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John’s Equation-based Consistency 
Condition and Corrupted Projection 
Restoration in Circular Trajectory 
Cone Beam CT
Jianhui Ma1, Shuyu Wu1, Hongliang Qi1, Bin Li1, Hao Yan2, Linghong Zhou1 & Yuan Xu1

In transmitted X-ray tomography imaging, the acquired projections may be corrupted for various 
reasons, such as defective detector cells and beam-stop array scatter correction problems. In this study, 
we derive a consistency condition for cone-beam projections and propose a method to restore lost data 
in corrupted projections. In particular, the relationship of the geometry parameters in circular trajectory 
cone-beam computed tomography (CBCT) is utilized to convert an ultra-hyperbolic partial differential 
equation (PDE) into a second-order PDE. The second-order PDE is then transformed into a first-order 
ordinary differential equation in the frequency domain. The left side of the equation for the newly 
derived consistency condition is the projection derivative of the current and adjacent views, whereas 
the right side is the projection derivative of the geometry parameters. A projection restoration method 
is established based on the newly derived equation to restore corrupted data in projections in circular 
trajectory CBCT. The proposed method is tested in beam-stop array scatter correction, metal artifact 
reduction, and abnormal pixel correction cases to evaluate the performance of the consistency condition 
and corrupted projection restoration method. Qualitative and quantitative results demonstrate that the 
present method has considerable potential in restoring lost data in corrupted projections.

In cone-beam computed tomography (CBCT), the projections acquired are frequently corrupted because of the 
limitations of physical hardware or data processing. For example, corrupted detector cells can induce the corre-
sponding pixels in the projection to behave abnormally, and consequently, result in ring artifacts superimposed 
on the reconstructed image. These artifacts can seriously affect the extraction of diagnostic information from 
the reconstructed images1, 2; thus, an abnormal pixel correction method is essential to eliminate ring artifacts3, 4.  
A typical correction method is the sinogram-based correction method, in which the abnormal pixels are ini-
tially detected using a wavelet-based technique before the abnormal pixels are estimated via linear interpolation5. 
However, linear interpolation is weak in a high-frequency domain; thus, a better restoration method is necessary 
to improve the quality of reconstructed images.

Data inaccuracy is also a common problem in artifact correction. For example, scattered photons severely 
degrade image quality6–8. To address the issue of scatter correction, various approaches have been proposed, such 
as anti-scatter grid usage9, bow-tie filter compensation10, Monte Carlo simulation11, 12, analytical computation13,  
and scatter kernel calculation14. Another well-known type of scatter correction methods is scatter measure-
ment, whose concept is to accurately measure scatter signals with the aid of additional hardware15, 16. A typical 
scatter-measurement method is measuring the scattering intensity with a beam-stop array (BSA) in the extra scan 
to obtain the influence of scatter via 2D spatial interpolation based on the measured data17. Zhu18 also proposed a 
moving BSA method, which integrated extra scan and normal scan to reduce the total dose significantly. The pri-
mary photon beam in each view is not blocked at a fixed position because of the movement of BSA; however, the 
projection remains corrupted in each view. Thus, restoring lost data in each projection is a vital step in the BSA 
scatter correction workflow. Conventional spatial interpolation can only be utilized among a single projection 
because the projections are scanned in a circular trajectory, thereby limiting the restoration of high-frequency 
components and producing streak artifacts16.

1School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China. 2Cyber Medical 
Corporation, Xi’an, 710000, China. Correspondence and requests for materials should be addressed to L.Z. (email: 
smart@smu.edu.cn) or Y.X. (email: yuanxu@smu.edu.cn)

Received: 28 November 2016

Accepted: 25 May 2017

Published: xx xx xxxx

OPEN

mailto:smart@smu.edu.cn
mailto:yuanxu@smu.edu.cn


www.nature.com/scientificreports/

2Scientific Reports | 7: 4920  | DOI:10.1038/s41598-017-05249-5

Besides, metal objects such as metal implants, dental fillings, and prostheses possess high densities, therefore 
the presence of high-density objects in field of view (FOV) can lead to the severe metal artifacts which seriously 
degrade image diagnosis value19–21. Generally, noise, exponential edge gradient effect, beam hardening artifacts, 
and scatter artifacts are all the causes of metal artifacts19. The aim of metal artifact reduction methods is to restore 
the corrupted data caused by metal objects, therefore an efficient method is required here to improve the image 
quality degraded by above described artifacts.

CBCT projections are typically redundant. Therefore, we apply consistency conditions to restore lost data in 
corrupted projections22, 23. Consistency conditions refer to the constraints between the current projection and its 
adjacent projections. Their specific forms are hyperbolic equations, which are linear constant coefficient partial 
differential equation (PDE) and homogeneous second-order PDE. Fritz John first proposed an ultra-hyperbolic 
PDE, which later became known as John’s equation, to solve line integral problems24. Computed tomography (CT) 
reconstruction is based on radon transform theory; thus, the projection data naturally satisfy ultra-hyperbolic 
PDEs25, 26. However, John’s equation is difficult to utilize because of the implementation of its second-order PDE. 
To address this issue, Patch27 converted the second-order PDE into a family of first-order ordinary differential 
equations (ODEs) in the frequency domain. On the basis of her deduced ODEs, corrupted or unmeasured pro-
jections can be acquired using the information of the adjacent projections in helical CT. However, the equation 
derived by Patch in the frequency domain requires a derivative with respect to pitch z; thus, Patch’s equation is 
difficult to apply to helical CT data28. Moreover, pitch z is constant in circular trajectory CBCT; thus, the deriv-
ative with respect to pitch z is meaningless. Therefore, Patch’s equation cannot be utilized for CBCT data in a 
circular trajectory.

We consider these issues to derive a new consistency condition from John’s equation and propose a method to 
restore lost data in corrupted projections in circular trajectory CBCT. In particular, the relationship of the geom-
etry parameters in circular trajectory CBCT is utilized to convert an ultra-hyperbolic PDE into a first-order ODE 
in the frequency domain. A corresponding method is established with the newly derived equation to restore lost 
data in corrupted projections in circular trajectory CBCT. The method is tested in scatter correction, metal arti-
fact reduction, and abnormal pixel correction cases. Qualitative and quantitative results show that the proposed 
method is promising in restoring corrupted projections in circular trajectory CBCT.

The remainder of this paper is organized as follows. Section 2 introduces John’s equation and the geometry 
configuration of circular trajectory CBCT. Then, it describes the equation derivations and the projection data 
restoration method. Sections 3 and 4 respectively report in detail the experiments and the results of the proposed 
method in the scatter correction, abnormal pixel correction, and metal artifact reduction cases. Finally, the dis-
cussion of the results and the conclusions drawn from this study are presented in Sections 5 and 6, respectively.

Method
John’s equation.  In 1938, Fritz John derived the ultra-hyperbolic PDE, which can solve the problem of line 
integrals on a characteristic surface. Let ε and η denote the X-ray source and detector cell, respectively. John’s 
equation24 can be expressed as follows:
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where u denotes a set of line integrals of the object function f, which represents a sufficiently differentiable func-
tion of an object along the line through ε and η, and can be expressed as

∫ε η ε η ε= + −u f t dt( ; ) ( ( )) (2)R

Geometry configuration of circular trajectory CBCT.  In this section, we introduce circular trajectory 
CBCT geometry, which is utilized to convert the ultra-hyperbolic PDE into an ODE. As shown in Fig. 1, o-xyz is a 
global coordinate system, where o is the rotation isocenter; (α1, α2) is the local coordinate system of the flat panel 
detector, where α2 is parallel to the z-axis and α1 is orthogonal to α2. The rotation angle of the X-ray source and 
detector around the x-axis is θ; ρ and d denote source-to-isocenter distance and isocenter-to-detector distance, 
respectively.

Consistency condition in circular trajectory CBCT.  In this section, we would like to explain further 
why Patch’s consistency condition method cannot be directly utilized in circular trajectory CBCT. To calculate the 
unmeasured data in the projections acquired via helical CBCT geometry, Patch27 initially used geometry param-
eters of a third-generation helical CT system to rewrite the variables in John’s equation as follows:
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By transforming Eq. (3) into the frequency domain, Patch has converted John’s equation, which is a 
second-order PDE, into a first-order PDE as
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where (k1, k2) is the corresponding frequency domain of (α1, α2), and the superscript * denotes a Fourier trans-
form. The subscript denotes a derivative; for example, uθ represents the derivative of u with respect to θ. Note that 
Eq. (4) is a first-order PDE for θ and z, and for fixed frequency component (k1, k2), it is referred to as a family of 
first-order ODEs.

Although Patch converts the complex John’s equation into an ODE, the helical coordinates in Eq. (4) consider 
z as a numerical variable. The change in variable z along the vertical axis destroys the homogeneity in a helical 
system28; thus, Patch’s equation is difficult to apply in practice. In theory, helical CT can degenerate into circular 
trajectory CBCT when z = 0. However, Eq. (4) contains a derivative of z; thus, this equation will not work when z 
is a constant. So, Eq. (4), which was deduced by Patch, could not be utilized in circular trajectory CBCT.

Therefore, we have derived a John’s equation-based consistency condition (JECC) and the derivation is 
described in detail in this section. To make John’s equation subject to the circular trajectory CBCT geometry, we 
firstly rewrite ε and η in terms of five parameters, namely, α1, α2, ρ, d, and θ. Then ε and η are defined by

ε ρ θ ε ρ θ ε= = =cos , sin , 0 (5)1 2 3

η α θ θ η α θ θ η α= − − = − =d dsin cos , cos sin , (6)1 1 2 1 3 2

Eqs (5) and (6) can be transformed into the equivalent equations as follows:
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Combined Eqs (5), (6) with (7), the derivatives of the CBCT parameters with respect to ε and η are listed in 
Table 1.

According to the derivative of the compound function and the derivatives shown in Table 1, we can get
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Figure 1.  Geometry configuration of circular trajectory CBCT.

α1 α2 ρ d θ

ε1 −d·sinθ/ρ 0 cosθ α1·sinθ/ρ −sinθ/ρ

ε2 d·cosθ/ρ 0 sinθ −α1·cosθ/ρ cosθ/ρ

ε3 0 0 0 0 0

η1 −sinθ 0 0 −cosθ 0

η2 cosθ 0 0 −sinθ 0

η3 0 1 0 0 0

Table 1.  Derivatives of the CBCT parameters with respect to ε and η. For example, the result of ∂u/∂ε1 is in the 
second cell of the second row, i.e., ∂α1∂ε1 = −d·sinθ/ρ.
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Then John’s equation can be transformed as follows:
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Let θ θ→ =e (cos , sin ) denote unit vector, therefore θ θ→ = −
⊥e ( sin , cos ) is the vector which rotates →e  by 90° 

anticlockwise. Furthermore, the operators G and M are used to represent (1/ρ)·(∂L/∂d) + ∂2/∂α1∂ρ and 
(1/ρ)·(∂L/∂α2) + ∂2/∂α2∂ρ, respectively. Hence, Eq. (15) can be simply written as
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Further merge Eq. (16) into Eq. (17)
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Due to ρ and d are constants, we would like to express ∂/∂r and ∂/∂d using other variables. Therefore two gradient 
differential equations are derived firstly, where l denotes the line through two points ε and η
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Eqs (20) and (21) can be rewritten with α1, α2, ρ, d and θ as follows:
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After transposition and combining like terms, the expressions of ∂/∂ρ and ∂/∂d are as follows:
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With Eqs (24) and (25), Eq. (17) can be expressed as
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Finally the equation we have derived is
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The Fourier transform of Eq. (28) is derived with respect to α1 and α2. Let u* represent the Fourier transform 
of u and (k1, k2) be the corresponding frequency form of (α1, α2). Consequently, Eq. (28) is transformed into
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Let U denote the right side of (29), in terms of derivative definition, Eq. (29) can be simply expressed as

θ θ θ θ+ = + ⋅ ≠⁎ ⁎u d u d U k( ) ( ) , 0 (30)2
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Eq. (30) is the JECC equation in the frequency domain. Note that the partial derivatives contained in U are 
consistent with u*(θ), e.g., when u*(θ) denotes the Fourier transform of the projection at angle θ, ∂u*/∂k2 means 
∂u*(θ)/∂k2. To avoid any confusion, we add an angle label to symbol U, therefore Eq. (30) can also be written as 
follows:

θ θ θ θ θ+ = + ⋅ ≠⁎ ⁎u d u d U k( ) ( ) ( ), 0 (31)2

Or

θ θ θ θ θ θ= − + ⋅ − ≠⁎ ⁎u u d d U d k( ) ( ) ( ), 0 (32)2

As shown in Fig. 2, JECC works well when k2 ≠ 0 in Eq. (30) and it can restore the area in the blue zone, which 
represents high-frequency components. However, the zero-frequency component represented by the white hori-
zontal line is beyond the capability of JECC when k2 = 0 in Eq. (30). To address this issue, a corrupted projection 
u is first interpolated into uʹ via spatial interpolation (SI) in the projection domain, and then uʹ is converted into 
the frequency domain via fast Fourier transform (FFT) to restore the low-frequency components, which are 
represented by the purple rectangle. Thus, the proposed method can combine the advantages of JECC and SI to 
restore corrupted data in the frequency domain. In the following section, we refer to the proposed restoration 
method as the JECC method.

Workflow of corrupted projection restoration.  Figure 3 shows the flowchart of the JECC method, or 
the corrupted projection restoration method. The black dots in the projection represent the pixels that should be 
restored. Let u(θ) denote the projection at view angle θ, and u(θ + dθ) and u(θ − dθ) be the adjacent projections 
at angle θ + dθ and θ − dθ, respectively.

Figure 2.  Illustration of the corrupted projection restoration capabilities of JECC and SI in the frequency 
domain.

Figure 3.  Workflow of the JECC method in circular trajectory CBCT.
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In Step 1, horizontal 1D cubic spline interpolation induces few artifacts because ofthe horizontal 
shift-invariant weighting in the Feldkamp-Davis-Kress (FDK) algorithm29. Thus, cubic spline interpolation is 
utilized to interpolate the projection in each view to obtain the initial projection denoted by uI(θ). The purpose of 
this step is to restore the low-frequency components of the corrupted projection.

In Step 2, uI(θ), u(θ + dθ), and u(θ − dθ) are converted into frequency domain via Fourier transform. After this 
step, the corresponding frequency domains uI*(θ), u*(θ + dθ), and u*(θ − dθ) can be obtained.

In Step 3, u*(θ) can be restored by substituting u*(θ + dθ) and u*(θ − dθ) separately into Eqs (31) and (32). 
Then, uR*(θ), which is the updated frequency data at angle θ, is a weighted result that combines Eqs (31) and (32) 
via a factor ω. ω is a weighting factor which weights the two corresponding results of (31) and (32). The whole 
derivation is based on the assumption that u is differentiable, which is not true in reality. So the method need to 
combine more restoration information at different direction. In the paper, we set ω to 0.5 in order to make two 
adjacent projections have equal contribution. Subsequently, the initial result uI*(θ) in Step 2 is updated to uR*(θ). 
The JECC equation only holds when k2 ≠ 0; thus, uI*(θ) is utilized to extract the low-frequency components when 
k2 = 0. In conclusion, this step can be expressed as

θ
ω θ θ θ θ θ ω θ θ θ θ
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In Step 4, the inverse Fourier transform of uR*(θ) is utilized to obtain the restoration result by FDK algorithm in 
the first iteration.

Steps (2)–(4) are repeated until the termination criterion is satisfied. In this study, we set the iteration number 
as the termination criterion because the restored value remains stable after a certain number of iterations.

Experiments
Moving BSA scatter correction case.  In this section, the JECC method is applied to the simulation of a 
BSA scatter correction case. As shown in Fig. 4(a) and (b), the BSA dimension is 15 × 7 with each blocker shad-
ing 5 × 5 pixels, which are denoted by black dots. In this study, BSA is fixed at the same position in odd-num-
bered views, as shown in Fig. 4(a), whereas it moves to another location in even-numbered views, as shown in 
Fig. 4(b). In practice, we divide the projections into two categories: the odd-numbered views use mode I and the 
even-numbered views use mode II as shown in Fig. 4(c). The movement distance l of BSA between the odd-num-
bered and even-numbered views is 7 pixels. The phantom we tested is a head phantom called FORBILD, which 
has rich high-frequency details. The dimension of the flat panel detector is 850 × 200, and its cell size is 1 × 1 mm2. 
Both ρ and d are 500 mm. The number of projections is 1080. Each iteration result is compared with the result of 
the SI method.

Figure 4.  Configuration of moving BSA scatter correction case. (a) BSA in odd-numbered views (mode I); 
(b) BSA in even-numbered views (mode II); (c) projections in a circular trajectory by moving the BSA scatter 
correction protocol. The odd-numbered views use mode I in (a), and the even-numbered views use mode II in 
(b).
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Abnormal pixel correction case.  As a result of a deficient semiconductor in the flat panel detector or a 
damage caused by improper operation, defective cells in the detector become inconsistent with the responses of 
the X-ray photons. The presence of defective cells among the hundreds of thousands of cells in the detector is 
normal. These defective cells cause abnormal pixels in raw projections. However, these abnormal pixels can be 
detected in a projection by repeatedly scanning the projection at various exposure levels. In general, the detector 
manufacturer provides the abnormal pixel detection and correction protocol. In such protocol, the pixel value 
that corresponds to the defective cell is linearly interpolated using nearby pixels. However, linear interpolation 
(LI) typically causes streak artifacts, and artifacts caused by abnormal pixels in one of hundreds of 2D slices are 
difficult to find among hundreds of 2D slices. The abnormal pixel correction protocol is related to corrupted pro-
jection restoration; thus, the JECC method is also utilized in this case.

As shown in Fig. 5, we acquired the raw projections using an in-house bench-top CBCT system, in which the 
CBCT scanning protocol is presented in Table 2. We then simulated the abnormal pixels induced by the defective 
detector cells, as illustrated in detail in a previous paper1. Furthermore, to further verify the capability of the 
proposed method, we have tested it in a more challenging case with real data acquired by a detector which has a 
group of corrupted cells.

Metal artifact reduction case.  In terms of CBCT in the circular trajectory geometry, raw 2D projections 
are firstly acquired by rotating over 360°. Then the transection images are reconstructed by FDK algorithm. For 
segmenting the metal objects from human tissue, the global threshold method is used in each 2D reconstructed 
image. In this workflow, all voxels above 3000 HU will be considered as metal voxels. After metal segmentation 
by threshold, the metal regions are recognized. Subsequently, SI method or the proposed method is selected 
to restore the corrupted data of the acquired projections with the guidance of metal-only measurement data 
generated by forward projecting metal images. Then, the corrected image can be reconstructed with the cor-
rected projection data. After the reconstruction, the segmented metal objects are finally reinserted to display the 
implants. In this case, the projection correlation based view interpolation (PC-VI) method proposed by Yan16 is 
also employed to compare the capability of the JECC method.

Performance evaluation.  Evaluation by error comparison.  For quantitative measurement, we selected the 
mean absolute error (MAE) to measure the difference between the conventional SI method and the proposed 
method. MAE is defined as

Figure 5.  In-house bench-top CBCT system for raw projection acquisition.

Source-to-axis distance, ρ 100 cm

Axis-to-detector distance, d 50 cm

Detector dimension 1024 × 768

Detector size 40 × 30 cm2

Number of projections over 
360° 360

Phantom dimension 512 × 512 × 100

Voxel size 0.037 × 0.037 × 0.0625 cm3

Table 2.  System setting for circular trajectory CBCT.
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where μ(i) denotes the ith pixel value in the reconstructed image, μt(i) represents the ith pixel value in the refer-
ence image, and N is the number of total pixels.

Evaluation by noise reduction.  For quantitative comparison, we also used signal-to-noise ratio (SNR) to evaluate 
noise reduction in the images. SNR is defined as
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where μm denotes the mean value of the reconstructed image. The definitions of the other symbols are the same 
as those in Eq. (34).

Evaluation by image similarity.  In this study, the universal quality index (UQI)30 was utilized to assess the degree 
of similarity at the region of interest (ROI) in detail. When the ROI is given, the associative mean, variance, and 
covariance of the ROI can be defined as:
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where M represents the number of pixels within the ROI. Then, UQI is defined as
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UQI shows the similarity level between the two images with a value ranging from 0 to 1. A UQI value closer to 
1 indicates that the similarity is high between the reconstructed and reference images.

Results
Moving BSA scatter correction results.  Visualization-based evaluation.  The experimental results 
were compared and analyzed through visual inspection. Figure 6(a–d) show the reference image and the images 
on the 100th slice reconstructed using the SI method, JECC 1st iteration, and JECC 4th iteration, respectively. 
Figure 6(e–h) show the reference image and the images on the 80th slice reconstructed using the SI method, JECC 
1st iteration, and JECC 4th iteration, respectively. The images reconstructed using the JECC method are visually 
better than those reconstructed using the SI method. Compared with the SI method, the JECC method achieves 
good performance in cases of LI-induced streak artifacts. We can obtain a visually satisfactory image quality after 
the JECC 4th iteration.

Profile-based evaluation.  Figure 7(a and b) plot the vertical profiles on the 80th slice and the 100th slice, respec-
tively. The profiles of the results of the JECC method are considerably closer to those of the reference image than 
those of the results of the conventional SI method. The SI method causes more fluctuations around the reference 
value, and this result is consistent with the appearance of streak artifacts in the image. The results also indicate 
that the proposed method can achieve better profiles compared with the SI method.

Quantitative evaluation.  The difference between the reference image and the images reconstructed using the 
conventional SI method and the JECC method are quantitatively evaluated by measuring the MAEs of the recon-
structed results in different views. The calculated MAEs with the projection views of 135, 270, 360, 540, and 1080 
are shown in Table 3. Compared with the SI method, the first iteration of the JECC method results in an appreci-
able improvement. Moreover, as the iteration number increases, the MAEs decrease. At the fourth iteration, the 
JECC method achieves the lowest MAE. After four iterations, the proposed method outperforms the traditional 
correction method (i.e., SI), demonstrating 72.21% reduction in terms of MAE. The MAEs have not been signifi-
cantly changed by the fourth iteration onward.

Furthermore, SNR is used to quantitatively evaluate the noise reduction of the present method. The results are 
presented in Table 4. From 135 views to the 1080 views, the SNR gains of the JECC method compared with that 
of the SI method are between 7 dB and 3.6 dB. Compared with the SI method, the present method yields higher 
SNR. This result demonstrates that the present method can achieve noticeable gains in terms of noise and artifact 
suppression.

To evaluate image similarity between the reconstructed results and the reference image, we selected the ROI 
marked with a red dashed square in Fig. 6(a) to calculate the UQI scores. The corresponding UQI scores are 
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Figure 6.  JECC performance on different slices. (a) Reference image on the 100th slice; (b–d) images on the 
100th slice reconstructed using the SI method, JECC 1st iteration, and JECC 4th iteration, respectively; (e) 
reference image on the 80th slice; (f–h) images on the 80th slice reconstructed using the SI method, JECC 1st 
iteration, and JECC 4th iteration, respectively.

Figure 7.  Image profiles of the results in Fig. 6. (a) Profiles across the 95th to 145th columns in the 255th row of 
the results indicated by the blue line in Fig. 6(a); (b) profiles across the 225th to 285th rows in the 401th column 
of the results indicated by the blue line in Fig. 6(e).

MAE (10−4) SI
JECC 
(1st)

JECC 
(2nd)

JECC 
(3rd)

JECC 
(4th)

135 views 7.9679 2.6999 2.3268 2.0605 1.9965

270 views 5.6604 2.003 1.7853 1.5939 1.5027

360 views 4.5826 1.9754 1.5426 1.2486 1.2136

540 views 3.9839 1.4605 1.2930 1.1573 1.1432

1080 views 1.9905 0.7307 0.6469 0.5791 0.5532

Table 3.  MAE comparison in different views.

SNR (dB) SI
JECC 
(1st)

JECC 
(2nd)

JECC 
(3rd)

JECC 
(4th)

135 views 13.6522 18.8312 20.3761 20.5832 20.6032

270 views 16.6613 19.7832 21.8766 22.0738 22.1293

360 views 19.7218 22.3037 23.6489 23.8731 23.8812

540 views 21.7632 23.5316 24.9843 25.0983 25.1380

1080 views 22.8618 24.0872 25.0012 25.2237 25.2342

Table 4.  SNR measurements using projections in 135 views to 1080 views.
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shown in Fig. 8. In all the views, the present method yields higher UQI scores (over 0.9), thereby implying that it 
outperforms the traditional method in terms of UQI by over 0.24 on average.

Abnormal pixel correction results.  Visualization-based evaluation.  Figure 9 shows the reconstructed 
images without correction, corrected with SI method and the JECC method on the 190th slice and 220th slice. 
As shown in the first column of Fig. 9, the abnormal pixels induce ring artifacts. As shown in the second column, 
the conventional SI method can efficiently remove the ring artifacts. A satisfactory image quality can be acquired 
using the JECC method after four iterations. The zoomed ROIs in Fig. 9 show that several streak artifacts, which 
are indicated by the red arrows, are still present. These streak artifacts degrade image quality severely. However, 
such artifacts are mitigated in the images in the third and fourth columns, and these artifacts even disappear vis-
ually in the images in the fifth column, which shows the results obtained after four iterations of the JECC method.

Figure 10 displays one more challenging case with ring artifacts. As shown in the first column, uncorrected 
images suffer from severe bending artifacts caused by a group of blocked pixels on detector. The ring artifacts are 
so wide that they degrade image diagnosis severely. The second column represents the results of SI method. SI 

Figure 8.  Comparison of the different methods in terms of UQI.

Figure 9.  Image without correction and images reconstructed using the SI method and the JECC method. The 
first row presents the images on the 190th slice, and the third row presents the images on the 220th. The second 
and fourth rows present the magnified ROIs marked with yellow squares in the images in the first and third 
rows.
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method can reduce dark ring artifacts at the cost of newly introduced streak artifacts. SI method estimates the 
missing data by utilizing nearby uncorrupted data, therefore the interpolated data deviates from original true 
values in the dark shadow. When the corrupted regions are large, the severe deviations will unavoidably lead to 
new streak artifacts. However, due to the complete utilization of the information of adjacent projections, the pro-
posed method outperforms SI method in both artifact suppression and bone structure preservation, which can 
be observed in the zoomed ROIs in the Fig. 10.

Profile-based evaluation.  Figure 11(a and b) plot the horizontal profiles on the 190th slice and 220th slice. The 
profiles of the results of the JECC method are considerably closer to those of the reference image than those of 
the results of the SI method. The profile of the image without any correction does not match the reference well 
because of the ring artifacts; this result partially proves that ring artifacts seriously degrade the quality of images. 
The use of the SI method allows for the improvement of image quality; however, the fluctuation in the profile 
demands for further improvement. By contrast, the JECC method achieves high image quality, as depicted by the 
blue dashed line in Fig. 11(a and b).

Quantitative evaluation.  Table 5 shows the MAEs of the results reconstructed using the different algorithms in 
various views. With respect to the uncorrected image results, the MAEs of the results obtained using the JECC 
method is reduced by 9.06, 8.23, 7.77, 7.65, and 7.38 in the 135 views, 270 views, 360 views, 540 views and 1080 

Figure 10.  Images corrected with SI method and the proposed method. The first and third rows present two 
representative slices. The second and fourth rows present the zoomed ROIs marked with blue dashed squares in 
the first and third rows.
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views cases, respectively. With respect to the conventional SI method results, the MAEs of the results obtained 
using the JECC method is reduced by 5.16, 8.23, 3.98, 2.71, and 2.86 in the 135 views, 270 views, 360 views, 540 
views and 1080 views cases, respectively.

In addition, the SNRs of the results are presented in Table 6. Compared with the SI method and the uncor-
rected results, the present method yields relatively higher SNRs. From 135 views to 1080 views, the SNRs of the 
JECC method increased by 5.44 dB to 1.99 dB compared with the conventional SI method. Thus, the present 
method can achieve noticeable SNR gains over the conventional SI method.

In this case, we selected the ROI marked with a red dashed square in Fig. 9 to calculate the UQI scores. The 
corresponding UQI scores are shown in Fig. 12. In all the cases, the present method yields UQI scores that are 
0.51 higher than those of the uncorrected image and 0.19 higher than those of the SI method. These results par-
tially demonstrate that the JECC method is a better solution for restoring local detailed information.

Metal artifact reduction results.  Visualization-based evaluation.  To evaluate the capability of JECC 
method, one anthropomorphic male pelvic phantom (CIRS Inc., Norfolk, VA, USA) was used to simulate bilat-
eral hip prostheses. The reconstructed images without correction, corrected with SI method, PC-VI, and JECC 
method are shown in Fig. 13, respectively. Transverse and coronal views indicate that the uncorrected image 
suffers from severe beam hardening artifacts between bilateral metal prostheses. In sagittal view, there are severe 
streak artifacts reducing image quality. All SI method, PC-VI, and JECC method can reduce those metal artifacts 
to varying degrees. However, SI method only removes some streak artifacts at the cost of the loss of bone struc-
tures surrounding the metal prostheses. As for PC-VI, though the bone structures lost in the result of SI method 
are preserved, the existence of residual streak artifacts observed in the transverse and coronal views contaminates 
the tissues between bone structures as seen from the sagittal view. Compared with above two methods, JECC 
method achieves better performance in both the preservation of bone edge structures and the suppression of 
metal artifacts in the transverse, sagittal, or coronal views.

Figure 11.  Image profiles of the results in Fig. 9. (a) Profiles across the 315th to 375th rows in the 145th column 
of the results indicated by a blue line in the top row in Fig. 9; (b) profiles across the 345th to 385th rows in the 
170th column of the results indicated by a blue line in the third row in Fig. 9.

MAE (10−4) Uncorrected SI method
JECC  
(1st)

JECC 
(2nd)

JECC 
(3rd)

JECC 
(4th)

135 views 11.2322 7.3233 3.8762 2.4329 2.1721 2.1673

270 views 10.1293 5.8788 2.6731 2.2182 2.0865 1.9031

360 views 9.2321 4.8204 2.3518 1.8932 1.4622 1.4653

540 views 9.0211 4.0876 1.8736 1.5627 1.3728 1.3727

1080 views 8.2833 3.7540 1.0821 0.9876 0.8937 0.8988

Table 5.  MAE comparison in different views.

SNR (dB) Uncorrected SI method
JECC  
(1st)

JECC  
(2nd)

JECC  
(3rd)

JECC  
(4th)

135 views 12.3757 15.1356 18.4523 20.2832 20.5723 20.5769

270 views 13.6894 18.4674 20.3865 20.9837 21.0932 21.1921

360 views 15.8732 20.2340 23.6748 24.0983 24.4895 24.4896

540 views 18.9871 22.4067 24.8764 24.9873 25.1021 25.1073

1080 views 19.0821 23.2357 24.9872 25.0832 25.2184 25.2294

Table 6.  SNR measurements from 135 views to 1080 views cases.
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Figure 14(a and b) show the profiles indicated by the blue dashed line in transverse and coronal views, respec-
tively. Figure 14 indicates that the profile line of JECC is closer to that of the reference than those of SI and PC-VI. 
More fluctuations around the reference value imply the loss of fine bone edge structures and the appearance of 
metal artifacts. These profiles also demonstrate that JECC can gain better results compared with other two methods.

Furthermore, the performance of JECC method was further demonstrated by clinical measurement data. 
As shown in Fig. 15, two different kinds of clinical cases were tested in this work. The first row is a head case 
with a brain stimulator, and the third row is a case with multiple dental fillings which is referred to as the most 
challenging in the field of metal artifact reduction due to dental dense characteristic and irregular edge shape. 
In the head case, it is obviously that these radial streak artifacts tangent to metal stimulator severely degrade the 
uncorrected image quality. The correction result of SI is even worse than the uncorrected image due to failure 
to reduce original artifacts and some newly introduced artifacts. However, PC-VI and JECC method can get 
visually satisfactory image quality as seen from zoomed ROIs in the second row in Fig. 15. The correction results 

Figure 12.  Comparison of the different methods in terms of UQI.

Figure 13.  Bilateral hip prostheses simulation. The transverse, sagittal, and coronal views are displayed in the 
first, second, and third rows, respectively.

Figure 14.  Image Profiles of the results in Fig. 13. (a) Profiles indicated by the blue dashed line in transverse 
view; (b) profiles indicated by the blue dashed line in coronal view.
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for dental case which is classified as the worst situation are shown in the bottom two rows. The beam hardening 
artifacts between four dental fillings and severe streak artifacts protruding from the corner of each filling are sig-
nificantly present in the uncorrected image. SI method removes dark beam hardening artifacts considerably but 
the tooth edges are blurred due to the inaccurate information restored by interpolation. Some bright artifacts in 
the uncorrected image disappear after the correction with PC-VI, but some streak artifacts still surround dental 
fillings. However, there are mildest artifacts remaining in the result of JECC method. Furthermore, the dental 
edges blurred by SI method are preserved significantly. All in all, JECC method can render an overall improve-
ment of image quality.

Discussion
In this study, we derive a new consistency condition from John’s equation for the circular trajectory CBCT. As 
shown in the scatter correction, abnormal pixel correction, and metal artifact reduction experiments, the pro-
posed restoration method can obtain a visually satisfactory image quality. The quantitative results of the present 
method are significantly better than those of the conventional method for different slices and view numbers. 
This outcome can be ascribed to the complete utilization by the present method of the information of adjacent 
projections. By contrast, the conventional SI method only utilizes the information within the current projection 
to restore corrupted data in each projection.

In addition, we wish to discuss other relevant issues. As shown in Eq. (30), the adjacent projections, i.e., 
u*(θ + dθ) and u*(θ − dθ), can be separately substituted into JECC to calculate the restored projection u*(θ). To 
explore the Fourier properties of JECC, we compare the changes before and after utilizing JECC within the same 
image in the frequency domain. Figure 16(a and b) show the frequency domain of the image with the SI method 
and the proposed method, respectively. Figure 16(c) presents the difference by subtracting Fig. 16(a) from 16(b). 
Figure 16(c) shows that JECC can restore more frequency information of the corrupted projections, particularly 
their high-frequency components.

Another crucial point we should pay attention to is that the John’s equation related deviation is based on the 
assumption that the image u is reasonably differentiable. In fact, this is inaccurate, e.g., due to the sharp jump at 

Figure 15.  Two clinical cases are displayed here. The first row is the head case with a brain stimulator and the 
second row presents the corresponding magnified ROIs which are the blue dashed squares containing the metal 
implant, the bottom two rows present the dental case with three dental fillings on the back teeth and one dental 
filling on the front tooth.
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boundary of tissues. However, in view of the complete utilization of the information of adjacent projections, this 
drawback of John’s equation relevant consistency condition can be ignored.

Conclusion
In this study, a new consistency condition from John’s equation is derived to restore corrupted projections in 
circular trajectory CBCT. The proposed method is tested in moving BSA scatter correction, metal artifact reduc-
tion, and abnormal pixel correction. The performance results verify that the proposed JECC method is useful and 
effective in restoring lost data of corrupted projections in circular trajectory CBCT.
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