airyscan super-resolution microscopy, a technique known to improve
the signal-to-noise detection of the faintest signals emitted by thin γ-strings (Ø 4–6 nm), were analyzed
and, thereafter, 3D-skeleton images were generated by applying a 3D thinning algorithm to locate the
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centerlines (skeleton) of the structures in the input images [49]. This approach demonstrated that links
are established between γ-strings, γ-tubules, and centrosomes (Figure 2). Considering that interlinking
between filaments is the key to the formation of a skeleton, we propose that cellular γ-tubulin forms
a meshwork.

4. The Functions and Dynamics of the γ-Tubulin Meshwork

It is known that the functions of cytoskeletal and nucleoskeletal networks include providing
form and mechanical support for a cell, organizing the genome, and assisting in signal transduction,
cell movement, cellular transport, and cell–cell interactions [50]. However, how does the γ-tubulin
meshwork contribute to cellular homeostasis?

4.1. Providing Form and Mechanical Support, and Assisting in the Movement and Positioning of Organelles

It is plausible that centrosomes, γ-strings, and γ-tubules provide cells with mechanical support
in various ways. In dividing cells, two centrioles are embedded in the PCM to form a centrosome.
Interfering with γ-tubulin affects the centrosome duplication, which suggests that, in the PCM,
γ-tubulin gives the parental centrioles with the mechanical support required for the formation of
offspring centrioles [15,21,51]. Moreover, the PCM constitutes an important site that regulates the
nucleation and the dynamics of microtubules and actin filaments during mitosis (i.e., a bipolar mitotic
spindle ensures the strict segregation of sister chromatids between daughter cells) and also during
interphase [30,52,53]. Furthermore, a boundary of γ-strings at the transition between the cytoplasm
and the chromatin supports the formation of the lamina, and the recruitment of nuclear membranes,
assuring the formation of a nuclear envelope around the chromatin [28]. In mitochondria and the
Golgi apparatus, γ-strings produce a structuring scaffold that aids to the shaping and positioning
of these organelles [11,14]. In addition, it is possible that membrane-associated γ-strings provide
nucleating sites for microtubules, which would facilitate the movement and positioning of organelles
in the cytoplasm. This notion is supported by a study showing that, in yeast cells, the Leu387Pro
mutation in γ-tubulin influences nuclear positioning [54].

Considering γ-tubules, these structures are approximately 25 nm in diameter and are most
abundant in non-dividing cells, in which higher protein levels of the γ-tubulin protein are found
in the cytoplasm [25–27,45,55]. Thus, a cell may control the cytosolic location of γ-tubulin through
the formation of cytosolic γ-tubules. However, the centrosome is not a prerequisite for γ-tubule
formation [13], although γ-tubules are found emanating from centrosomes at sites where the nuclear
envelope is folded, and two γ-tubules are interlaced, to produce a macro-γ-tubule (Figure 3a,b). The
creation of macro-γ-tubules may influence the shape of the nuclear envelope, a deduction that supports
the role of γ-tubules as elements that alter the shape of the nuclear compartment.

4.2. Assisting in Signal Transduction, and Organizing the Genome

There is substantial evidence that the γ-tubulin meshwork regulates the G1-to-S
transition [24,25,56–64], mitotic progression [65], and cytokinesis [66], effects that are achieved by
harboring of various proteins involved in the signal transduction pathways that coordinate cell cycle
progression. Additionally, the PCM acts as a signal hub that brings together various checkpoint
proteins [24,25,56–67]. A more detailed review of the involvement of γ-tubulin in signal transduction
has recently been published [22].



Int. J. Mol. Sci. 2018, 19, 3245 6 of 13

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  6 of 12 

 

are essential for centrosome duplication and DNA replication [69]. Interestingly, in addition to 
interacting with E2Fs, RB1 modifies the structure and organization of chromatin by recruiting 
remodeling factors, including histone deacetylases, members of the chromatin remodeling complex 
SWI/SNF, and DNA methyltransferase [70–72], which indicates the potential involvement of γ-
tubulin in the recruitment of DNA-remodeling factors.  

 
Figure 3. Connecting both sides of the cytoplasm with the nuclear compartment. (a–c) U2OS cells 
were treated with 30 J/m2 UV light and incubated for 5 minutes before fixation. Endogenous γ-tubulin 
and lamin B were detected by confocal immunofluorescence microscopy (Zeiss LSM 700 Axio 
Observer microscope with a Plan-Apochromat 63× NA 1.40 oil immersion objective) using an anti-γ-
tubulin and an anti-lamin B antibody. Nuclei were detected with 4′,6-diamidino-2-phenylindole, 
dihydrochloride (DAPI) [48]. (a) Sequential fluorescence Z-stack images showing the γ-tubulin 
meshwork, the lamina (laminB), and chromatin. White arrowheads follow two γ-tubules that meet in 
the nuclear compartment. The images were collected at 0.4 μm intervals. The white box indicates the 
area magnified in the micrograph in panel (b). (b) The magnified area (micrograph) and a cartoon 
depicting two γ-tubules that produce a macro-γ-tubule by nucleating on a centrosome. The γ-tubulin 

Figure 3. Connecting both sides of the cytoplasm with the nuclear compartment. (a–c) U2OS cells were
treated with 30 J/m2 UV light and incubated for 5 minutes before fixation. Endogenous γ-tubulin and
lamin B were detected by confocal immunofluorescence microscopy (Zeiss LSM 700 Axio Observer
microscope with a Plan-Apochromat 63× NA 1.40 oil immersion objective) using an anti-γ-tubulin and
an anti-lamin B antibody. Nuclei were detected with 4′,6-diamidino-2-phenylindole, dihydrochloride
(DAPI) [48]. (a) Sequential fluorescence Z-stack images showing the γ-tubulin meshwork, the lamina
(laminB), and chromatin. White arrowheads follow two γ-tubules that meet in the nuclear compartment.
The images were collected at 0.4 µm intervals. The white box indicates the area magnified in the
micrograph in panel (b). (b) The magnified area (micrograph) and a cartoon depicting two γ-tubules
that produce a macro-γ-tubule by nucleating on a centrosome. The γ-tubulin molecules form strings
(γ-strings) and γ-tubules. (c) Z-stack showing average intensity projection of the collected images
in panel (a). The white box indicates the area magnified in the inset. Dense chromatin domains in
the inset are designated with a dashed borderline and yellow arrowheads show less dense chromatin
domains. Yellow boxes represent colocalized pixel maps (CM) of the indicated channels of the areas
magnified in the inset. White areas in the maps denote pixels colocalized between channels [13]. Black
boxes are schematic representations of the structures shown in the fluorescence images. The images in
(a–c) are representative of at least six experiments. Scale bars: 10 µm.
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The spatial organization of the genome regulates gene expression [68], and both genome
organization and gene expression may be controlled by the γ-tubulin meshwork. In this context,
γ-tubulin binds to the DNA on the same DNA binding motif as E2 promoter-binding factor (E2F),
which results in that the retinoblastoma (RB1) and γ-tubulin proteins moderate each other´s expression
by binding to their respective gene promoters. Thus, the reduction of the levels of the γ-tubulin
protein results in an up-regulation of the expression of the RB1 protein [24,25]. This suggests that
RB1 and γ-tubulin may complement each other in the regulation of gene expression, where the lack
of activity/expression of one protein may be compensated for by an increase in activity/expression
of the other protein. Indeed, the RB1/γ-tubulin regulatory network controls E2Fs [25], which
transcriptional activities are necessary to induce the expression of the target genes that are essential
for centrosome duplication and DNA replication [69]. Interestingly, in addition to interacting with
E2Fs, RB1 modifies the structure and organization of chromatin by recruiting remodeling factors,
including histone deacetylases, members of the chromatin remodeling complex SWI/SNF, and DNA
methyltransferase [70–72], which indicates the potential involvement of γ-tubulin in the recruitment
of DNA-remodeling factors.

Considering that γ-strings are present in the double membranes of the nuclear envelope and of
the mitochondria [14,28], as well as in the chromatin, and that lamin B is capable of nucleating on
γ-strings, it is tempting to speculate on the possible mechanisms by which the γ-tubulin meshwork
can assist in signal transduction and genome organization. A confocal microscopy analysis of fixed
human U2OS osteosarcoma cells revealed that two γ-tubules are connected through the nuclear
compartment and thereby link both sides of the cytosol (Figure 3a,c). A closer analysis of Z-stack images
captured with a confocal microscope showed that, at the γ-tubule connecting site inside the nuclear
compartment, the chromatin is less dense and appears to have holes (Figure 3c). Chromatin-dense
areas or domains can also be seen in the vicinity of γ-tubulin (Figure 3c). These findings agree with the
possibility that cytosolic γ-tubules serve as structural docking sites for nuclear γ-tubulin, resulting
in the remodeling of the genome and in the formation of docking sites that might be used for the
recruitment of chromatin-remodeling factors.

4.3. The Dynamics of the γ-Tubulin Meshwork

The γ-tubulin meshwork changes in a cell-cycle-dependent manner. In the G1 phase, most of the
γ-tubulin pool is in the cytosol, and part of this cytosolic pool creates γ-tubules (Figure 2) [13].
The formation of γ-tubules is determined by a GTP-dependent balance between γ-tubules and
γ-tubulin [13]. However, at the G1–S transition, the number of cytosolic γ-tubules is reduced, and
there is a subsequent accumulation of γ-tubulin in the nuclear compartment and the PCM [13,21,25].
In the S phase, the inherited centrosome and genome duplicate synchronously. At the onset of mitosis,
the two centrosomes ensure the assembly of a bipolar mitotic spindle and the strict segregation of
sister chromatids between daughter cells. In addition, a boundary of γ-strings ensures the formation
of the nuclear envelope around chromatin [28].

Studies of murine NIH3T3 embryonic fibroblasts and human U2OS osteosarcoma cells have
identified a bipartite nuclear localization signal (NLS) on the C terminus of γ-tubulin [55]. Notably,
SadB kinases (e.g., mSADB and hSAD1/BRSK1) mediate the phosphorylation of γ-tubulin on Ser385, a
residue that is near the NLS and also occurs in the starting region of a motif, which is commonly found
in DNA-binding proteins and is called a helix-loop-helix [22]. The phosphorylation levels of γ-tubulin
on Ser385 induce a conformational change to unmask the NLS, which leads to the nuclear accumulation
of γ-tubulin [21,23–27,55]. The DNA-binding ability of the C terminus of γ-tubulin is also important
for the association of the protein with mitochondrial DNA [14,25]. Moreover, early in the S-phase,
SadB kinases mediate the phosphorylation of γ-tubulin on Ser131 [21,51,55]. The phosphorylation
levels of γ-tubulin on Ser131 regulate the recruitment of γ-tubulin at the nascent centriole and facilitate
the accessibility of SadB to Ser385 [55]. Another biochemical modification that affects the γ-tubulin
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meshwork is the BRCA1-dependent ubiquitination of γ-tubulin, which regulates the centrosome
number [73].

In contrast to γ-strings, which are static structures, γ-tubules vary in length and nucleate on
cytosolic γ-tubulin foci together with pericentrin, GCP2, GCP3, GCP5, and GCP6. γ-Tubules are
affected by the following: the methodology used for fixation of cells; treatment with cold, colcemid,
taxol, citral dimethyl acetal (CDA), and dimethyl fumarate (DMF); and the expression of γ-tubulin
mutants that affect the GTPase domain of γ-tubulin [13,48]. Intriguingly, both the citral analogue CDA
and the approved drug DMF bind to the GTPase domain of γ-tubulin, which affects the length of
γ-tubules, the nuclear activity of γ-tubulin, and the respiratory capacity of mitochondria [14,56,74].
Accordingly, in human U2OS osteosarcoma cells, mutations in the GTP/magnesium-interacting residue
Cys13 of γ-tubulin are cytotoxic [13,14,75,76]. These observations strongly suggest that the GTPase
domain of γ-tubulin is essential for the dynamics of the γ-tubulin meshwork. The where and when
of the self-polymerizing ability of γ-tubulin is most likely regulated by GTP acting together with
phosphorylation-dependent changes in the conformation of γ-tubulin.

5. Conclusions and Future Perspectives

Recent advances support the notion that γ-tubulin is the main component of a cellular meshwork
that plays a major role in cell survival. The aim of the present review is to unite recent findings in
this field with previous knowledge of the protein to summarize the known functions of γ-tubulin in
cellular homeostasis, and also to speculate on the possible roles and organization of the meshwork.
Nonetheless, further insights are still needed to elucidate the mechanical signals affecting the spatial
organization of the γ-tubulin meshwork and the molecules controlling the dynamics of this meshwork.
Importantly, γ-tubulin is related to several human diseases. Levels of γ-tubulin are increased in
various tumors, and inhibition of the GTPase activity of γ-tubulin in RB1-deficient tumor cells impedes
tumor growth [24,25,56,77–82]. Mutations in the TUBG genes have also been found to cause brain
malformations [54,83]. Finally, DMF is a γ-tubulin inhibitor used to treat multiple sclerosis and
psoriasis, both of which are autoimmune diseases [56,74,84,85]. Consequently, knowledge concerning
the γ-tubulin meshwork is required to highlight the potential roles of γ-tubulin in diseases and
development, and to aid in the discovery of novel therapeutic regimens that target the activity of
γ-tubulin.
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