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Abstract 

Background:  Coinfection with hepatitis C virus (HCV) is common in human immunodeficiency virus (HIV)/acquired 
immunodeficiency syndrome (AIDS) patients due to shared routes of transmission. We aimed to investigate the 
characteristics of HCV subgenotypes among HIV/HCV-coinfected patients in Guangdong and explore the molecular 
transmission networks and related risk factors for HCV strains.

Methods:  Plasma samples were obtained from 356 HIV/HCV-coinfected patients for HCV NS5B region sequencing. A 
neighbor-joining phylogenetic tree was constructed to affirm HCV subgenotypes. The transmission networks based 
on maximum likelihood phylogenetic tree were determined by Cluster Picker, and visualized using Cytoscape 3.2.1.

Results:  A total of 302 HCV NS5B sequences were successfully amplified and sequenced from the 356 plasma 
samples. A neighbor-joining phylogenetic tree based on the 302 NS5B sequences revealed the profile of HCV sub-
genotypes circulating among HIV/HCV coinfection patients in Guangdong. Two predominant strains were found 
to be 6a (58.28%, 176/302) and 1b (18.54%, 56/302), followed by 3a (10.93%, 33/302), 3b (6.95%, 21/302), 1a (3.64%, 
11/302), 2a (0.99%, 3/302) and 6n (0.66%, 2/302). A molecular transmission network of five major HCV genotypes 
was constructed, with a clustering rate of 44.04%. The clustering rates of subgenotypes 1a, 3a, 3b, 1b, and 6a were 
18.18% (2/11), 42.42%, 52.38%, 48.21%, and 44.89%, respectively. Multivariate logistic regression analysis showed no 
significant effects from sex, age, transmission route, geographical region, baseline CD4 + T cell count or subgenotype 
(P > 0.05), except marital status. Married or cohabiting people (compared with unmarried people) had more difficulty 
forming transmission networks.

Conclusions:  In summary, this study, based on HCV NS5B subgenotypes, revealed the HCV subtype diversity and 
distribution among HIV/HCV-coinfected patients in Guangdong. Marital status inclined to be the factor influencing 
HCV transmission networks formation.
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Introduction
Hepatitis C virus (HCV) infection is a major cause of 
chronic liver diseases worldwide, such as cirrhosis, stea-
tosis, and hepatocellular carcinoma [1]. HCV displays 
high levels of genetic diversity and has been differenti-
ated into seven major genotypes and approximately 100 
subgenotypes [2]. Different genotypes and subgeno-
types differ in clinical outcomes, responses to treatment 
and epidemiology. Coinfection with HCV and human 
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immunodeficiency virus (HIV) is common due to shared 
routes of transmission, including contaminated blood 
transfusion, sexual intercourse, and needle sharing in 
injection drug users (IDUs). HCV prevalence (HCV anti-
body positivity) was 0.60% among HIV-negative patients 
in China, while it was significantly higher among HIV-
infected patients.Data from the China National Free 
Antiretroviral Treatment Program from 2010 to 2011 
showed that 18.2% of 33,861 HIV-infected patients were 
co-infected with HCV [3]. Among HIV-infected patients 
in China, the overall prevalence of HCV was estimated 
to be 25.5–29.1%, with the highest rate of HCV co-infec-
tion among intravenous drug users and previous blood 
donors, exceeding 80% [4].HIV infection accelerates the 
natural progression of HCV infection; therefore, HCV 
coinfection has become the most common cause of death 
in HIV/ AIDS patients on antiretroviral therapy [5].

Viral sequence data such as that for HIV-1 can be 
used to reconstruct molecular transmission networks, 
approximating the transmission network and reflecting 
the transmission pathway of the virus between people 
[6]. Understanding the network through which the virus 
is transmitted is important for the successful implemen-
tation of treatment and prevention strategies [7–9]. The 
transmission network based on the HCV whole genome 
can better reflect the true transmission association. 
However, due to the diversity and secondary structure 
of HCV, it is difficult to obtain a large sample of whole-
genome sequences in actual work. Clustering analyses 
of HCV genomes are generally performed using short 
sequences [10], and the nonstructural 5B viral region 
(NS5B) is considered an important target for HCV gen-
otype and subgenotype identification [11–13] and has 
been applied to analyse transmission networks of HCV 
[14–17].

Phylogenetic analysis has been used successfully to 
identify and dissect HIV-1 transmission clusters. Under-
standing the structure and features of transmission 
clusters has the capacity to facilitate the identification 
of potential transmission partners and reveal the links 
between different populations and is important for the 
design of intervention programs [18]. In recent years, 
many molecular transmission networks have been recon-
structed for HCV using the methodology previously 
developed for HIV sequence data [16]. Guangdong is 
one of the most developed provinces and has the largest 
population and the highest population density in China. 
The number of annually reported cases of hepatitis C in 
Guangdong has been increasing since 2005 [19]. In this 
study, we characterized the transmission patterns and 
influencing factors of molecular transmission networks 

for HCV among HIV/HCV-coinfected patients in 
Guangdong, China.

Materials and methods
Study population
Plasma samples for NS5B sequencing were obtained from 
356 HIV/HCV-coinfected patients recruited between 
January 2010 and September 2013 from Guangzhou 
Eighth People’s Hospital. The inclusion criteria were as 
follows: (1) older than 18 years of age at time of enroll-
ment, (2) positive HIV-1 ELISA (Beijing Wantai, China) 
with a confirmatory Western blot (MP Biomedicals, 
Singapore), (3) positive IgG or IgM anti-HCV ELISA 
(Zhongshan Bioengineering, China) and detectable HCV 
RNA > 1000  IU/ml (Guangzhou DAAN Gene Limited 
Company, China). The exclusion criteria were as fol-
lows:(1) positivity HBV surface antigen (HBsAg) ELISA 
(Zhongshan Bioengineering, China), (2) evidence of 
liver disease due to other etiology, (3) excessive alcohol 
consumption or using liver-toxic drugs, (4) previously 
received antiviral (HIV or HCV) treatment, and (5) indi-
viduals with decompensated cirrhosis and hepatocellular 
carcinoma (HCC), severe cytopenias, pregnancy, breast-
feeding status, renal failure, heart failure, or an AIDS-
defining illness. Demographic information, including 
sex, age, transmission route, marital status, geographical 
region, and baseline CD4 + T cell count, was obtained at 
patient enrolment and extracted through chart review.

RNA extraction, amplification, and sequencing
Viral RNA was extracted from 140 µl of plasma using a 
QIAamp Viral RNA Mini Kit (Qiagen, Germany) follow-
ing the manufacturer’s instructions. HCV NS5B (H77: 
7996–8638 nt) fragments were amplified with a Prime-
Script One-Step RT-PCR Kit and Premix Taq (Takara 
Bio, Dalian, China). The NS5B fragment was amplified 
with in-house degenerate primers (Table 1) under the fol-
lowing conditions: 95 °C for 3 min, followed by 35 cycles 
of 95 °C for 30 s, 55 °C for 40 s and 72 °C for 60 s for the 
first round and 95 °C for 2 min, followed by 35 cycles of 
95  °C for 25 s, 55  °C for 40 s and 72  °C for 40 s for the 
second round. The PCR products were analysed using 
1% agarose gel electrophoresis, and the positive products 
were sent for sequencing by a genomics company (Tianyi 
Huiyuan, China) with the primer R2.

Identification of HCV subgenotypes
The reverse complements of the obtained sequences 
were determined and aligned by using BioEdit 7.0. 
Then, sequence alignments were performed with 
HCV subtyping references from the Los Alamos 
HCV Sequence Database (https://​hcv.​lanl.​gov/). All 
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sequences were manually edited. HCV subgenotypes 
were assigned based on phylogenetic analysis of NS5B 
region sequences. Neighbor-joining phylogenetic trees 
were constructed with the Kimura 2-parameter substi-
tution model and evaluated by the bootstrap method 
with 1000 replicates by using MEGA 6.06.

Analysis of HCV molecular transmission networks
The flow chart of transmission network analysis 
includes four steps [20]. First, PhyML 3.0 was used to 
construct a maximum likelihood phylogenetic tree 
(ML tree) using the GTR + G + I nucleotide sub-
stitution model. The phylogenetic tree’s reliability 

Table 1  HCV primers for the NS5B region by genotype

Primers Primer Sequences (5′-3′) H77 location (nt) Amplified 
length 
(bp)

First round

Forward (F1) CCA​CAT​CMRCT​CCG​TGTGG​ 7952–7970 696

Reverse (R1) GGRGCDGAR​TAC​CTR​GTC​AT 8628–8647

Second round

Forward (F2) ACMCCA​ATW​SMCACBACC​ATC​ATG​ 7996–8018 643

Reverse (R2) TAC​CTG​GTC​ATA​GCC​TCC​GTGAA​ 8616–8638

Fig. 1  Geographical region of Guangdong province. The geographical regions of Guangdong are represented by different colors on the map. Data 
is shown on the dataset tabulated in Table 2 and Table 4
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was determined with branch support based on the 
approximate likelihood ratio test (aLRT) with Shimo-
daira-Hasegawa (SH) supports of 1000 replicates [21]. 
Second, Cluster Picker [22] was used to determine 
extra transmission clusters with an intra-cluster maxi-
mum pairwise distance < 4.0% nucleotide substitutions 

per site [23] and bootstrap support value ≥ 0.9. Third, 
Mega 6.0.6 was used to calculate the Tamura-Nei 93 
pairwise genetic distances to define the linkages within 
a cluster. Finally, the network data were visualized using 
Cytoscape 3.2.1 (http://​cytos​cape.​org).

Statistical analysis
The database was established in Excel, and the statistical 
analyses were performed using IBM SPSS V25.0 (SPSS 
Inc. Chicago, IL). Categorical variables were compared 
using Fisher’s exact tests. Univariate and multivari-
ate logistic regression models were used to estimate the 
potential factors associated with transmission within 
clusters. The variables considered were sex, age, trans-
mission route, marital status, geographical region, 
baseline CD4 + T cell count, and HCV subgenotype. A 
multivariate logistic regression model was constructed 
in a forward manner to select variables independently 
associated with transmission within clusters. Odds ratios 
(ORs) and adjusted odds ratios (aORs) with 95% confi-
dence intervals (95% CIs) were reported. For all statistical 
tests, the level of significance for the evaluation of two-
sided P values was set at 0.05.

Results
Participant characteristics
For the 356 samples, 302 (84.8%) HCV NS5B sequences 
were successfully amplified, purified, and sequenced. The 
overall participant characteristics of those with NS5B 
sequences (n = 302) are shown in Table  2. Men consti-
tuted 79.47% of the study population. More than 80% of 
the patients were younger than 50 years when diagnosed. 
The most common transmission route was injectable 
drug use (65.89%), followed by heterosexual intercourse 
(31.46%). More than half of the patients were married 
or cohabiting (69.54%), and 22.52% were unmarried. 
The geographical regions of Guangdong mentioned in 
Table 2 are show in Fig. 1, most patients originated from 
the Pearl River Delta region (56.62%). A total of 75.83% of 
the subjects exhibited a baseline CD4+ T cell count < 200 
cells/mm3.

Table 2  Characteristics of participants with available HCV 
NS5B segment sequences in HIV/HCV coinfections, 2010–2013, 
Guangdong, China

Characteristics Total sequences 
N = 302 (n/N, %)

Sex

Male 240 (79.47)

Female 62 (20.53)

Age (years)

 < 30 years 12 (3.97)

30–39 127 (42.05)

40–49 129 (42.72)

50–59 30 (9.93)

 >  = 60 3 (0.99)

Transmission routes

Injecting drug use 199 (65.89)

Heterosexual 95 (31.46)

Men who have sex with men 3 (0.99)

Blood 5 (1.66)

Marital status

unmarried 68 (22.52)

Married or cohabiting 210 (69.54)

divorced or separated 16 (5.30)

Widowed 7 (2.32)

unknown 1 (0.33)

Geographical region

Pearl River Delta 171 (56.62)

Eastern 10 (3.31)

Western 101 (33.44)

Northern 20 (6.62)

Baseline CD4+T cell count  (cells/mm3)

 < 200 229 (75.83)

200–349 63 (20.86)

350–499 8 (2.65)

 > 500 2 (0.66)

Table 3  Distribution of HCV subgenotypes in HIV/HCV coinfection patients in Guangdong, stratified by period, 2010–2013 (N = 302)

year Number(N = 302) HCV subgenotypes (n/N, %) P for fisher exact tests

1a(n = 11) 1b(n = 56) 2a(n = 3) 3a(n = 33) 3b(n = 21) 6a(n = 176) 6n(n = 2)

2010 117 4 (3.42) 25 (21.37) 1 (0.85) 9 (7.69) 7 (5.98) 70 (59.83) 1 (0.85) 0.951

2011 72 3 (4.17) 12 (16.67) 0 (0.00) 8 (11.11) 7 (9.72) 42 (58.33) 0 (0.00)

2012 70 2 (2.86) 12 (17.14) 1 (1.43) 10 (14.29) 3 (4.29) 41 (58.57) 1 (1.43)

2013 43 2 (4.65) 7 (16.28) 1 (2.33) 6 (13.95) 4 (9.30) 23 (53.49) 0 (0.00)

http://cytoscape.org
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HCV subgenotype determination
A neighbor-joining phylogenetic tree based on the 302 
NS5B sequences revealed the profile of HCV subgeno-
types circulating among HIV/HCV coinfection patients 
in Guangdong (Fig.  1). Two predominant strains were 
found to be 6a (58.28%, 176/302) and 1b (18.54%, 56/302), 
followed by 3a (10.93%, 33/302), 3b (6.95%, 21/302), 1a 
(3.64%, 11/302), 2a (0.99%, 3/302) and 6n (0.66%, 2/302). 
There was no significant difference in the distribution of 
HCV subgenotypes between 2010 and 2013 (Table 3).

Identification of transmission networks
A total of 11 subgenotype 1a, 56 subgenotype 1b, 33 
subgenotype 3a, 21 subgenotype 3b, and 176 sub-
genotype 6a NS5B sequences were used for molecular 
transmission network analysis between 2010 and 2013. 
Forty-two transmission clusters containing 133 of the 
302 HIV/HCV coinfection patients (total clustering 
rate: 44.04%) were identified. The average cluster size 
was 3.24, with a minimum of two (19 clusters) and a 
maximum of 11 (one cluster). The clustering rates of 

subgenotypes 1a, 3a, 3b, 1b, and 6a were 18.18% (2/11), 
42.42% (14/33), 52.38% (11/21), 48.21% (27/56), and 
44.89% (79/176), respectively (Fig. 2).

Among all 42 clusters, 88.10% (37/42) comprised at 
least one subject from the IDU group, 57.14% (24/42) 
comprised at least one subject from the HET group, 
and only 4.76% (2/42) comprised at least one subject 
from the MSM group or the blood transfusion group 
(Fig.  3). However, when we analysed the clustering 
rate of different risk groups, we found that the cluster-
ing rate of the MSM group was higher than that of the 
other groups (66.67% vs. approximately 40%) (Table 4). 
Of the 133 individuals in clusters, 57.89% (77/133) were 
linked to cases diagnosed in different regions. Individ-
uals from eastern regions had a higher clustering rate 
than individuals from other regions (60.00% vs. approx-
imately 40%) (Table 4).

Patients were divided according to whether they fell 
into the transmission networks, and sex, age, transmis-
sion route, marital status, geographical region, baseline 
CD4+ T cell count, and subgenotype were examined. 
The results of the multivariate logistic regression analysis 

Fig. 2  Extensive diversity of HCV subgenotypes among HIV/HCV coinfection patients in Guangdong. A neighbor-joining tree was constructed 
based on the NS5B gene (H77: 7996–8638 nt) of HCV using MEGA 6.0.6 with the Kimura 2-parameter substitution model and 1000 replicates. The 
black lines represent samples from HIV/HCV coinfection patients in Guangdong, and the red lines represent reference sequences. The bootstrap 
values related to subtyping are shown in the phylogenetic tree
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showed that no significant effects from these factors 
were observed (P > 0.05), except marital status. Married 
or cohabiting people (compared with unmarried people, 
aOR = 0.496, 95% CI: 0.285–0.863) had more difficulty 
forming transmission networks (Table 4).

Discussion
HCV subgenotypes 1b (62.78%) and 2a (17.39%) were 
the two predominant subgenotypes in China, accord-
ing to data from epidemiological studies on hospital-
ized patients [24]. HCV subgenotypes exhibit significant 
divergence between regions. HCV subgenotypes 1b and 
2a remain the two predominant subgenotypes in North 
China. While the prevalence of HCV subgenotype 3b in 
Southwest China is significantly higher than that in other 
regions [25], HCV 6a was the most frequently repre-
sented genotype in southern China [19, 26, 27].

This study revealed that the main circulating HCV 
subgenotypes among HIV/HCV-coinfected patients in 

Guangdong were 6a (58.28%, 176/302), followed by 1b 
(18.54%, 56/302), 3a (10.93%, 33/302), 3b (6.95%, 21/302), 
1a (3.64%, 11/302), 2a (0.99%, 3/302), and 6n (0.66%, 
2/302). The predominant HCV subgenotypes among 
HIV/HCV-coinfected individuals in Guangdong were 
similar to those in Guangxi (6a (46%), 3a (20%), 3b (16%)) 
[27] but distinct from those in Yunnan (3b (37.62%), 3a 
(23.76%), 1b (16.34%)) [28]. HCV genotypes vary in the 
Asia–Pacific region[29], HCV infections and HIV infec-
tions have the common transmission route of sharing 
contaminated injecting equipment, sexual transmission 
and blood related transmission [29]. The geographic 
proximity to Southeast Asia and the presence of drug 
trafficking and use likely explains the similarity of the 
HCV genotype distributions in HIV/HCV-coinfected 
individuals between Guangdong and Guangxi. Guangxi 
Province, which borders Vietnam, could have been the 
first region to contract 6a for circulation. Genotype 6a 
was introduced into Guangxi from Vietnam and then 

Fig. 3  Phylogenetic analysis and transmission networks of genotype 1a- (A), genotype 1b- (B), genotype 3a- (C), genotype 3b- (D), and genotype 
6a-infected (E) individuals. A phylogenetic tree was constructed in PhyML 3.0 using the maximum likelihood method based on the NS5B region. 
The nucleotide substitution model was GTR + G + I. In the circle trees, the red lines with red dots represent samples within clusters, the black lines 
with black dots represent samples not within clusters, and the black lines without dots represent reference sequences. In the transmission networks, 
various regions in Guangdong were colour coded. Different shapes represent different risk groups: circle: blood transfusion; square: heterosexual 
(HET); triangle: injection drug user (IDU); arrowhead: men who have sex with men (MSM)
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further spread to Guangdong through drug trafficking 
routes and IDU networks [28–30].

The main circulating HCV subgenotypes among 
HCV mono-infected individuals in Guangdong were 
1b (67.7%), followed by 6a (17.2%), 3a (6.1%), 2a (5.0%), 
3b (2.0%), 4a (1.0%) and 5a (1.0%) [31],which were quite 
distinct from that found in the HIV/HCV co-infected 
patients. The difference in HCV genotype distribution 

between mono- and co-infection is most likely due to the 
varied transmission routes, with blood transfusion being 
the more common route in monoinfection and injectable 
drug use being the more common route in coinfection 
[19, 31].

Real-world studies on the efficacy of direct-acting 
antiviral agents(DAAs) therapy for HCV mono-infected 
patients in China showed that the sustained virologic 

Table 4  Factors associated with transmission within clusters

Characteristics Within transmission 
network, n = 133 (n/N, 
%)

Total 
sequences, 
N = 302

P for fisher 
exact tests

OR  (95% CI) P–value Adjusted OR  (95% CI) P–value

Sex

Male 103 (42.92) 240 0.475 1.000

Female 30 (48.39) 62 1.247 (0.712–2.183) 0.440

Age (years)

 < 30 years 7 (58.33) 12 0.889 1.000

30–39 55 (43.31) 127 0.546 (0.164–1.812) 0.322

40–49 57 (44.19) 129 0.565 (0.170–1.876) 0.351

50–59 13 (43.33) 30 0.516 (0.134–1.993) 0.337

 >  = 60 1 (33.33) 3 0.357 (0.025–5.109) 0.448

Transmission routes

Injecting drug use 91 (45.73) 199 0.681 1.000

Heterosexual 38 (40.00) 95 0.791 (0.482–1.300) 0.355

MSM 2 (66.67) 3 2.374 (0.212–26.603) 0.483

Blood 2 (40.00) 5 0.791 (0.129–4.839) 0.800

Marital status

Unmarried 39 (57.35) 68 0.260 1.000 1.000

Married or cohabiting 84 (40.00) 210 0.496 (0.285–0.863) 0.013 0.496 (0.285–0.863) 0.013

divorced or separated 5 (31.25) 16 0.338 (0.106–1.080) 0.067 0.338 (0.106–1.080) 0.067

Widowed 5 (71.43) 7 1.859 (0.337–10.266) 0.477 1.859 (0.337–10.266) 0.477

unknown 0 (0.00) 1 – – – –

Geographical region

Pearl River Delta 69 (40.35) 171 0.419 1.000

Eastern 6 (60.00) 10 2.217 (0.603–8.149) 0.230

Western 49 (48.51) 101 1.393 (0.849–2.287) 0.190

Northern 9 (45.00) 20 1.209 (0.476–3.073) 0.689

Baseline CD4+T cell count  (cells/mm3)

 < 200 104 (45.41) 229 0.852 1.000

200–349 25 (39.68) 63 0.791 (0.448–1.395) 0.418

350–499 3 (37.50) 8 0.721 (0.168–3.089) 0.660

 > 500 1 (50.00) 2 1.202 (0.074–19.451) 0.897

Subgenotypes

1a 2 (18.18) 11 0.282 1.000

1b 27 (48.21) 56 4.190 (0.830–21.157) 0.083

2a 0 (0.00) 3 – –

3a 14 (42.42) 33 3.316 (0.618–17.800) 0.162

3b 11 (52.38) 21 4.950 (0.856–28.635) 0.074

6a 79 (44.89) 176 3.665 (0.770–17.453) 0.103

6n 0 (0.00) 2 – –
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response (SVR)12 rate greater than 90% was achieved in 
most of the HCV genotypes[32, 33]. Subjects with com-
pensated cirrhosis (92.73%) and prior treatment experi-
ence (77.78%) had significantly lower SVR rates when 
compared to chronic hepatitis C (98.15%) and treatment-
naive (97.69%) groups[33]. The available DAA regimens 
were generally well-tolerated and with high efficiency in 
the treatment of HIV/HCV co-infected patients, with 
similar efficacy to those with mono HCV infection. There 
was no significant difference in adverse effects among 
patients with different baseline CD4+ T-cell count in 
those who received DAA regimens with or without Peg-
IFN and RBV[34].

In this study, approximately 44% of the HIV/HCV coin-
fection patients were members of the HCV transmission 
networks, which was consistent with the clustering rate 
of HIV/HCV coinfection patients in Dehong, China [17] 
(39.1%, 95/243) but higher than the clustering rate of 
HCV infection patients in Australia (20.76%, 49/236) [9] 
and Vancouver, Canada (31.14%, 156/501) [35]. Subgeno-
type 3b and subgenotype 1b inclined to form transmis-
sion clusters easily, with comparatively higher clustering 
rates of 2.38% and 48.21%, respectively. It suggested that 
the two subgenotypes were transmitted persistently 
among certain population at high risks, compared to 
other subgenotypes. According to the results of multi-
variate logistic regression, sex, age, transmission route, 
geographical region, baseline CD4 + T cell count and 
subgenotype were not influencing factors for whether 
patients entered the transmission networks. Married or 
cohabiting people had more difficulty forming transmis-
sion networks than unmarried people (Table  4), which 
may be due to the relatively fixed sexual partners of mar-
ried or cohabiting people, and their probability of high-
risk behaviour is lower than that of unmarried people. 
More than 80% of clusters comprised at least one subject 
from the IDU group, and in the largest cluster, more than 
60% of nodes were patients from the IDU group (Fig. 3). 
These results suggested that more attention should be 
given to IDUs in future prevention and control work.

There were several limitations in our study. First, our 
observations were obtained based on the individuals 
coinfected with HIV/HCV spanning January 2010 and 
September 2013 in Guangdong. The shorter terms of 
recruitment may affected the judgement of HCV preva-
lence in Guangdong. Second, we focus on the subjects 
of coinfection which mainly through IDU and hetero-
sexual contact. These specific populations might bias the 
deduced factors facilitating HCV transmission clustering. 
Whatever, we indeed performed some work to explore 
the transmission network of HCV, which may be of help 
to block the transmission of HCV among HIV individu-
als and general population.

In conclusion, this study provides an overview of the 
HCV transmission network among HIV/HCV coinfec-
tion patients in Guangdong, China, by using the char-
acteristics of phylogenetic analysis. The total clustering 
rate was 44.04%, with different subgenotypes varying 
from 18.18% to 52.38%. Sex, age, transmission route, geo-
graphical region, baseline CD4 + T cell count, and sub-
genotype were not influencing factors, but marital status 
was an influencing factor for whether subjects entered 
the transmission network. Additional attention should 
be given to coinfections among unmarried individuals 
or patients infected through drug injection in future pre-
vention and control work.
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