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Clinical management of neuropathic pain is unsatisfactory, mainly due to its resistance to
the effects of available analgesics, including opioids. Converging evidence indicates the
functional interactions between chemokine and opioid receptors and their influence on
nociceptive processes. Recent studies highlight that the CC chemokine receptors type 2
(CCR2) and 5 (CCR5) seem to be of particular interest. Therefore, in this study, we
investigated the effects of the dual CCR2/CCR5 antagonist, cenicriviroc, on pain-related
behaviors, neuroimmune processes, and the efficacy of opioids in rats after chronic
constriction injury (CCI) of the sciatic nerve. To define the mechanisms of action of
cenicriviroc, we studied changes in the activation/influx of glial and immune cells and,
simultaneously, the expression level of CCR2, CCR5, and important pronociceptive
cytokines in the spinal cord and dorsal root ganglia (DRG). We demonstrated that
repeated intrathecal injections of cenicriviroc, in a dose-dependent manner, alleviated
hypersensitivity to mechanical and thermal stimuli in rats after sciatic nerve injury, as
measured by von Frey and cold plate tests. Behavioral effects were associated with the
beneficial impact of cenicriviroc on the activation/influx level of C1q/IBA-1-positive cells in
the spinal cord and/or DRG and GFAP-positive cells in DRG. In parallel, administration of
cenicriviroc decreased the expression of CCR2 in the spinal cord and CCR5 in DRG.
Concomitantly, we observed that the level of important pronociceptive factors (e.g., IL-
1beta, IL-6, IL-18, and CCL3) were increased in the lumbar spinal cord and/or DRG 7
days following injury, and cenicriviroc was able to prevent these changes. Additionally,
repeated administration of this dual CCR2/CCR5 antagonist enhanced the analgesic
effects of morphine and buprenorphine in neuropathic rats, which can be associated with
the ability of cenicriviroc to prevent nerve injury-induced downregulation of all opioid
receptors at the DRG level. Overall, our results suggest that pharmacological modulation
based on the simultaneous blockade of CCR2 and CCR5 may serve as an innovative
strategy for the treatment of neuropathic pain, as well as in combination with opioids.
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INTRODUCTION

Neuropathic pain is a chronic condition resulting from damage to
somatosensory neurons in the peripheral and central nervous
system. Therapeutic management of patients with neuropathy
remains extremely difficult due to the multifactorial pathogenesis
and complex mechanisms involved in the generation and
maintenance of painful symptoms (1). The interactions between
neurons, glial, and immune cells are of a key importance for
neuropathic pain development. Until now, it has been well
established that activated non-neuronal cells are able to produce
numerous factors, which are crucial for pathological nociceptive
transmission after peripheral nerve injury (2–4). Glial and immune
cells are known to express various receptors for cytokines, which
may be a therapeutic target for novel drug development (2, 5). It has
been previously demonstrated that intrathecal administration of IL-
1beta (6), IL-6 (7), and some CC chemokine ligands (CCL), e.g.,
CCL2 (8), CCL3 (9), and CCL5 (10) induces neuropathic pain-
related symptoms in healthy rodents. Thus, blocking the action or
release of these molecules seems to be a promising direction for
searching for new analgesics.

Recent studies highlight the importance of CC chemokine
receptors type 2 and 5 (CCR2 and CCR5) in mediating
pathological nociceptive processes (11–14). Both receptors
belong to the CC subfamily, which is a category of integral
membrane proteins representing G protein-coupled receptors
(GPCRs). We have recently reported that selective blockade of
CCR2 (14) and CCR5 (11, 12) induce analgesic effects in
neuropathic rats, confirming their importance in nociception.
Interestingly, it has been previously demonstrated that CCR2
and CCR5 may undergo heterodimerization, especially after co-
stimulation of cells expressing both receptors with their ligands
(15). The in vitro study revealed that these heterodimers are
more efficient at inducing biological responses since they require
lower chemokine concentrations for activity (16). This
phenomenon seems to be an important issue, since under
neuropathic pain conditions, we are dealing with uncontrolled
activation of microglial cells appearing in association with a
significantly enhanced level of endogenous ligands of these two
receptors (11, 14, 17). The additional mechanism for modulating
chemokine receptor activity is crosstalk interactions with opioid
receptors, resulting in heterologous desensitization. Hence,
cross-desensitization of the opioid receptors by endogenous
ligands of CCR2 and CCR5 seems to change the balance
between analgesia and hyperalgesia (18), which could be one of
the reasons for the insufficient effectiveness of opioids in
neuropathic pain therapies. Based on results, it would be of
interest to examine whether a novel and largely interesting
direction of study would be to examine whether the
simultaneous blockade of these two receptors, using a dual
antagonist, provides greater analgesic effects alone and in
combination with opioids used in the clinic. Conducting such
experiments is extremely important since polypharmacotherapy
may terminate the necessity for using high doses of particular
drugs and, thus, may reduce dangerous adverse effects of opioids.
Additionally, here we used a compound that is currently
Frontiers in Immunology | www.frontiersin.org 2
undergoing clinical trials for other health problems, which
seems to be important from clinical aspects.

Considering all these facts, we were interested in investigating
the behavioral and molecular effects of the dual CCR2/CCR5
antagonist, cenicriviroc, under neuropathic pain conditions. In
this study, we examined the dose-dependent effects of the dual
CCR2/CCR5 antagonist on pain-related behaviors in rats after
chronic constriction injury (CCI) of the sciatic nerve. To define
molecular mechanisms of cenicriviroc action, we studied changes
in the activation/influx of glial and immune cells and,
simultaneously, the expression of CCR2, CCR5, and important
pronociceptive cytokines (IL-1beta, IL-6, IL-18, CCL2, CCL3,
CCL5) in the spinal cord and DRG. Furthermore, we assessed the
influence of repeated administration of cenicriviroc on opioid
efficacy inneuropathy.We alsomeasured changes in the expression
of opioid receptors after dual CCR2/CCR5 antagonist treatment in
neuropathic rats.
MATERIALS AND METHODS

Animals and Ethical Statement
Male Wistar rats (250–300 g) were provided by Charles River
Laboratories International, Inc. (Germany) and housed in cages
lined with sawdust under a standard 12/12-h light/dark cycle
(light on at 8.00 a.m.) with food and water available ad libitum.
Animals were allowed to acclimate to the environment for
approximately 5 min prior to behavioral tests. This study was
conducted in accordance with the recommendations of the
International Association for the Study of Pain (IASP) (19)
and the National Institutes of Health (NIH) Guide for the Care
and Use of Laboratory Animals and was approved by the II Local
Ethics Committee (permission number 1277/2015) based at the
Maj Institute of Pharmacology, Polish Academy of Sciences
(Krakow, Poland). Care was taken to minimize the amount
and suffering of animals according to the 3R rule.

Surgical Procedures
Intrathecal Catheter Implantation
Rats were prepared for intrathecal (i.t.) injections by the
insertion of catheters under sodium pentobarbital anesthesia
(60 mg/kg, i.p.) according to the methods of Yaksh and Rudy
(20). The catheters consisted of 13-cm-long polyethylene tubing
(PE 10, INTRAMEDIC, Clay Adams, Becton Dickinson and
Company, Rutherford, NJ, USA) and were flushed with 70%
(v/v) ethanol and then, before insertion, with water for injection.
They were carefully introduced through the atlanto-occipital
membrane to the subarachnoid space at the rostral level of the
spinal cord lumbar enlargement (L4–L6), flushed slowly with 10
ml of water for injection, and the tip was tightened. After catheter
implantation, the rats were allowed to recover for a minimum of
one week before further experiments and monitored for physical
impairments. After the surgery, all rats were fed separately.
Animals with visible motor deficits were excluded from
further study.
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Chronic Constriction Injury
CCI of the sciatic nerve in rats was performed under sodium
pentobarbital anesthesia (60 mg/kg, i.p.) according to the
procedure described by Bennett and Xie (21). First, an incision
was created below the hipbone, and the biceps femoris and gluteus
superficialis were separated. The right sciatic nerve was exposed,
and four ligatures (4/0 silk) were tied loosely around the nerve
with 1-mm spacing until a brief twitch in the respective hind
limb was elicited. After the surgery, the rats developed long-
lasting neuropathic pain symptoms, such as hypersensitivity to
the mechanical and thermal stimuli.

In all experiments as a control group, we used naive animals,
so completely untreated rats, because in our previous studies we
have shown that there is no difference in nociceptive response
and protein levels of important pronociceptive factors between
naive and sham-operated rats (22). Also, our newly conducted
research showed that there is no significant difference in the
protein levels of IBA-1 and GFAP between naive and sham-
operated rats (Supp. 1). In contrast, significant changes in IBA-1
(SFig. 1A) and GFAP (SFig. 1B) protein level were observed in
the CCI-exposed rats compared to naive and sham groups.

Behavioral Tests
Von Frey Test
Mechanical hypersensitivity was measured using an automatic von
Frey apparatus (Dynamic Plantar Aesthesiometer Cat. No. 37400,
Ugo Basile, Gemonio, Varese, Italy), as described previously (12,
13). Rats were placed in plastic cages with a wire net floor 5 min
before the experiment and allowed to move freely in this enclosed
area. Von Frey filaments were applied in increasing values (up to
26 g) to the midplantar surface of the hind paw, and measurements
were obtained automatically. The paw-withdrawal reflex was
recorded as the force at which the paw was withdrawn.

Cold Plate Test
Thermal hypersensitivity was estimated using a Cold/Hot Plate
Analgesia Meter (Cat. No. 05044, Columbus Instruments, Ohio,
USA), according to our previous studies (12, 13). Rats were
placed on the cold plate, and the latency to lift the hind paw was
recorded. The temperature of the cold plate was maintained at
50C, and cut-off latency was set to 30 s. In all cases, the injured
paw reacted first.

Drug Administration
The following substances were used in the current experiments:
cenicriviroc (CVC; Axon Medchem, Groningen, Netherlands),
morphine hydrochloride (M; TEVA, Kutno, Poland), and
buprenorphine (B; Polfa Warszawa S.A., Warsaw, Poland).
Each compound was slowly delivered in a volume of 5 µl via
the i.t. catheter, followed by 10 µl of water for injection.
Cenicriviroc was dissolved in DMSO and administered i.t.
preemptively 16 h and 1 h before CCI and then once a day for
7 days in concentrations of 5, 20, and 40 µg/5 µl. The control
group received vehicle (V; DMSO) at the same schedule (Figure
1A). The behavioral tests were conducted 7 days after CCI always
in the same order, first using the von Frey test and then the cold
plate test at two time points, 30 min and 60 min after the last drug
Frontiers in Immunology | www.frontiersin.org 3
injection (Figure 1A). On day 7 post-CCI, chronically CVC-
treated (20 µg/5 µl) and V-treated rats received a single dose of
morphine or buprenorphine (2.5 µg/5 µl) 30 min after CVC/V
injection, and then the behavioral tests were repeated (Figure 6A).

Biochemical Analysis
RT-qPCR (Analysis of Gene Expression)
The ipsilateral sides of the dorsal lumbar (L4–L6) spinal cord and
dorsal root ganglia (DRG; L4–L6) were collected immediately
after decapitation 4 h after the last CVC administration on the
7th day post-CCI. Total RNA was extracted using TRIzol reagent
(Invitrogen, Carlsbad, California, USA) as described previously
by Chomczynski and Sacchi (23). The RNA concentration was
measured using a DeNovix DS-11 Spectrophotometer (DeNovix
Inc., Wilmington, USA). Reverse transcription was performed
using 1 mg of total RNA with Omniscript reverse transcriptase
(Qiagen Inc., Hilden, Germany) at 37°C for 60 min. RT reactions
were performed in the presence of an Omniscript RT Kit (Qiagen
Inc., Hilden, Germany), RNAse inhibitor (rRNAsin, Promega,
Mannheim, Germany) and an oligo (dT16) primer (Qiagen Inc.,
Hilden, Germany). The resulting cDNA was diluted 1:10 with H2O,
and for each reaction, approximately 50 ng of cDNA synthesized
from the total RNA of an individual animal was used for the
quantitative real-time PCR (qRT-PCR) assay. The qRT-PCR was
performed using Assay-On-Demand TaqMan probes according to
the manufacturer’s protocol (Applied Biosystems, Foster City, CA,
USA), and the reactions were performed on an iCycler device
(Bio-Rad, Hercules, Warsaw, Poland). The following TaqMan
primers and probes were used: Rn01527840_m1 (hypoxanthine-
guanine phosphoribosyltransferase, HPRT); Rn01637698_s1 (CC
chemokine receptor type 2; CCR2); Rn02132969_s1 (CC chemokine
receptor type 5; CCR5); Rn00693288_m1 (complement component
1q; C1q); Rn00566603_m1 (glial fibrillary acidic protein; GFAP);
Rn00562286_m1 (CD4); Rn00580577_m1 (CD8); Rn00580432_m1
(interleukin 1 beta; IL-1beta); Rn01410330_m1 (interleukin 6;
IL-6); Rn01422083_m1 (interleukin 18; IL-18); Rn014566716_g1
(CC chemokine ligand 2; CCL2); Rn00564660_m1 (CC chemokine
ligand 3; CCL3); Rn00579590_m1 (CC chemokine ligand 5;
CCL5); Rn01430371_m1 (OPRM ; mu opioid receptor;
MOR); Rn00561699_m1 (OPRD; delta opioid receptor; DOR);
Rn00567737_m1 (OPRK ; kappa opioid receptor ; KOR);
Rn00440563_m1 (OPRL; nociceptin receptor; NOR). The
amplification efficiency for each assay (between 1.7 and 2) was
determined by running a standard dilution curve. The cycle
threshold values were calculated automatically using CFX
Manager v.2.1 software according to default parameters. The RNA
abundance was calculated as 2−(threshold cycle). Since the HPRT
transcript level was not significantly changed among groups, we
used it as an adequate housekeeping gene.

Western Blot (Analysis of Protein Levels)
The ipsilateral sides of the dorsal lumbar (L4–L6) spinal cord and
DRG were collected immediately after decapitation 6 h after the
last CVC administration on the 7th day post-CCI, and then
homogenized in RIPA buffer containing a protease inhibitor
cocktail (Sigma-Aldrich, St. Louis, USA) and cleared via
centrifugation (30 min, 14,000 rpm, 4°C). Total protein
December 2020 | Volume 11 | Article 615327
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concentrations were measured using the bicinchoninic acid
(BCA) method. Samples (10 mg of protein for spinal cord and
20 mg for DRG) were heated in loading buffer (4× Laemmli
buffer, Bio-Rad, Warsaw, Poland) for 8 min at 98°C.
Electrophoresis was performed on 4%–15% Criterion™ TGX™

pre-cast polyacrylamide gels (Bio-Rad, Warsaw, Poland). The
proteins from the gels were transferred (semidry transfer,
30 min, 25 V) to Immun-Blot PVDF membranes (Bio-Rad,
Warsaw, Poland), and the membranes were blocked for 1 h at
room temperature using 5% nonfat dry milk (Bio-Rad, Warsaw,
Poland) in Tris-buffered saline with 0.1% Tween-20 (TBST).
Next, the membranes were washed in TBST buffer and incubated
overnight at 4°C with the following primary antibodies: rabbit
anti-IBA-1 (1:500, Novus, Abingdon, UK), rabbit anti-GFAP
(1:10,000, Novus, Abingdon, UK), mouse anti-CD4 (1:1,000,
R&D Systems, Minneapolis, MN), rabbit anti-CD8 (1:500,
Frontiers in Immunology | www.frontiersin.org 4
Santa Cruz, Dallas, TX), rabbit anti-IL-1beta (1:500, Abcam,
Cambridge, UK), rabbit anti-IL-6 (1:500, Invitrogen, Carlsbad,
CA), rabbit anti-IL-18 (1:500, Abcam, Cambridge, UK), and
mouse anti-GAPDH (1:5,000, Millipore, Darmstadt, Germany);
then, the membranes were washed in TBST buffer and incubated
for 1 h at room temperature with HRP-conjugated secondary
antibodies (Vector Laboratories, Burlingame, USA) at a dilution
of 1:5,000. To dilute the primary and secondary antibodies,
SignalBoost™ Immunoreaction Enhancer Kit (Millipore,
Darmstadt, Germany) solution was used. Detection of selected
proteins was performed using Clarity™ Western ECL Substrate
(Bio-Rad, Warsaw, Poland) and visualized with a Fujifilm LAS-
4000 FluorImager system. To quantify the relative levels of
immunoreactivity, Fujifilm Multi Gauge software was used.
The membranes for each Western blot analysis are presented
in the Supplementary Materials (Supp. 2).
A

B

D E

C

FIGURE 1 | Dose-dependent changes following the preemptive (16 h and 1 h before CCI) and then repeated i.t. administration of cenicriviroc in concentrations of
5 µg, 20 µg, and 40 µg/5 µl [(A) administration scheme] on pain-related behaviors [(B, C) von Frey test; (D, E) cold plate test] on day 7 post CCI, 30 min or 60 min
after cenicriviroc or vehicle injection. Data are presented as the mean ± SEM (n = 7–10 per group). Intergroup differences were analyzed by ANOVA with Bonferroni’s
multiple comparisons test. ***p < 0.0001, **p < 0.01 indicates differences between naive and CCI-exposed rats; ###p < 0.001, ##p < 0.01, #p < 0.05 indicates
differences between V-treated and CVC-treated CCI-exposed rats. The dotted line shows the cut-off value. CCI, chronic constriction injury; CVC, cenicriviroc;
N, naive; V, vehicle.
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MILLIPLEX® Multiplex Assays Using Luminex®

(Analysis of Protein Levels)
Tissue samples from the dorsal lumbar (L4–L6) spinal cord and
DRG were collected and prepared for analysis in the same manner
as described in Western Blot (Analysis of Protein Levels). The
protein concentrations of CCL2, CCL3, and CCL5 were
determined in tissue homogenates 7 days post-operatively using
a MILLIPLEX® MAP Rat Cytokine Chemokine Magnetic Bead
Panel Immunology Multiplex Assay (Merck Millipore, Burlington,
Massachusetts, USA), according to the manufacturer’s instructions.

Statistical Analyses
The behavioral tests analyses are presented in grams and seconds
as the mean ± standard error of the mean (SEM). One-way
analysis of variance (ANOVA) was used to evaluate the
experimental results. Differences between groups were analyzed
with Bonferroni’s post-hoc test. The data obtained from
biochemical analyses are presented as the fold change
compared with naive rats on the ipsilateral side of the dorsal
lumbar spinal cord and DRG. The biochemical analyses are
presented as the mean ± SEM, which represents normalized
averages. The intergroup differences were analyzed using
ANOVA with Bonferroni’s multiple comparisons post-hoc test.
All graphs and statistical analyses were performed using Prism 8
(GraphPad Software, San Diego, USA). P < 0.05 indicated
significant differences between groups.
RESULTS

The Dose-Dependent Effect of Repeated
Administration of Cenicriviroc on
Neuropathic Pain-Related Symptoms in
Rats 7 Days After CCI
In the von Frey test, strong mechanical hypersensitivity was
observed 7 days after CCI at both examined time points
compared to naive animals (Figures 1B, C). One hour after i.t.
administration of cenicriviroc, a significant analgesic effect was
observed at all tested doses, and a dose-dependent trend was
clearly noticeable (Figure 1C), while 30 min after drug
administration, only the two highest doses (Figure 1B)
induced analgesia in neuropathic rats.

Furthermore, at 7 days after sciatic nerve injury, strong thermal
hypersensitivity was evoked, as measured by the cold plate test
(Figures 1D, E). Significant attenuation of those painful effects was
observed for all tested doses at both 30min (Figure 1D) and 60 min
(Figure 1E) after cenicriviroc administration.
The Influence of Cenicriviroc on mRNA
Levels of CCR2 and CCR5 in the Spinal
Cord and DRG 7 Days After CCI
In the spinal cord, a strong upregulation of CCR2 and CCR5mRNA
levels (Figures 2A, B) was observed 7 days after CCI. Cenicriviroc
significantly prevented the upregulation of CCR2 [F(2,22) = 11.02,
P = 0.0005, Figure 2A], while it did not affect CCR5.
Frontiers in Immunology | www.frontiersin.org 5
In the DRG, both receptors were upregulated after nerve
injury compared with naive animals (Figures 2C, D). In contrast
to the spinal cord, the dual CCR2/CCR5 antagonist
downregulated only the level of CCR5 [F(2,20) = 10.10, P =
0.0009, Figure 2D], but not CCR2.

The Influence of Cenicriviroc on the mRNA
and Protein Levels of C1q/IBA-1, GFAP,
CD4, and CD8 in the Spinal Cord and DRG
7 Days After CCI
In the spinal cord, a strong upregulation of C1q and IBA-1 levels
was observed 7 days after CCI compared with naive rats (Figures
3A, E). Cenicriviroc significantly downregulated both mRNA
[F(2,21) = 42.25, P < 0.0001, Figure 3A] and protein [F(2,16) =
121.9, P < 0.0001, Figure 3E] levels of microglia/macrophage
markers. Moreover, injury of the sciatic nerve caused an increase
in GFAP mRNA and protein levels (Figures 3B, F), but i.t.
administration of the dual CCR2/CCR5 antagonist did not
influence these levels. The mRNA expression of CD4 was
strongly enhanced after CCI, but no changes between vehicle-
and cenicriviroc-treated animals were observed (Figure 3C). CCI
did not influence the CD4 protein level (Figure 3G). Similarly, the
protein level of CD8 was unchanged 7 days after CCI (Figure 3H),
A B

DC

FIGURE 2 | Changes in mRNA levels of CCR2 and CCR5 in the spinal cord
(A, B) and DRG (C, D) on day 7 post CCI after repeated vehicle or
cenicriviroc (20 µg/5 µl, i.t.) administrations, measured using RT-qPCR
method. Data are presented as the mean ± SEM (n = 6–8 per group).
Intergroup differences were analyzed by ANOVA with Bonferroni’s multiple
comparisons test. ***p < 0.001, **p < 0.01, *p < 0.05 indicate differences
between naive and V-treated/CVC-treated CCI-exposed rats; ###p < 0.001,
#p < 0.05 indicate differences between V-treated and CVC-treated CCI-
exposed rats. CCI, chronic constriction injury; CVC, cenicriviroc; N, naive; V,
vehicle.
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while its mRNA was strongly upregulated post injury, which was
significantly decreased in response to cenicriviroc [F(2,11) = 31.39,
P < 0.0001, Figure 3D].

In the DRG, the mRNA level of C1q was upregulated after
injury (Figure 3I); however, the dual antagonist did not impact
these changes. We have observed an increase in IBA-1 protein
level after CCI, and cenicriviroc effectively reduced these changes
Frontiers in Immunology | www.frontiersin.org 6
[F(2,19) = 10.23, P = 0.0010, Figure 3M]. Additionally, strong
increases in GFAP mRNA and protein levels were obtained after
nerve injury, and in both cases, the CCR2/CCR5 antagonist
prevented these changes [F(2,19) = 17.57, P < 0.0001, Figure 3J;
F(2,14) = 18.52, P = 0.0001, Figure 3N]. The mRNA and protein
level of CD4 remained unchanged after CCI (Figures 3K, O).
Administration of cenicriviroc increased the CD4 mRNA level
A B D

E F G

I

H

J K L

M N

C

O P

FIGURE 3 | Changes in mRNA (A–D, I–L) and protein (E–H, M–P) levels of C1q/IBA-1, GFAP, CD4, and CD8 in the spinal cord (A–H) and DRG (I–P) on day 7 post CCI,
after repeated vehicle or cenicriviroc (20 µg/5 µl, i.t.) administration, measured using RT-qPCR and Western blot method. Data are presented as the mean ± SEM (n = 4–8 per
group for mRNA analysis and n = 5–9 per group for protein analysis). Intergroup differences were analyzed by ANOVA with Bonferroni’s multiple comparisons test.
***p < 0.001, **p < 0.01, and *p < 0.05 indicate differences between naive and V-treated/CVC-treated CCI-exposed rats; ##p < 0.01, #p < 0.05 indicate differences between
V-treated and CVC-treated CCI-exposed rats. CCI, chronic constriction injury; CVC, cenicriviroc; N, naive; V, vehicle.
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compared with naive animals (Figure 3K), but no changes were
observed in its protein level after antagonist treatment (Figure
3O). CCI also evoked CD8 mRNA level upregulation, and
cenicriviroc treatment significantly decreased this level [F(2,20) =
5.942, P = 0.0094, Figure 3L]. A downregulation between the
antagonist-treated and naive animals was also observed for the
CD8 protein level (Figure 3P).

The Influence of Cenicriviroc on the mRNA
and Protein Levels of IL-1beta, IL-6, and
IL-18 in the Spinal Cord and DRG 7 Days
After CCI
In the spinal cord, the mRNA and protein levels of IL-1beta were
significantly higher 7 days after CCI compared with naive
animals (Figures 4A, D). Moreover, cenicriviroc strongly
downregulated these changes [F(2,21) = 7.793, P = 0.0029,
Figure 4A; F(2,19) = 3.406, P = 0.0544, Figure 4D]. A similar
situation was obtained for IL-6, the mRNA and protein level of
which increased after CCI (Figures 4B, E) and decreased after
dual CCR2/CCR5 antagonist administration [F(2,18) = 140.4, P <
0.0001, Figure 4B; F(2,16) = 4.471, P = 0.0287, Figure 4E]. In
addition, the protein level of IL-18 was enhanced after CCI. The
antagonist significantly downregulated this level [F(2,17) = 24.87,
P < 0.0001, Figure 4F]. The mRNA expression of IL-18 was also
increased after sciatic nerve injury (Figure 4C), but no changes
were observed after cenicriviroc administration.

In the DRG, strong mRNA upregulation was observed for IL-
1beta, IL-6 and IL-18 (Figures 4G–I) after CCI compared with
naive rats. For all the tested interleukins, no changes were observed
after treatment with CCR2/CCR5 antagonist. In the case of the
protein level, significant enhancement was also obtained for IL-
1beta, IL-6 and IL-18 (Figures 4J–L). Cenicriviroc downregulated
IL-1beta [F(2,15) = 15.71, P = 0.0002, Figure 4J] and IL-18 [F(2,10) =
6.660, P = 0.0145, Figure 4L] levels, while it had no impact on IL-6.

The Influence of Cenicriviroc on the mRNA
and Protein Levels of CCL2, CCL3, and
CCL5 in the Spinal Cord and DRG 7 Days
After CCI
The CCL2 mRNA level was strongly upregulated in the spinal
cord 7 days after CCI compared with naive rats. Cenicriviroc
significantly prevented this change [F(2,17) = 72.96, P < 0.0001,
Figure 5A]. However, we did not observe any changes in the
protein level of CCL2 (Figure 5D). Moreover, post-injury,
spinally elevated CCL3 mRNA and protein levels were also
downregulated by the CCR2/CCR5 antagonist [F(2,16) = 3.998,
P = 0.0391, Figure 5B; F(2,15) = 13.85, P = 0.0004, Figure 5E].
Neither CCI nor drug administration impacted CCL5 mRNA
and protein levels in the spinal cord (Figures 5C, F).

In the DRG, the mRNA and protein levels of CCL2 were
enhanced after CCI compared with naive rats (Figures 5G, J).
Administration of the dual antagonist prevented the mRNA
increase in the DRG [F(2,20) = 76.13, P < 0.0001, Figure 5G].
Similarly, the CCL3 mRNA and protein level was significantly
higher after sciatic nerve injury (Figures 5H, K). Cenicriviroc
prevented its upregulation [F(2,17) = 8.411, P = 0.0029, Figure 5H].
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We did not observe changes in the mRNA and protein level of
CCL5 after CCI (Figures 5I, L).

The Influence of Cenicriviroc on the
Analgesic Potency of Morphine and
Buprenorphine 7 Days After CCI
Repeated administration of cenicriviroc reduced pain‐like behaviors
in both the von Frey and cold plate test (Figures 6B, C). Moreover,
morphine and buprenorphine decreasedmechanical hypersensitivity
(Figures 6B, C) compared with vehicle-treated animals. The
effectiveness of morphine and buprenorphine was enhanced in
animals that were chronically treated with cenicriviroc, both in the
von Frey (Figure 6B) and cold plate test (Figure 6C).

The Influence of Cenicriviroc on the mRNA
Levels of MOR, DOR, KOR, and NOR in
the Spinal Cord and DRG 7 Days After CCI
In the spinal cord, CCI led to the downregulation of mRNA
levels of MOR, DOR, and KOR, but not NOR (Figures 7A–D).
Cenicriviroc administration did not influence these receptors
compared with vehicle-treated animals.

In the DRG, levels of MOR, DOR, KOR and NOR were
significantly decreased after sciatic nerve injury (Figures 7E–H).
The dual CCR2/CCR5 antagonist prevented the CCI-evoked
downregulation of MOR [F(2,16) = 7.437, P = 0.0052, Figure 7E],
DOR [F(2,18) = 7.483, P = 0.0043, Figure 7F],KOR [F(2,19) = 6.705, P =
0.0063, Figure 7G], NOR [F(2,20) = 5.035, P = 0.0169, Figure 7H].
DISCUSSION

Our behavioral studies demonstrated that repeated intrathecal
injections of the dual CCR2/CCR5 antagonist cenicriviroc in a
dose-dependent manner alleviated neuropathic pain-related
behaviors in rats after sciatic nerve injury. Cenicriviroc decreased
the activation and/or infiltration of IBA-1-positive cells (microglia/
macrophages) in the spinal cord and DRG, and satellite cells in the
DRG, and likely as a consequence reduced the level of some
important pronociceptive factors (IL-1beta, IL-6, IL-18, and
CCL3). Importantly, from a clinical perspective, cenicriviroc
enhanced the analgesic potency of morphine and buprenorphine.
These beneficial behavioral effects may result, among others, from
the influence of cenicriviroc on the mRNA level of opioid receptors
(MOR, DOR, KOR, and NOR) at the DRG level. Our results
provide the first evidence that simultaneous targeting of CCR2
and CCR5 using cenicriviroc may have great potential for use in
neuropathic pain therapies, especially since it is already under
clinical trials, though in other health concerns.

The most recent studies have highlighted the importance of
CCR2 and CCR5 in pathological nociceptive transmission under
neuropathy (11–13, 24). Lee et al. (25) described a lower response
to painful stimuli of CCR5-knockout than wild type mice.
Similarly, impaired neuropathic pain responses in mice lacking
CCR2 has been demonstrated (26). In our current studies, we
demonstrated that CCR2 and CCR5 expression was increased in
the spinal cord and DRG in rats after nerve injury, which is
consistent with previously published data (2, 11, 13, 14, 27).
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Interestingly, cenicriviroc prevented nerve injury-induced
upregulation of CCR2 in the spinal cord and CCR5 in the
DRG. These chemokine receptors are expressed in both
neuronal (28, 29) and non-neuronal (2, 26, 30–35) cells, such
as microglia, astrocytes, macrophages, satellite cells, and
infiltrating T lymphocytes. Here, we demonstrated that
cenicriviroc might act as a microglia/macrophage and satellite
cell activation inhibitor; in contrast, it did not influence the
spinal level of the astrocyte activation. The time course of spinal
Frontiers in Immunology | www.frontiersin.org 8
gliosis occurring after peripheral nerve injury differs between
microglia and astrocytes. Generally, microglial/macrophages
activation is critical for the initial phase of neuropathic pain,
and precedes and subsides before activation of astrocytes, which
is rather related to the maintenance of neuropathic pain (36, 37).
It was observed, that spinal microglia/macrophages react shortly
after injury and reach maximal levels of activation in one week
after nerve injury, and returns to baseline levels within 3 weeks.
In contrast, spinal astrogliosis starts one week after injury, and
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FIGURE 4 | Changes in mRNA (A–C, G–I) and protein (D–F, J–L) levels of IL-1beta, IL-6 and IL-18 in the spinal cord (A–F) and DRG (G–L) on day 7 post CCI after
repeated vehicle or cenicriviroc (20 µg/5 µl, i.t.) administration, measured using RT-qPCR and Western blot method. Data are presented as the mean ± SEM (n = 5–
10 per group for mRNA analysis and n = 5-7 per group for protein analysis). Intergroup differences were analyzed by ANOVA with Bonferroni’s multiple comparisons
test. ***p < 0.001, **p < 0.01, *p < 0.05 indicate differences between naive and V-treated/CVC-treated CCI-exposed rats; ###p < 0.001, #p < 0.05 indicate
differences between V-treated and CVC-treated CCI-exposed rats. CCI, chronic constriction injury; CVC, cenicriviroc; N, naive; V, vehicle.
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persists for even several months (38). Cenicriviroc significantly
reduced microglial/macrophages activation, but have no impact
on astrogliosis. These results correlate well with previous data
obtained after treatment with other chemokine receptors
Frontiers in Immunology | www.frontiersin.org 9
antagonist, e.g., CCR2 antagonist - RS504393 (13), CXCR3
antagonist - (±)-NBI-74330 (39), and CCR1 antagonist -
J113863 (40). Recent data in the literature also indicate an
important role of satellite glial cells in the development of painful
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FIGURE 5 | Changes in mRNA (A–C, G–I) and protein (D–F, J–L) levels of CCL2, CCL3 and CCL5 in the spinal cord (A–F) and DRG (G–L) on day 7 post CCI after
repeated vehicle or cenicriviroc (20 µg/5 µl, i.t.) administration, measured using RT-qPCR and Luminex Assays. Data are presented as the mean ± SEM (n = 5–8 per
group for mRNA analysis and n = 5–7 per group for protein analysis). Intergroup differences were analyzed by ANOVA with Bonferroni’s multiple comparisons test.
***p < 0.001, **p < 0.01, *p < 0.05 indicate differences between naive and V-treated/CVC-treated CCI-exposed rats; ##p < 0.01, #p < 0.05 indicate differences
between V-treated and CVC-treated CCI-exposed rats. CCI, chronic constriction injury; CVC, cenicriviroc; N, naive; V, vehicle.
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FIGURE 6 | The influence of preemptive (16 h and 1 h before CCI) and
then repeated i.t. administration of cenicriviroc in concentration of 20 µg/5
µl [(A) administration scheme] on opioid effectiveness, as measured by the
von Frey (B) and cold plate (C) test at 7 days post CCI. On day 7, 60 min
after the last cenicriviroc (CVC, 20 µg/5 µl) or vehicle (V) injection, rats
received a single i.t. dose of morphine 2.5 µg/5 µl or buprenorphine 2.5
µg/5 µl. Behavioral tests were performed 30 min after opioid administration.
The data are presented as the mean ± SEM (n = 6 per group). Intergroup
differences were analyzed by ANOVA with Bonferroni’s multiple
comparisons test. ***p < 0.001, **p < 0.01, *p < 0.05 indicate differences
between naive and CCI-exposed rats; ###p < 0.001, ##p < 0.01, #p < 0.05
indicate differences versus V + V-treated CCI-exposed rats; &&&p < 0.001,
&&p < 0.01, &p < 0.05 indicate differences between CVC + V- and CVC+ M/
CVC+ B-treated, CCI-exposed rats; ^^^p < 0.001, ^^p < 0.01 indicate
differences between V + M/V + B-treated and CVC + M/CVC + B-treated,
CCI-exposed rats. The dotted line shows the cut-off value. B,
buprenorphine; CCI, chronic constriction injury; CVC, cenicriviroc; M,
morphine; N, naive; V, vehicle.
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neuropathy, thus also these cells became the subject of our research.
Due to their unique location in DRG, these cells surround the cell
bodies of sensory neurons and can strongly influence nociceptive
transmission. The involvement of these cells after nerve injury is
particularly related to the sudden increase in GFAP and the release
of pronociceptive factors that stimulate the primary afferent endings
in the dorsal horn spinal cord (41–43). Furthermore, T lymphocytes
play an important role in the communication between the nervous
and immune systems (44, 45). In DRG, T lymphocytes enhance the
satellite cell response by synthesizing and releasing cytokines,
including IL-1beta, IL-6, and CCL2, which directly modulate
sensory neurons, leading to their hyperexcitability, through the
activation of receptors located on their surface (44). These
findings correlate well with our current studies, where we
observed enhanced mRNA levels of CD4+ and CD8+ cell
markers in the spinal cord and increased levels of CD8 in the
DRG at 7 day after nerve injury. Cenicriviroc significantly decreased
only the mRNA level of the CD8+ cell marker in the spinal cord and
DRG, but this influence was not significant at the protein level as
measured at day 7. Therefore, based on our studies conducted at this
time point, it appears that cenicriviroc mainly benefited the
activation of microglia/macrophages. Previous studies, including
ours, have shown that minocycline, which acts as an inhibitor of
microglia/macrophages, reduced hypersensitivity 7 days after nerve
damage by lowering the level of pronociceptive factors, such as IL-
1beta, IL-6, and IL-18 (46–50). Our previous results have also
demonstrated that preemptive and repeated intrathecal injections
of a selective CCR2 (RS504393) and CCR5 (maraviroc) antagonist
attenuate neuropathic pain due to the inhibition of activation of
IBA-1-positive cells (11, 14). In 2000, Wordliczek et al. reported in
clinical investigations that patients who received preemptively a
non-specific cytokine inhibitor, pentoxifylline, had lower opioid
requirements in the early postoperative period, which was strongly
associated with the lower serum levels of TNFa and IL-6 (51). Our
research suggests that cenicrivirocmight be effective in inhibiting the
development of pain in the case of elective surgical interventions.
Importantly, cenicriviroc appears to be particularly even more
effective compound with analgesic properties, since, in contrast to
selective antagonists, a single intrathecal and intraperitoneal
injection can attenuate fully developed hypersensitivity to
nociceptive stimuli in mice (17). Our current research sheds light
on the molecular mechanisms underlying the beneficial long-lasting
properties of chronic cenicriviroc treatment in neuropathic rats.

Based on our findings, we suggest that cenicriviroc may not
only directly inhibit nociceptive transmission by blocking
neuronal receptors but also inhibit, in direct and indirect
manners, the excessive activation of microglial cells induced by
peripheral nerve injury. Previous in vitro experiments have
revealed that the majority of pronociceptive interleukins may
originate from microglial cells, e.g., IL-1beta, IL-6, and IL-18 (52,
53). Furthermore, ex vivo experiments have demonstrated that in
parallel to the activation of microglial cells, production of the
abovementioned pronociceptive factors is increased (46, 48, 54–
56). Released interleukins mediate central sensitization and, as a
consequence, induce mechanical and thermal hypersensitivity
(57). IL-1beta has been shown to play a crucial role in
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pathological changes that occur in different diseases with an
immunological component, including neuropathic pain, which
was also confirmed in our research (54, 58). Intrathecal injection
of IL-1beta has been shown to evoke hypersensitivity in healthy
rodents (59), and blockade of its receptor using an interleukin 1
receptor antagonist has provided pain relief in rats after sciatic
nerve injury (54). Another pronociceptive factor belonging to the
IL-1 superfamily is IL-18 (60, 61). Previous studies have
demonstrated that nerve injury induces an increase in spinal
mRNA and protein levels of IL-18 (55), which is consistent with
our current results. Additionally, intrathecal administration of
IL-18 causes behavioral and molecular changes similar to those
observed after nerve injury (60). The cytokine IL-6 undergoes the
strongest activation in many neuroimmune processes (62). Our
biochemical experiments showed that cenicriviroc effectively
prevented the enhanced increase in protein levels of IL-1beta,
IL-6, and IL-18 in the spinal cord and/or DRG. Based on these
results, we hypothesize that the strong impact of cenicriviroc on
these interleukins is associated with the ability of that compound
to inhibit microglia/macrophage activation and, as a result, the
release of these pronociceptive interleukins.

Recent studies have highlighted that not only interleukins but
also chemokines, play an important role in neuropathic pain
pathogenesis. Importantly, in previous in vitro experiments, we
demonstrated that CCR2 and CCR5 ligands, such as CCL2, CCL3,
and CCL5, may originate from microglial cells (11, 13). The
increasing number of studies indicate that neutralization of CCL2,
acting via CCR2, might be effective in attenuating neuropathic pain
Frontiers in Immunology | www.frontiersin.org 11
(8) and cancer pain (63). The enhanced release of CCL2 by DRG
neurons leads to the increased activation of spinal microglia (13, 64).
The latest studies suggest that CCL2 produced by spinal neurons
and astrocytes may also provoke a strong activation of microglial
cells due to CCR2 located on their surface (3). Therefore, we suggest
that the reduction of CCL2 activity related to the decrease in spinal
CCR2 expression observed in cenicriviroc-treated rats is
undoubtedly one explanation for the analgesic properties of this
dual antagonist. Particularly, it is already known that CCL2 binding
to CCR2 results in the phosphorylation of microglial p38MAPK,
one of the main canonical signaling pathways in the nociceptive
response. Activation of spinal microglia is critical in the
pathogenesis of pain hypersensitivity following peripheral nerve
injury (14, 24). Moreover, intrathecal injection of CCL2 induces
long-lasting hypersensitivity and leads to strong activation of spinal
microglial cells and production of pronociceptive cytokines (5, 24,
65). Other research groups have shown that mice overexpressing
CCL2 exhibit increased hypersensitivity (66). Similarly, injection of
CCL5, an endogenous ligand of CCR5, evokes neuropathic pain-like
symptoms (67). Literature data show that CCL5 stimulates the
influx of inflammatory cells and enhances the release of cytokines in
injured nerves (10). In our study, we did not observe any changes in
the level of CCL5 in the spinal cord and DRG after nerve injury;
therefore, the analgesic properties of intrathecally administered
cenicriviroc do not seem to result from the modulation of that
chemokine activity in the examined structures. Another chemokine
that acts via CCR5 and is presumably more important for
nociception than previously thought is CCL3 (5). Changes in
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FIGURE 7 | Changes in mRNA levels of MOR, DOR, KOR and NOR in the spinal cord (A–D) and DRG (E–H) on day 7 post CCI after repeated vehicle or cenicriviroc
(20 µg/5 µl, i.t.) administration, measured using RT-qPCR method. Data are presented as the mean ± SEM (n = 4–8 per group). Intergroup differences were analyzed by
ANOVA with Bonferroni’s multiple comparisons test. **p < 0.01, *p < 0.05 indicate differences between naive and V-treated/CVC-treated CCI-exposed rats; #p < 0.05
indicates differences between V-treated and CVC-treated CCI-exposed rats. CCI, chronic constriction injury; CVC, cenicriviroc; N, naive; V, vehicle.
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CCL3 levels have been observed in different neuropathic pain
conditions (11, 28, 68, 69). Our biochemical analysis showed that
after sciatic nerve injury, the mRNA and protein levels of CCL3
were significantly elevated in the spinal cord and DRG, which is
consistent with others studies (11). A single intrathecal injection of
CCL3 was reported to evoke strong pain-like behavior in naive
mice, and direct neutralization of CCL3 reduces neuropathic pain in
different animal models (28, 68, 70). Here, we demonstrated that
cenicriviroc was able to effectively prevent the nerve injury-induced
increase in CCL3 in the spinal cord and DRG, which appears to be
an important aspect underlying the beneficial effects on the
development of neuropathic pain observed in our studies, in
particular with regard to the pleiotropic activity of CCL3.

A growing body of evidence suggests that modulation of
neuroimmune interactions can potentiate opioid analgesic
potency under neuropathic pain conditions. Opioids are
commonly used in chronic pain therapies, but nevertheless, they
are less effective in neuropathy than in other pain states (56, 71). The
latest studies suggest a mutual connection between the immune and
opioid system. Interestingly, neuroimmune mechanisms in
neuropathic pain seem to be similar to those occurring in
morphine tolerance development since non-neuronal cells
become activated in both processes (56). The analgesic effects of
opioids are modulated by activated microglia/macrophages
releasing pronociceptive factors (e.g., IL-1beta and IL-18), which
are able to reduce the opioid efficacy (46, 48, 72, 73). Thus, it has
been suggested that the modulation of microglia/macrophage
activity may lead not only to the attenuation of neuropathic pain
but also to the improvement of morphine analgesic potency (74). In
the current study, we demonstrated that the CCR2/CCR5
antagonist (cenicriviroc) injected repeatedly intrathecally
diminished microglia/macrophage activation and, in parallel,
enhanced the analgesic potency of opioids in neuropathic rats.
Numerous studies have shown that the repeated administration of
microglia/macrophage inhibitors, such as minocycline, delays the
development of morphine tolerance due to the decrease in spinal
level of IL-1beta and IL-18 (48, 72, 73). Therefore, it has been
hypothesized that the excessive release of pronociceptive
interleukins may modulate the activity of opioid receptors and,
thus, decrease the analgesic potency of opioids observed in
neuropathic pain pharmacotherapy. Importantly, cenicriviroc
lowers the level of the above-mentioned interleukins, which may
be one of the reasons for its beneficial influence on opioid efficacy.
Furthermore, very recent research highlights the bidirectional
regulation of the chemokine and opioid systems. Increased
immunoreactivity of spinal CCL2 has been observed after chronic
administrations of morphine. Moreover, neutralization of CCL2
prevents the development of morphine tolerance and diminishes
spinal microglial activation (75). Our previous studies show that
neutralization of CCL2 enhances the analgesic effects of morphine
and buprenorphine in mice after nerve injury (8). CCL3 seems to
have similar properties; however, to date, only one study has shown
that treatment with neutralizing antibodies enhances morphine
effectiveness (28). Our results reveal for the first time that
cenicriviroc lowers the CCL3 level and simultaneously enhances
opioid analgesia, suggesting its importance in opioid efficacy during
Frontiers in Immunology | www.frontiersin.org 12
neuropathic pain; however, further in-depth research is needed for
confirmation. Additionally, our results provide the first evidence
that cenicriviroc is able to enhance the analgesic potency of
morphine and buprenorphine in rats with nerve injury, which is
very important from a clinical perspective. The probable
mechanisms underlying the beneficial effects of cenicriviroc on
opioid efficacy are the inhibition of microglia/macrophage cell
activation and, consequently, the lowering of spinal levels of
crucial pronociceptive factors responsible for the suppression of
opioid-induced analgesia, such as IL-1beta, IL-6, IL-18, and CCL3.

Among the mechanisms underlying the analgesic effects of the
examined dual antagonist is its ability to simultaneously block two
chemokine receptors important for nociceptive processes. They have
been described as similar to opioid receptors belonging to the
GPCRs, suggesting a potential cross-talk between them (18). One
of the mechanisms governing the function of GPCRs is the
heterologous desensitization that occurs when the activation of one
type of a receptor leads to the suppressed activity of other types and
regulation of the function of its ligands (76, 77). Recent studies have
reported that the activation of CCR2 or CCR5 leads to the cross-
desensitization of chemotactic activities of both MOR and DOR and
that it is a bidirectional process, which has crucial implications for
the immune response as well as nociceptive transmission (78). Based
on heterologous desensitization, the neuronal signaling pathway
involved in decreasing pain sensations, mediated by opioids, can be
inactivated by chemokines (18). Lee et al. demonstrated that a
deficiency of CCR5 is associated with MOR upregulation, with no
increase in the desensitization of that receptor, and suggested that
this phenomenon might be responsible for the increased analgesic
effects against painful stimuli (25). In turn, the second mechanism
is associated with the formation of heteromers. The discovery of
MOR-CCR5 heterodimerization offers an interesting level of
potential complexity in the negative cross-talk between opioid
and chemokine receptors, during which the activation of one
dimer partner leads to an inhibition in the function of the other
partner (25, 78, 79). These reports are in strong association with
our results concerning changes in CCR2 and CCR5 expression,
where we demonstrated for the first time that chronic treatment of
cenicriviroc effectively prevented their upregulation in the spinal
cord and DRG, respectively, and simultaneously prevented the
nerve injury-induced downregulation of all examined opioid
receptors at the DRG level, as observed in our study and in
agreement with others (80, 81). We assessed only the mRNA
level of GPCRs, since associated changes in the protein level
measured in overall tissue homogenate may not be accurate,
because of the rapid internalization of these receptors upon
agonist stimulation and subsequent degradation and/or transport
to a recycling compartment to the cell surface for continued ligand
binding. However, our study gave first evidence that cenicriviroc
can beneficially influence transcription of opioid receptors
in the DRGs. Based on citied literature we suggest, that the
negative influence of opioid receptor activation on the functio of
chemokine receptors may occur at the level of their conformation
(82, 83). Therefore, the observed changes may have functional
consequences, including an increase in the effectiveness of opioids,
but the mechanisms underlying this phenomenon still require
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detailed explanation. The observed influence of the dual CCR2/
CCR5 antagonist on the biosynthesis of chemokines and opioid
receptors during neuropathic pain provides further confirmation of
its beneficial mechanism of action.

Increasing evidence supports the excellent antinociceptive
activity of bifunctional compounds in several animal models and
indicates a significant advantage of compounds targeting more
than one molecular target over the physical mixture of individual
pharmacophores with respect to their analgesic effect (84–86). The
benefits of this approach may arise from the simultaneous access to
the two receptors at the same dose and, thus, the changing
pharmacokinetics and pharmacodynamics, consequently leading
to better analgesic effects. Furthermore, keeping in mind that
cenicriviroc is undergoing analysis in a phase 2b clinical trial for
the treatment of HIV-infected adults and has just entered the 3rd

phase of clinical trial for the treatment of liver fibrosis in adult
subjects with non-alcoholic steatohepatitis, the big advantage of our
studies is that such therapies would not incur high costs related to
the design of new drugs. Thus, we hope that the results of this study
will contribute to the creation of an effective and long-lasting
therapy based on the modulation of two chemokine receptors,
CCR2 and CCR5. Combination therapy, based on conventionally
used opioids and antagonists of CCR2 and/or CCR5, seems
promising and will hopefully yield satisfactory results.
CONCLUSION

Cenicriviroc restores the neuroimmune balance by inhibiting the
activation of macrophages/microglia and satellite cells, which in turn
leads to a decrease in the level of important pronociceptive cytokines
(IL-1beta, IL-6, IL-18, CCL3) in the spinal cord and/or DRG.
Importantly, it also has a beneficial influence on the biosynthesis
of CCR2, CCR5, and opioid receptors. The strong involvement of
CCR2 and CCR5 in neuropathic pain may suggest that they may
serve together as a potential therapeutic target, as well as in a
combined therapy with opioids. However, further experimental
and clinical research is needed to validate these hypotheses.
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Jones DR, et al. Chemokine receptor homo- or heterodimerization activates
distinct signaling pathways. EMBO J (2001) 20:2497–507. doi: 10.1093/emboj/
20.10.2497

17. Kwiatkowski K, Ciapała K, Rojewska E, Makuch W, Mika J. Comparison of
the beneficial effects of RS504393, maraviroc and cenicriviroc on neuropathic
pain-related symptoms in rodents: behavioral and biochemical analyses. Int
Immunopharmacol (2020) 84:106540. doi: 10.1016/j.intimp.2020.106540

18. Szabo I, Chen X-HX-H, Xin LL, Adler MW, Howard OMZ, Oppenheim JJ,
et al. Heterologous desensitization of opioid receptors by chemokines inhibits
chemotaxis and enhances the perception of pain. Proc Natl Acad Sci USA
(2002) 99:10276–81. doi: 10.1073/pnas.102327699

19. Zimmermann M. Ethical guidelines for investigations of experimental pain in
conscious animals. Pain (1983) 16:109–10. doi: 10.1016/0304-3959(83)90201-4

20. Yaksh TL, Rudy TA. Chronic catheterization of the spinal subarachnoid space.
Physiol Behav (1976) 17:1031–6. doi: 10.1016/0031-9384(76)90029-9

21. Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces
disorders of pain sensation like those seen in man. Pain (1988) 33:87–107.
doi: 10.1016/0304-3959(88)90209-6

22. Rojewska E, Popiolek-Barczyk K, Kolosowska N, Piotrowska A, Zychowska M,
Makuch W, et al. PD98059 influences immune factors and enhances opioid
analgesia in model of neuropathy. PLoS One (2015) 10:1–19. doi: 10.1371/
journal.pone.0138583

23. Chomczynski P, Sacchi N. The single-step method of RNA isolation by acid
guanidinium thiocyanate-phenol-chloroform extraction: twenty-something
years on. Nat Protoc (2006) 1:581–5. doi: 10.1038/nprot.2006.83

24. Gao Y-J, Zhang L, Samad OA, Suter MR, Yasuhiko K, Xu Z-Z, et al. JNK-
induced MCP-1 production in spinal cord astrocytes contributes to central
sensitization and neuropathic pain. J Neurosci (2009) 29:4096–108.
doi: 10.1523/JNEUROSCI.3623-08.2009

25. Lee YK, Choi D-Y, Jung Y-Y, Yun YW, Lee BJ, Han SB, et al. Decreased pain
responses of C–C chemokine receptor 5 knockout mice to chemical or
inflammatory stimuli. Neuropharmacology (2013) 67:57–65. doi: 10.1016/
j.neuropharm.2012.10.030

26. Abbadie C, Lindia JA, Cumiskey AM, Peterson LB, Mudgett JS, Bayne EK, et al.
Impaired neuropathic pain responses in mice lacking the chemokine receptor
CCR2. Proc Natl Acad Sci (2003) 100:7947–52. doi: 10.1073/pnas.1331358100
Frontiers in Immunology | www.frontiersin.org 14
27. Zhu X, Cao S, Zhu M-D, Liu J-Q, Chen J-J, Gao Y-J. Contribution of
chemokine CCL2/CCR2 signaling in the dorsal root ganglion and spinal
cord to the maintenance of neuropathic pain in a rat model of lumbar disc
herniation. J Pain (2014) 15:516–26. doi: 10.1016/j.jpain.2014.01.492

28. Rojewska E, Zychowska M, Piotrowska A, Kreiner G, Nalepa I, Mika J.
Involvement of Macrophage Inflammatory Protein-1 Family Members in the
Development of Diabetic Neuropathy and Their Contribution to Effectiveness
of Morphine. Front Immunol (2018) 9:494. doi: 10.3389/fimmu.2018.00494

29. Komiya H, Takeuchi H, Ogawa Y, Hatooka Y, Takahashi K, Katsumoto A,
et al. CCR2 is localized in microglia and neurons, as well as infiltrating
monocytes, in the lumbar spinal cord of ALS mice. Mol Brain (2020) 13:64.
doi: 10.1186/s13041-020-00607-3

30. Balashov KE, Rottman JB, Weiner HL, Hancock WW. CCR5(+) and CXCR3
(+) T cells are increased in multiple sclerosis and their ligands MIP-1a and IP-
10 are expressed in demyelinating brain lesions. Proc Natl Acad Sci (1999) 96:
LP – 6878:6873. doi: 10.1073/pnas.96.12.6873

31. Zhang J, Shi XQ, Echeverry S, Mogil JS, De Koninck Y, Rivest S. Expression of
CCR2 in both resident and bone marrow-derived microglia plays a critical role
in neuropathic pain. J Neurosci (2007) 27:12396–406. doi: 10.1523/
JNEUROSCI.3016-07.2007

32. Croitoru-Lamoury J, Guillemin GJ, Boussin FD, Mognetti B, Gigout LI,
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