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Mendelian Randomization Analysis Identifies
CpG Sites as Putative Mediators for Genetic
Influences on Cardiovascular Disease Risk

Tom G. Richardson,1,* Jie Zheng,1 George Davey Smith,1 Nicholas J. Timpson,1 Tom R. Gaunt,1

Caroline L. Relton,1 and Gibran Hemani1

The extent to which genetic influences on cardiovascular disease risk are mediated by changes in DNA methylation levels has not been

systematically explored. We developed an analytical framework that integrates genetic fine mapping and Mendelian randomization

with epigenome-wide association studies to evaluate the causal relationships between methylation levels and 14 cardiovascular disease

traits.We identified ten genetic loci known to influence proximal DNAmethylation whichwere also associatedwith cardiovascular traits

after multiple-testing correction. Bivariate fine mapping provided evidence that the individual variants responsible for the observed

effects on cardiovascular traits at the ADCY3 and ADIPOQ loci were potentially mediated through changes in DNA methylation,

although we highlight that we are unable to reliably separate causality from horizontal pleiotropy. Estimates of causal effects were repli-

cated with results from large-scale consortia. Genetic variants and CpG sites identified in this study were enriched for histonemark peaks

in relevant tissue types and gene promoter regions. Integrating our results with expression quantitative trait loci data, we provide

evidence that variation at these regulatory regions is likely to also influence gene expression levels at these loci.
Introduction

Approximately 88% of trait-associated variants detected

by genome-wide association studies (GWASs) reside in

non-coding regions of the genome and might act

through gene regulation.1 Recent studies have incorpo-

rated data on genetic variants associated with gene

expression (expression quantitative trait loci [eQTLs])

into results from GWASs of complex traits to help iden-

tify the putative causal variant in a genomic region, as

well as provide evidence suggesting which genes might

be influenced by this variant.2–5 This direction of inquiry

can be extended to other ‘‘-omic’’ data types to gain

further insights into the mechanistic pathway between

genetic variant and causally associated trait. In this study,

we introduce an alternative analytical framework to inte-

grate genetic predictors of DNA methylation levels

with complex traits to evaluate bi-directional causal

relationships.

DNA methylation is an epigenetic regulation mecha-

nism that has been shown to play a key role in many

biological processes and disease susceptibility.6–8 Recent

studies have had success in identifying genetic variants

associated with DNA methylation (methylation quantita-

tive trait loci [mQTLs]) and report that they appear to over-

lap with eQTLs at a large number of loci across the

genome.9,10 This suggests that both DNA methylation

and gene expression could reside along the causal pathway

between genetic variation and disease, although thus far,

uncovering evidence of a mediated effect between mQTLs

and traits has been more limited than using eQTLs.11–14

Identifying epigenetic markers for disease risk should
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prove valuable in understanding the underlying biological

mechanisms for trait-associated variants.15 Indeed, the

value of this approach was demonstrated in a recent study

that applied the SMR2 method to uncover pleiotropic

effects between methylation levels and a range of complex

traits.16

Mendelian randomization (MR) is a method by which

genetic variants robustly associated with modifiable ex-

posures can be used as instrumental variables to infer

causality among correlated traits.17,18 If DNA methyl-

ation resides along the causal pathway between genetic

variant and trait, we would expect it to be correlated

with our trait of interest. However, much like other traits

analyzed in epidemiological studies, DNA methylation is

prone to confounding and reverse causation. Using an

MR framework, we can investigate whether DNA methyl-

ation has a causal relationship with a phenotypic

outcome, suggesting that it might reside along the causal

pathway to disease.19 Effects such as this can be referred

to as ‘‘mediation,’’ as DNA methylation is mediating the

effect from genetic variant to phenotype along the same

biological pathway. As discussed in a recent review, MR

has advantages over alternative approaches in mediation

analysis (such as the causal inference test20), as it can

detect the correct direction of effect in the presence of

measurement error.21 It is important to note that all

current methods are faced with the challenge of distin-

guishing mediation from horizontal pleiotropy, defined

as effects where genetic variation influences multiple

phenotypes simultaneously22 (such as DNA methyl-

ation and a complex trait) via independent biological

pathways.
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Figure 1. Explanations Evaluated to Explain Observed Associa-
tions between mQTLs and Trait Outcomes
(1) The genetic variant has an effect on the phenotype, mediated
through DNA methylation.
(2) The genetic variant has an effect on the phenotype by alterna-
tive biological mechanisms, which then has a downstream effect
on DNA methylation at this locus.
(3) The genetic variant that influences DNAmethylation is simply
in LD with another variant that is influencing the associated trait.
(4) The genetic variant influences both DNA methylation and
phenotype by two independent biological pathways (also known
as horizontal pleiotropy).
Recent approaches to MR have shown that the robust-

ness of causal inference is improved if there are many

instruments because one can evaluate whether the SNP

effects on the causal trait are proportional to the SNP

effects on the consequential trait.17,23 We exploit this

property to evaluate the causal influence of complex traits

(which typically have many instruments) on DNAmethyl-

ation (i.e., bi-directional MR24). A pitfall of evaluating the

causal influence of DNA methylation on complex traits,

however, is that DNA methylation is typically instru-

mented by only a single cis-acting variant. Hence, an unre-

liable MR estimate of causality could arise simply because

the mQTL is in linkage disequilibrium (LD) with a variant

that influences the cardiovascular trait through means

other than the methylation level.

Together, the causal relationships between DNAmethyl-

ation and cardiovascular traits are delineated into four

potential categories (Figure 1).
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1. The genetic variant has an effect on the phenotype,

mediated by DNA methylation.

2. The genetic variant has an effect on the phenotype

by alternative biological mechanisms, which then

has a downstream effect on DNA methylation at

this locus.

3. The genetic variant that influences DNA methyl-

ation is simply in LD with another variant that is

influencing the associated trait.

4. The genetic variant influences both DNA methyl-

ation and phenotype by two independent biological

pathways (also known as horizontal pleiotropy).

To address this issue, in this study we developed and

implemented a framework that integrates MR with fine

mapping to evaluate the likelihood that the mQTL is the

same causal variant as the SNP influencing the cardiovas-

cular trait. Other colocalization methods using intermedi-

ate traits have been devised for this purpose,2,25,26

including the joint likelihood mapping (JLIM) method,27

which we used to support our findings. We also undertook

functional informatics and incorporated eQTL data

because these can support findings suggesting that DNA

methylation resides on the causal pathway between

variant and disease. However, a limitation of using

single-variant instruments in general is that it is not

possible to reliably distinguish horizontal pleiotropy

from mediation.28

In our discovery analysis, we used genotype and DNA

methylation data from prepubertal individuals to discover

causal pathways on early childhood phenotypes. Replica-

tion was then undertaken with GWAS summary statistics

from large-scale consortia.
Material and Methods

The Avon Longitudinal Study of Parents and Children

(ALSPAC)
ALSPAC is a population-based cohort study investigating genetic

and environmental factors that affect the health and development

of children. The study methods are described in detail else-

where.29,30 In brief, 14,541 pregnant women residents in the

former region of Avon, UK, with an expected delivery date be-

tween April 1, 1991 and December 31, 1992, were eligible to

take part in ALSPAC. Detailed information and biosamples have

been collected on these women and their offspring at regular inter-

vals, which are available through a searchable data dictionary.

Written informed consent was obtained for all study partici-

pants. Ethical approval for the study was obtained from the

ALSPAC Ethics and Law Committee and the Local Research Ethics

Committees.
Accessible Resource for Integrative Epigenomic Studies

Project (ARIES)
Samples

Blood samples were obtained for 1,018 ALSPAC mother-offspring

pairs (mothers at two time points and their offspring at three time
n Journal of Human Genetics 101, 590–602, October 5, 2017 591



points) as part of theAccessibleResource for Integrative Epigenomic

Studies project (ARIES).31 The Illumina HumanMethylation450

(450K) BeadChip array was used to measure DNA methylation at

over 480,000 sites across the epigenome.

Methylation Assays

DNA samples were treated with bisulfite with the Zymo EZ DNA

Methylation Kit (Zymo). The Illumina HumanMethylation450

BeadChip (HM450k) was used to measure methylation across

the genome, and the following arrays were scanned by Illumina

iScan, as well as reviewed for quality by GenomeStudio. A pur-

pose-built laboratory information management system (LIMS)

was responsible for generating batch variables during data genera-

tion. LIMS also reported quality control (QC) metrics for the stan-

dard probes on the HM450k for all samples and excluded those

that failed QC. We also excluded data points with a read count

of 0 or with a low signal-to-noise ratio (p value> 0.01) on the basis

of the QC report from Illumina to maintain the integrity of probe

measurements. We then compared methylation measurements

across time points for the same individual and with SNP-chip

data (HM450k probes clustered by k-means) to identify and re-

move sample mismatches. All remaining data from probes were

normalized with the Touleimat and Tost32 algorithms in R with

the wateRmelon package.33 Then we rank-normalized the data

to remove outliers. We removed potential batch effects by regress-

ing data points on all covariates. These included the bisulfite-con-

verted DNA (BCD) plate batch and white blood cell count, which

was adjusted for with the ‘‘estimateCellCounts’’ function in the

minfi Bioconductor package.34

Genotyping Assays

Genotype data were available for all ALSPAC individuals enrolled

in the ARIES project, which had previously undergone quality

control, cleaning, and imputation at the cohort level. ALSPAC

offspring selected for this project had previously been genotyped

with the Illumina HumanHap550 quad genome-wide SNP geno-

typing platform (Illumina) by the Wellcome Trust Sanger Institute

(WTSI, Cambridge, UK) and the Laboratory Corporation of Amer-

ica (LCA). Samples were excluded on the basis of incorrect sex

assignment, abnormal heterozygosity (<0.320 or >0.345 for

WTSI data; <0.310 or >0.330 for LCA data), high missingness

(>3%), cryptic relatedness (>10% identity by descent), and non-

European ancestry (detected by multidimensional scaling anal-

ysis). After QC, 500,527 SNP loci were available for the directly

genotype dataset.

Imputation

Imputation was performed with a joint reference panel of variants

discovered through whole-genome sequencing (WGS) in the

UK10K project35 along with known variants taken from the

1000 Genomes reference panel. We developed additional func-

tionality in IMPUTE236 so we could use each reference panel to

impute missing variants in their counterparts before ultimately

combining them together. Following Gaunt et al.,8 before imputa-

tion we performed strict filtering by using Hardy-Weinberg equi-

librium p > 5 3 10�7 and minor allele frequency (MAF) > 0.01.

After imputation, we converted the dosages to best-guess geno-

types and filtered to keep only variants with an imputation quality

score R 0.8 and MAF > 0.01.

Phenotypes

The 14 phenotypes analyzed in this study are as follows. At the

ALSPAC clinic, subjects aged 7 years (mean age: 7.5, range:

7.1–8.8) were measured; height was measured to the nearest

0.1 cm with a Harpenden stadiometer (Holtain Crosswell), and

weight was measured to the nearest 0.1 kg on Tanita electronic
592 The American Journal of Human Genetics 101, 590–602, Octobe
scales. Body mass index (BMI) was calculated as (weight

[kg])/(height [m]).2 Blood pressure was measured with a Dinamap

9301 vital monitor using the appropriate cuff size by trained staff.

Two readings of both systolic and diastolic blood pressure (SBP and

DBP, respectively) were taken when the study participants were at

rest, and the mean of each was used as a measurement in our

analysis.

Non-fasting blood samples were taken from participants who

attended the clinic at age 10 years (mean age: 9.9, range:

8.9–11.5). Plasma lipid concentrations (total cholesterol [TC],

triglycerides [TG], and high-density lipoprotein cholesterol

[HDL]) were measured by modification of the standard Lipid

Research Clinics Protocol with enzymatic reagents for lipid deter-

mination.37 Low-density lipoprotein cholesterol (LDL) concentra-

tion was subsequently calculated with the Friedwald equation38 as

follows:

LDLc ¼ TC� ðHDLcþ TG30:45Þ

Very-low-density lipoprotein cholesterol (VLDL) concentration

was calculated as follows:

VLDLc ¼ TC� ðHDLcþ LDLcÞ

Apolipoprotein A (Apo A1) and apolipoprotein b (Apo B) were

measured by immunoturbidimetric assays (Roche). Interleukin 6

(IL-6) and adiponectin weremeasured by enzyme-linked immuno-

sorbent assay (R&D Systems). High-sensitivity C-reactive protein

(CRP) was measured by an automated particle-enhanced immuno-

turbidimetric assay (Roche). Leptin was measured in house by a

linked immunosorbent assay that had been validated against com-

mercial methods.39 All assay coefficients of variation were <5%.
Statistical Analysis
We undertook an mQTL-wide association study (MWAS) to

evaluate the association between variants known to influence

DNA methylation (referred to hereafter as mQTL) and each trait

in turn. This was decided over a conventional epigenome-wide

association study (EWAS) (i.e., evaluating the association between

methylation levels at CpG sites and traits) given that ALSPAC had

a larger proportion of individuals with genotype data than with

450K data after phenotypes were merged.

All mQTLs previously identified in ARIES were considered for

this analysis, and the methods have been described in detail previ-

ously.8 In brief, to discover mQTLs, Gaunt et al.8 used a linear

regression model adjusted for age, sex, bisulphite conversion

batch, the top ten ancestry principal components, and cell counts

to evaluate the associations of 8,074,398 imputed genetic variants

against each of the 395,625 eligible methylation probes. We

filtered methylation probes for exclusion on the basis of evalua-

tions by Naeem et al.40 by using their criteria of overlapping

SNPs at CpG probes, probes that map to multiple locations and

repeats on the 450K array. We applied a conservative multiple-

testing correction to define mQTLs (p < 1.0 3 10�14). This

threshold was selected because it equates to a false-positive rate

of 0.2% after a Bonferroni correction is applied to account for

the number of tests undertaken previously in ARIES. Furthermore,

this strict threshold reduces the risk of MR analyses suffering from

weak instrument bias. Full details on the mQTL analysis can be

found in the study by Gaunt et al.8

The mQTL discovery study used the COJO-slct routine in GCTA

to identify independent mQTLs, which was important to ensure

that variants used as instruments were independent for
r 5, 2017



Figure 2. Analysis Pipeline to Evaluate Explanations for Observed Associations between mQTLs and Trait Outcomes
This flowchart provides an overview of the analysis plan in this study for evaluating four different explanations that might explain trait-
associated mQTLs.
downstream MR analyses. We excluded mQTLs associated with a

CpG site that was more than 1 Mb away (known as trans-mQTLs),

therefore leaving mQTLs that were associated only with a nearby

CpG site (known as cis-mQTLs). This was to reduce the possibility

of pleiotropy in our analysis given that variants associating with

methylation at multiple CpG sites across the epigenomemight in-

fluence independent biological pathways simultaneously. This left

37,812 independent mQTL eligible for analysis.

The mQTLs were analyzed sequentially with each trait by linear

regression with adjustment for age and sex. We also performed a

sensitivity analysis adjusting for the first ten principal compo-

nents to evaluate whether population stratification was influ-

encing our results in this analysis, although we did not anticipate

this given previous evaluations of population structure in the

ALSPAC cohort.41 Results were plotted on a Manhattan plot

with code derived from the qqman R package.42 Scripts to generate

this plot are available at the location specified in the Web

Resources.

Mendelian Randomization Analysis
Observed associations between genotype and traits that survived a

stringent multiple-testing threshold (i.e., p< 0.05/number of tests

undertaken) were then analyzed by MR. We performed this anal-

ysis to estimate the potential causal effect of DNA methylation

on cardiovascular traits, given that we anticipated observing

evidence of association after having already undertaken an

MWAS. MR was undertaken by two-stage least-squares (2SLS)

regression with DNA methylation as our exposure, phenotypic

trait as our outcome, and the relevant mQTL as our instrumental

variable. Measures of DNA methylation were initially taken from

the childhood time point in ARIES (mean age, 7.5 years; standard

deviation, 0.15) because this was the closest time point to pheno-
The America
type measurements. Follow-up analyses were also undertaken

withmethylation data from the birth time point (with cord blood)

and the adolescent time point (mean age, 17.1 years; standard

deviation, 1.01). We used the R package ‘‘systemfit’’43 to obtain

causal effect estimates with 2SLS.

We replicated observed effects by undertaking a two-sample MR

analysis (2SMR)44 with estimated effects between genetic variants

and associated traits obtained from published studies. Moreover, a

two-sample framework removes any potential bias encountered in

the discovery analysis as a result of the existence of effects on both

methylation and traits in the same sample. When observed effects

for sentinel mQTL were not available from published studies, we

used variants in LD with these SNPs instead (r2 > 0.8).

Figure 1 illustrates the four possible explanations investigated

where evidence of a causal effect was observed by MR. Figure 2

provides an overview of our approach to investigate these explana-

tions. To robustly test explanation 2, we performed the reverse MR

analysis, evaluating whether the cardiovascular trait influenced

DNA methylation levels at the CpG site of interest. Instruments

for this analysis were identified with the NHGRI-EBI GWAS Cata-

log.45 Relevant GWASs for IL-6 were not available at the time of

analysis and so we identified instruments on the basis of the find-

ings from Naitza et al.46 (p < 5.0 3 10�8). A p value greater than

0.05 indicated that explanation 2 was unlikely in each instance.

Bivariate Fine Mapping
Bivariate fine mapping was undertaken with FINEMAP47 at each

locus detected in the previous analysis. For each variant at a locus,

FINEMAP generates a Bayes factor that reflects the likelihood that

the variant is the underlying causal variant at this region. Bivariate

finemapping requires all variants at a locus to be finemappedwith

two different effect estimates: (1) observed effects between SNPs
n Journal of Human Genetics 101, 590–602, October 5, 2017 593



Table 1. Results of Linear Regression Analysis between Genetic Variants and Traits

SNP Gene CpG Trait Sample Size Beta SE p Value % Explained

rs266772 ADIPOQ cg05578595 adiponectin (ng/mL) 4,248 �0.992 0.070 1.72 3 10�44 4.51%

rs687621 ABO cg21160290 IL-6 (pg/mL) 4,241 �0.265 0.022 1.15 3 10�31 3.05%

rs13375019 LEPR cg04111102 CRP (mg/L) 4,251 �0.213 0.022 2.65 3 10�22 2.20%

rs7549250 IL6R cg02856953 IL-6 (pg/mL) 4,241 �0.176 0.022 9.71 3 10�16 1.40%

rs169109 ADIPOQ cg05578595 adiponectin (ng/mL) 4,248 �0.167 0.022 1.44 3 10�14 1.34%

rs541041 APOB cg25035485 Apo B (g/L) 4,251 �0.209 0.028 3.76 3 10�14 1.32%

rs7528419 SORT1 cg00908766 Apo B (g/L) 4,251 �0.196 0.026 4.63 3 10�14 1.30%

rs625145 APOA1 cg04087571 Apo A1 (g/L) 4,251 0.200 0.027 9.78 3 10�14 0.94%

rs174544 FADS1 cg19610905 total cholesterol (mmol/L) 4,250 �0.143 0.023 8.61 3 10�10 0.86%

rs6749422 ADCY3 cg01884057 BMI 6,076 0.109 0.018 1.28 3 10�9 0.55%

Abbreviations are as follows: SNP, single-nucleotide polymorphism; gene, most likely affected gene; CpG, 450K probe ID; trait, associated trait; sample size, sam-
ple size for this effect; beta, observed effect size (units in standard deviations); SE, standard error of the effect size; p value, p value for observed effect; and %
explained, proportion of trait variance explained by mQTLs.
and DNA methylation and (2) observed effects between SNPs and

outcome phenotypes. Given that we initially pruned all mQTL

effects to identify independent loci, we included only variants

that were in high LD (r2 R 0.8) with the sentinel SNP for each

association signal before applying FINEMAP with default settings.

Interpretation of these results is therefore based on at least one

underlying causal variant at each loci, given that follow-up ana-

lyses are necessary for evaluating whether multiple causal variants

might be contributing to observed effects. Posterior probabilities

to reflect the likelihood of multiple causal variants were calculated

with FINEMAP.

We performed this analysis to evaluate explanation 3, that the

mQTL analyzed might simply be in LD with the putative causal

variant for the phenotypic trait. This was necessary because

when the relationship between DNA methylation at a CpG site

and the outcome trait is evaluated, there could be only one valid

instrumental variable (i.e., the mQTL at this region). Bivariate

fine mapping in this instance therefore evaluates whether the

causal mQTL at a locus is likely to be the same causal variant for

the observed effect on the outcome trait. However, it does not

rule out the possibility that a single variant influences DNA

methylation and an outcome trait through independent biolog-

ical pathways (i.e., explanation 4).

Concordance between the top SNPs for the two sets of fine-map-

ping analyses would suggest that explanation 1 might be respon-

sible for the observed effect and that DNA methylation resides on

the causal pathway between variant and phenotypic trait. Bivar-

iate fine mapping using effect estimates for both methylation

and cardiovascular traits was advantageous in this study because

we were able to obtain estimates for all SNPs in our dataset without

having to rely on summary statistics. The concordance rate was

defined as identifying the same variant from both analyses as

causal after accounting for chance. We achieved this by identi-

fying the rank of the top variant from themethylation-based anal-

ysis in the list of variants from the cardiovascular-trait analysis and

then dividing that rank by the total number of variants in the

region. A concordance rate < 0.05 suggested that explanation

3 was unlikely. To further evaluate explanation 3, we also used

the JLIM approach.27 Although JLIM doesn’t specify the likely

causal variant at a region, it can be used to examine whether the

underlying causal variation is responsible for the observed effects
594 The American Journal of Human Genetics 101, 590–602, Octobe
on both methylation and cardiovascular traits in a two-sample

framework. Prior probabilities were not integrated into these ana-

lyses with FINEMAP, which allowed for a more direct comparison

with results of the JLIM method.
Impact of mQTLs on Gene Expression and Histone

Modification
We applied 2SMR to evaluate the relationship between methyl-

ation and expression by using observed effects between SNPs

and expression in relevant tissue types from the Genotype-Tissue

Expression (GTEx) Consortium.48 When observed effects for

sentinel mQTLs were not available from GTEx, we identified a

surrogate SNP instead (r2 > 0.8).

We also assessed whether any mQTLs were in LD (r2 > 0.8) with

any previously reported histone quantitative trait loci (hQTLs).49

When this was true, we applied 2SMR to evaluate the causal

relationship between methylation and histone modification at

these loci. This analysis was for exploratory purposes because

some aspects of the relationship between DNA methylation and

histone modification remain unexplored, despite progress by

recent studies.50,51
Functional Informatics
We applied the Variant Effect Predictor (VEP)52 to the top-ranked

mQTLs from the bivariate fine-mapping analysis to calculate their

predicted consequence. We obtained enhancer annotations from

the Illumina 450K annotation file and additional regulatory data

from Ensembl53 to evaluate whether mQTLs and CpG sites were

located within regulatory regions of the genome. Because we

were interested in cardiovascular and lipid traits in this study, we

used tissue-specific data from the Roadmap Epigenomics Proj-

ect54 to infer whether the potential causal variants and CpG sites

at each locus resided within histone mark peaks and regions of

DNase hypersensitivity. These tissues were adipose-derivedmesen-

chymal stem cells, adipose nuclei, aorta, fetal heart, left ventricle,

right atrium, and right ventricle, which we selected because of

their biological relevance in cardiovascular etiology.

We performed enrichment analysis to test whether lead SNPs

and associated CpG sites were located in regulatory regions more

than can be accounted for by chance. To calibrate background
r 5, 2017



Figure 3. Manhattan Plot Illustrating Observed Association between mQTLs and Cardiovascular Traits
Points represent –log10 p values (y axis) for genetic variants according to their genomic location (x axis). Effects that survived the
multiple-testing threshold in our analysis (p < 9.45 3 10�8 – represented by the red horizontal line) are colored according to their asso-
ciated trait and annotated according to the most likely affected gene.
expectations, we obtained matched SNPs by using snpSNAP55 and

identified matched CpG sites by randomly sampling 450K array

probes that were in similar regions across the genome (i.e., within

CpG islands or first exons, etc.). We investigated enrichment by

using the hypergeometric test and accounted for multiple testing

for by randomly sampling control SNPs and probes and re-

running analyses for 10,000 iterations.
Results

Mining for Putative Causal Influences of Methylation on

Cardiovascular Traits

We undertook 529,368 tests to evaluate the association

between previously identified mQTLs in ARIES with each

trait in turn (37,812 unique variants 3 14 traits). We iden-

tified ten independent association signals, which, after

multiple-testing correction, provided strong evidence of

association (p < 9.45 3 10�8 [i.e., 0.05/529,368]); these

can be found in Table 1 and Figure 3. Two of these effects

were observed at the same CpG site near ADIPOQ (MIM:

612556), although they were identified with two indepen-

dent mQTLs (r2 ¼ 0.02).

The ten sentinel mQTLs identified in this analysis were

strongly associated with DNA methylation only at a prox-

imal CpG site and not any other CpG sites in the epige-

nome, according to our findings in ARIES. A summary of

these mQTLs can be found in Table S1. We repeated our

analysis with adjustment for the first ten principal compo-

nents, although results did not suggest that population

stratification was an issue in this analysis (Table S2).

Inferring Putative Causal Relationships

We obtained estimates of putative causal effects between

methylation and cardiovascular traits at each locus in the

MR analysis by using mQTLs as our instrumental variables

(Table 2). Effect estimates suggested a direct relationship

between methylation and cardiovascular traits at the

IL6R (MIM: 147880), APOB (MIM: 107730), SORT1 (MIM:

602458), and ADCY3 (MIM: 600291) loci (i.e., increased

methylation results in an observed increase in the cardio-
The America
vascular trait), whereas an inverse relationship was

observed at the ADIPOQ, ABO (MIM: 110300), LEPR

(MIM: 601007), APOA1 (MIM: 107680), and FADS1

(MIM: 606148) loci (i.e., increased methylation causes a

decrease in cardiovascular-trait levels). Because two inde-

pendent mQTLs were contributing to methylation

at ADIPOQ, we undertook multivariate MR, which

provided strong evidence of an inverse relationship

between methylation and adiponectin at this locus

(�0.548 ng/mL per standard deviation change in methyl-

ation levels, standard error ¼ 0.107, p ¼ 3.79 3 10�7).

Taking these putative associations forward, we evaluated

the potential for reverse causal relationships by performing

MR of the cardiovascular traits against the DNA methyl-

ation levels by using SNPs fromGWASs as our instruments.

There was no evidence to suggest that the putative associ-

ations were due to the cardiovascular traits influencing the

methylation levels (Table S3), and therefore these effects

cannot be attributed to explanation 2. We note, however,

that statistical power to detect an effect in this direction

is low.

Using methylation data from two other time points

across the life course (at birth and adolescence [mean

age: 17.1 years]), we observed directions of effect consis-

tent with those observed with data from the childhood

time point (mean age: 7.5 years) (Tables S4 and S5). We

observed evidence of association at each locus in this anal-

ysis except when we used cord data for the ABO and IL6R

loci. We reproduced similar effects for nine of the ten

mQTLs on cardiovascular traits by using effect estimates

from published studies (Table 3). The only locus for which

we were not able to find a replication effect estimate was

the mQTL at IL6R, because it was not in LD (r2 > 0.8)

with any previously published findings for IL-6.
Evaluating Putative Causal Variants to Infer Mediated

Effects

There was concordance among the top SNPs in the bivar-

iate fine-mapping analyses for IL-6 (ABO locus), BMI
n Journal of Human Genetics 101, 590–602, October 5, 2017 595



Table 2. Results of MR Analysis between DNA Methylation and Traits

SNP Gene CpG Trait Sample Size Beta SE p Value

rs266772 ADIPOQ cg05578595 adiponectin (ng/mL) 646 �0.846 0.168 5.93 3 10�7

rs687621 ABO cg21160290 IL-6 (pg/mL) 646 �0.293 0.061 1.77 3 10�6

rs13375019 LEPR cg04111102 CRP (mg/L) 646 �0.265 0.076 0.001

rs7549250 IL6R cg02856953 IL-6 (pg/mL) 646 0.468 0.175 0.008

rs169109 ADIPOQ cg05578595 adiponectin (ng/mL) 646 �0.363 0.121 0.003

rs541041 APOB cg25035485 Apo B (g/L) 646 0.298 0.114 0.009

rs7528419 SORT1 cg00908766 Apo B (g/L) 646 0.271 0.064 2.74 3 10�5

rs625145 APOA1 cg04087571 Apo A1 (g/L) 646 �0.301 0.082 2.68 3 10�4

rs174544 FADS1 cg19610905 total cholesterol (mmol/L) 646 �0.363 0.121 0.003

rs6749422 ADCY3 cg01884057 BMI 846 0.106 0.048 0.028

Abbreviations are as follows: SNP, single-nucleotide polymorphism; gene, most likely affected gene; CpG, 450K probe ID; trait, associated trait; sample size, sam-
ple size for this effect; beta, observed effect size (units in standard deviations); SE, standard error of the effect size; and p value, p value for observed effect.
(ADCY3 locus), and adiponectin (ADIPOQ common locus),

given that the variant with the largest Bayes factor was the

same for the effect on DNAmethylation and outcome trait

(Tables S6). These results lend support to the hypothesis

that DNA methylation resides on the causal pathway be-

tween genetic variants and outcome traits (i.e., explana-

tion 1). There was a lack of concordance for the results

for adiponectin (ADIPOQ low-frequency locus), Apo

B (SORT1 locus), total cholesterol (FADS1 locus), and CRP

(LEPR locus), suggesting that the mQTLs might be in LD

with the putative causal variant for the phenotypic trait

(i.e., explanation 3). Results of the JLIMmethod supported

evidence at the ADIPOQ and ADCY3 loci, although we

were unable to further evaluate signals at the ABO and

IL6R regions because GWAS summary results were unavai-

lable for IL-6 (Table S7). Posterior probabilities from

FINEMAP suggested that there wasmost likely only a single

variant influencing trait variation for each observed effect

(Table S7).
Investigating the Role of DNA Methylation in Gene

Expression and Histone Modification

To further dissect the relationship between DNA methyl-

ation and complex traits, we sought to evaluate the influ-

ence of the methylation levels on local gene expression.

Using data from the GTEx Consortium, we observed

evidence of a causal relationship between methylation

and expression at eight of the ten loci (Table 4). Effect esti-

mates suggest an inverse relationship (i.e., increased

methylation results in decreased gene expression) at the

ADIPOQ (low-frequency signal) and APOA1 loci, whereas

a direct relationship was observed at the other six loci

(i.e., increased methylation results in increased gene

expression). We were unable to identify a surrogate variant

(r2 > 0.8) to obtain a suitable effect estimate at the LEPR

and ADIPOQ (common signal) loci.

mQTLs at the APOA1 and IL6R loci were also in high LD

with previously reported hQTLs according to findings by
596 The American Journal of Human Genetics 101, 590–602, Octobe
Grubert et al.49 Results from our 2SMR analyses to evaluate

the influence of methylation levels on histone modifica-

tion provided strong evidence of a causal effect as well as

an inverse relationship in each instance (Table S8).

Functional Informatics

To better understand the functional role underlying these

putative causal associations, we evaluated variants and

CpG sites to discern whether they reside within regulatory

regions across the genome. An overview of the regulatory

data used can be found in Table S9. In this analysis, we

used the lead variants based on the bivariate fine-mapping

analysis (using effect estimates on DNA methylation) and

used the VEP to predict their functional consequences

(Table S10).

Every associated CpG site identified in this study resides

within multiple histone mark peaks according to tissue

data from the Roadmap Epigenomics Project (Table S11).

All sites, with the exception of the CpG site near ADIPOQ,

also reside in either enhancer, promoter, or promoter

flanking regions. There was strong evidence of enrichment

of regulatory annotations for both SNPs and CpG sites,

which supports previous evidence that they are likely to

have a causal downstream effect on phenotypic variation

(Table S12).
Discussion

We have designed a framework for evaluating the putative

causal influences of DNA methylation on complex traits

and disease via MR. For observed effects on cardiovascular

traits that appear to be caused by methylation, we used

bivariate fine mapping and JLIM to evaluate whether the

putative causal variant influencing methylation was the

same causal variant responsible for influencing the trait.

The bivariate fine mapping suggested that cardiovascular

traits might be influenced by altered DNA methylation

levels at the ABO, ADCY3, ADIPOQ, APOA1, APOB, and
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Table 3. Results of Replication Analysis via Two-Sample MR

SNP Gene Trait CpG CpG Effect (SE) Trait Effect (SE) 2SMR Effect (SE) p Value Study

rs266772 ADIPOQ Adiponectin
(ng/mL)

cg05578595 0.982 (0.103) �0.629 (0.143) �0.641 (0.160) 6.50 3 10�5 UK10K Consortium
(TwinsUK individuals
only)35

rs687621 ABO IL-6 (pg/mL) cg21160290 0.912 (0.036) �0.245 (0.026) �0.269 (0.03) 9.16 3 10�19 Naitza et al.46

rs2211651* LEPR CRP (mg/L) cg04111102 0.682 (0.036) �0.170 (0.022) �0.249 (0.035) 3.09 3 10�13 Reiner et al.56

rs541041 APOB Apo B (g/L) cg25035485 0.627 (0.053) 0.098 (0.013) 0.156 (0.025) 2.05 3 10�10 Kettunen et al.57

rs169109 ADIPOQ Adiponectin
(ng/mL)

cg05578595 0.383 (0.036) �0.052 (0.005) �0.136 (0.017) 2.58 3 10�15 Dastani et al.58

rs7528419 SORT1 Apo B (g/L) cg00908766 �0.980 (0.037) �0.089 (0.012) 0.091 (0.013) 9.20 3 10�13 Kettunen et al.57

rs625145 APOA1 Apo A1 (g/L) cg04087571 �0.884 (0.044) 0.057 (0.013) �0.064 (0.015) 1.84 3 10�5 Kettunen et al.57

rs174544 FADS1 total cholesterol
(mmol/L)

cg19610905 �0.655 (0.031) 0.047 (0.004) �0.072 (0.007) 9.73 3 10�25 Willer et al.59

rs6749422 ADCY3 BMI cg01884057 0.908 (0.026) 0.068 (0.007) 0.075 (0.008) 8.05 3 10�21 Felix et al.60

Abbreviations are as follows: SNP, single-nucleotide polymorphism; gene, most likely affected gene; trait, associated trait; CpG, 450K probe ID; CpG effect, effect
estimate of SNP on methylation; trait effect, effect estimate of SNP on trait; 2SMR effect, effect estimates from two-sample MR analysis; p value, p value for
observed effect; study, published study where effect estimates for traits were obtained; and SE, standard error. The asterisk indicates that a surrogate variant
was used (r2 > 0.8).
IL6R regions. However, JLIM supported findings only at

the ADCY3 and ADIPOQ loci. This provides compelling ev-

idence that DNA methylation might play a mediatory role

for the effects at these loci. 2SMR analyses provided evi-

dence that DNA methylation levels influenced gene

expression at these loci, suggesting that functional effects

for the causal variants induce a coordinated system of ef-

fects. This was important to demonstrate, given that hav-

ing only single valid instruments available for CpGs

meant that we were unable to robustly show that variants

were not influencing methylation and traits through hor-

izontal pleiotropy. This limitation has also been encoun-

tered by other attempts to evaluate the relationship

between DNA methylation and complex traits.16 Never-

theless, the ability to indicate putative mediating molecu-

lar phenotypes between genetic factors and complex traits

is particularly attractive for therapeutic evaluation of drug

targets.

The ABO locus identified in this study has been associ-

ated with many different traits and diseases by previous

studies,25,61,62 and there is also evidence implicating

eQTLs as putative causal SNPs for this effect.63 Here, we

provide evidence that DNA methylation might reside

along the causal pathway to these observed effects (MR ef-

fect estimate: 0.29 [standard error ¼ 0.06] change in trait

per standard deviation change in methylation), although

its widespread effect also raises the possibility of horizontal

pleiotropy. A deletion (rs200533593) was found to be the

putative causal variant for both the observed effect on

DNA methylation and phenotypic variation.

The observed effect of genetic variation at ADCY3 on

BMI is a relatively recent finding.60,64,65 In this study, our

bivariate fine-mapping analysis suggests that an intergenic

variant (rs6737082) might be responsible for the observed

signal that is mediated through DNA methylation at this
The America
locus (MR effect estimate: 0.11 [0.05]). Furthermore, a

variant in LD with rs6737082 (rs713586, r2 ¼ 0.80) has

been previously reported to regulate DNA methylation at

this location in adipose tissue.7

Two independent effects associated with adiponectin

were detected near ADIPOQ in our study. The common

variant signal was located upstream of ADIPOQ within

RFC4 but associated with DNA methylation levels prox-

imal to ADIPOQ, which can help explain this variant’s

observed effect on adiponectin (MR effect estimate:

�0.36 [0.12]). Concordance in the bivariate fine-mapping

analysis suggested that a non-coding transcript variant

(rs169109) was responsible. The lead SNP from the ADIPO-

Gen Consortium66 at this locus (rs6810075) is neither an

mQTL nor in high LD with rs169109 (r2 ¼ 0.20), suggest-

ing that these two association signals influence adiponec-

tin levels by alternative biological mechanisms. The low-

frequency variant signal was previously detected by the

UK10K project,35 although bivariate fine-mapping results

at this locus suggest that the causal mQTL was in LD

with the trait-associated variant.

The CpG site associated with Apo A1resides between

APOA1 and APOA1-antisense (APOA1-AS), a negative tran-

scriptional regulator of APOA1 that has been shown to in-

crease APOA1 expression both in vitro and in vivo.67 The

highest ranked mQTL according to our bivariate fine map-

ping using estimates with DNA methylation is in a pro-

moter region upstream of APOA1, suggesting that it might

be more likely to influence APOA1 than APOA1-AS. GWAS

association signals for lipid traits have been previously re-

ported at this locus.68,69 However, given the evidence in

this study of a causal effect with DNA methylation (MR ef-

fect estimate:�0.30 [0.08] g/L per SDmethylation level), it

is possible that these are downstream effects of the

observed effect on Apo A1 variation.
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Table 4. Results of Analysis Investigating Causal Relationship between Methylation and Expression via Two-Sample MR

SNP Gene CpG CpG Effect (SE) eQTL Effect (SE) eQTL p Value eQTL Tissue 2SMR (SE) p Value

rs116552240* ABO cg21160290 0.912 (0.036) 0.548 (0.069) 1.316 3 10�13 adipose 0.601 (0.079) 3.28 3 10�14

rs6737082 ADCY3 cg01884057 0.908 (0.026) 0.208 (0.047) 1.456 3 10�5 adipose 0.229 (0.052) 1.13 3 10�5

rs266772 ADIPOQ cg05578595 0.982 (0.103) �0.339 (0.078) 1.893 3 10�5 adipose �0.345 (0.087) 7.67 3 10�5

rs688456 APOA1 cg04087571 �0.884 (0.044) 0.420 (0.095) 1.789 3 10�5 heart �0.475 (0.11) 1.58 3 10�5

rs541041 APOB cg25035485 �0.627 (0.053) �0.370 (0.066) 6.326 3 10�8 heart 0.590 (0.116) 4.06 3 10�7

rs646776 SORT1 cg00908766 �0.980 (0.037) �1.240 (0.105) 1.556 3 10�20 liver 1.265 (0.117) 4.01 3 10�27

rs174559 FADS1 cg19610905 �0.655 (0.031) �0.707 (0.089) 5.629 3 10�13 pancreas 1.079 (0.145) 1.04 3 10�13

rs10908837 IL6R cg02856953 �0.303 (0.039) �0.120 (0.020) 4.171 3 10�9 whole blood 0.396 (0.083) 2.05 3 10�6

Abbreviations are as follows: SNP, single-nucleotide polymorphism; gene, most likely affected gene; CpG, 450K probe ID; CpG effect, effect estimate of SNP on
methylation; eQTL effect, effect estimate of SNP on expression according to GTEx data; eQTL p, p value for eQTL from GTEx; eQTL tissue, tissue type for observed
effect according to GTEx; 2SMR effect, effect estimates from two-sample MR analysis (standard deviation units per standard deviation units); p value, p value for
2SMR effect; and SE, standard error. The asterisk indicates that a surrogate variant was used (r2 > 0.8).
The signal at the IL6R locus influencing IL-6 has been

previously associated with a range of traits related to respi-

ratory and cardiovascular health.70–72 Our results suggest

that genetic variation at IL6R influences DNA methylation

at this region, which in turn could have a downstream ef-

fect on the amount of IL-6 (MR effect estimate: 0.47 [0.18]

pg/mL per standard deviation methylation level). Further-

more, this association signal was not in LD with a previ-

ously reported missense variant at this locus (rs2228145,

r2 ¼ 0.47 in ALSPAC), which was also supported by find-

ings from an in-depth functional study of this variant.73

Evidence from the GTEx Consortium suggests that

mQTLs at all eight of the loci with available expression

data overlap eQTL effects, which serves as a form of inde-

pendent replication of the relationships discovered

through DNA methylation levels. It is biologically plau-

sible that a variant’s impact on DNA methylation levels

might have a downstream effect on gene expression along

the causal pathway to disease,74,75 which could help

explain these observations. Effects at four loci in particular

appear to be biologically plausible in this regard, as the

likely genes influenced by these variants are involved in

the protein synthesis of the associated trait (i.e., ADIPOQ

with adiponectin, APOB with Apo B, APOA-I with Apo

A1, and IL6R with IL-6). Furthermore, each CpG site

identified in this study resides within histone mark peaks

in adipose tissue according to data from the Roadmap Epi-

genomics project. There was evidence of enrichment for

these observations in comparison to background CpG sites

which are located in similar genomic regions.

As with any study that applies single-instrument MR to

investigate causal relationships in epidemiology, an impor-

tant limitation is the inability to disentangle potential hor-

izontal pleiotropic effects, where the same causal variant

influences both exposure (i.e., DNA methylation) and

outcome (i.e., cardiovascular trait) through independent

pathways. To reduce the possibility of this, we selected

mQTLs that were influencing only proximal CpG sites

and not others in the epigenome, given that trans-mQTLs
598 The American Journal of Human Genetics 101, 590–602, Octobe
would be more prone to influence traits via alternative

biological mechanisms. Although ARIES includes CpG

sites that have two or three independent instruments

(such as the CpG site at ADIPOQ in this study), distinguish-

ing mediation from pleiotropy at these loci remains a

challenging endeavor. Future studies that continue to un-

cover multiple mQTLs per CpG across the genome (as

well as across various tissue types) should facilitate ana-

lyses that are able to more reliably address concerns of

pleiotropy by using methods such as MR-Egger76 and me-

dian- and mode-based MR estimators.77,78 These findings

should also facilitate analyses that model the joint effects

of multiple causal mQTLs at loci across the genome rather

than evaluate mQTL effects independently of each other,

as we did in this study.

Weak instrumental variables and reverse causation are

other factors that can bias MR analyses. Our analysis is

unlikely to have suffered from the former because each

mQTL had a large effect on DNA methylation in cis (p <

1.0 3 10�14) and was robustly associated with traits that

we were able to replicate by using results from studies

with large population samples. We conducted analyses to

evaluate whether reverse causation was an issue in our

study (i.e., trait variation caused changes in DNA methyl-

ation at each locus). Although our results suggest that

this was not the case, it is important to note that the statis-

tical power to detect causal effects in this direction is low

because the sample size available for the SNP effects on

CpG levels was small.

In this study, we demonstrated the value of 2SMR to MR

analyses using summary statistics.44,79 This allowed us to

provide evidence of replication for the observed effects in

our study as well as investigate the relationship between

DNA methylation and expression along the causal

pathway to disease. This approach has the attractive

advantage of enabling the interrogation of the potential

epigenetic-complex trait interplay on a much wider scale

by foregoing the requirement that ‘‘omic’’ data and pheno-

types are measured in the same sample.
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Supplemental Data include 12 tables and can be found with this

article online at https://doi.org/10.1016/j.ajhg.2017.09.003.
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