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Coastal ecosystems are considered buffer zones for the discharge of land-derived

nutrients without accounting for potential negative side effects. Hence, there is an urgent

need to better understand the ecological assembly and dynamics of the microorganisms

that are involved in nitrogen (N) cycling in such systems. Here, we employed

two complementary methodological approaches (i.e., shotgun metagenomics and

quantitative PCR) to examine the distribution and abundance of selected microbial genes

involved in N transformations. We used soil samples collected along a well-established

pristine salt marsh soil chronosequence that spans over a century of ecosystem

development at the island of Schiermonnikoog, The Netherlands. Across the examined

soil successional stages, the structure of the populations of genes involved in N cycling

processes was strongly related to (shifts in the) soil nitrogen levels (i.e., NO−, NH+),3 4

salinity and pH (explaining 73.8% of the total variation, R2 = 0.71). Quantification

of the genes used as proxies for N fixation, nitrification and denitrification revealed

clear successional signatures that corroborated the taxonomic assignments obtained

by metagenomics. Notably, we found strong evidence for niche partitioning, as revealed

by the abundance and distribution of marker genes for nitrification (ammonia-oxidizing

bacteria and archaea) and denitrification (nitrite reductase nirK, nirS and nitrous oxide

reductase nosZ clades I and II). This was supported by a distinct correlation between

these genes and soil physico-chemical properties, such as soil physical structure, pH,

salinity, organic matter, total N, NO−, NH+ and SO2−, across four seasonal samplings.3 4 4

Overall, this study sheds light on the successional trajectories of microbial N cycle

genes along a naturally developing salt marsh ecosystem. The data obtained serve as a

foundation to guide the formulation of ecological models that aim to effectively monitor

and manage pristine and impacted salt marsh areas. Such models should account for

the ecology as well as the historical contingency of N cycling communities.

Keywords: microbial succession, functional diversity, soil chronosequence, ecosystem functioning,

metagenomics, qPCR
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INTRODUCTION

Salt marshes rank among the most productive and valuable
ecosystems in the world (Deegan et al., 2012; Bowen et al., 2013),
yet they are sensitive and vulnerable to climate change and direct
anthropogenic disturbances (Gedan et al., 2009). It is recognized
that salt marshes have a major role in protecting coastal areas, for
instance by removing land-derived compounds (Valiela and Cole,
2002; Sousa et al., 2008). Of particular importance, the runoff
and groundwater discharges of agricultural fertilizers largely
contribute to the influx of nutrients into these systems. In the
case of nitrogen (N), these are either incorporated into plant
biomass or removed by the local microbiota via nitrification and
denitrification (Verhoeven et al., 2006). However, recent studies
have indicated that such influxes of N forms can overwhelm
the capacity of salt marshes to effectively remove N without
deleterious effects to the ecosystem (Turner et al., 2009; Deegan
et al., 2012). This occurs due to the increase in plant aboveground
biomass that reduces the bank-stabilization of the roots. As a
result, there is a progressive reduction of the geomorphic stability
of the system, which leads to creek-bank collapse and salt marsh
loss (Deegan et al., 2012).

In spite of their relevance, the current knowledge regarding
the distribution of genes that govern nitrogen cycling in salt
marshes and the effects of nitrogen input is still limited
(Hamersley and Howes, 2005; Koop-Jakobsen and Giblin, 2010;
Vieillard and Fulweiler, 2012; Kinney and Valiela, 2013). For
instance, whereas the ammonia-oxidizing bacteria (AOB) were
found to respond to N fertilization, ammonia-oxidizing archaea
(AOA) remained unaffected (Peng et al., 2013). Moreover,
no significant effect was found on the nitrogen-fixing and
denitrifying bacterial communities when exposed to added N
(Piceno and Lovell, 2000; Lovell et al., 2001; Bowen et al.,
2011). Of particular importance, and lacking in these studies,
is a thorough understanding of the distribution and drivers of
N cycling communities in a naturally developing salt marsh
ecosystem. Obtaining and inferring the genetic potential of these
communities in such a system is critical, as it provides a baseline
against which one can weigh the impact of N input with respect to
community assemblage. Such a baseline will enhance our ability
to manage the impacted areas at a landscape level.

A promising approach to assess the spatiotemporal patterns

of N cycling communities relies on the use of chronosequences

of soil formation. These model systems enable to study the

dynamics of ecosystem development across multiple time scales
(Walker et al., 2010), offering a setting to contrast and compare
the patterns of community assembly across different successional
stages. However, the study of spatiotemporal patterns of
microbial communities in chronosequences is relatively recent,
and it is under debate with respect to the drivers of community
assembly and how these ultimately influence microbially-driven
processes (Sigler and Zeyer, 2002; Nemergut et al., 2007;
Brankatschk et al., 2011). As outlined by several authors,
microbial communities exhibit successional trajectories that
are tractable. In particular, recent studies have successfully
disentangled the interplay between abiotic variables (edaphic
factors) and the ecological mechanisms structuring the microbial

communities across natural and disturbed soil chronosequences
(Ferrenberg et al., 2013; Dini-Andreote et al., 2015).

In the present study, we investigated the N cycling microbial
communities along a well-established chronosequence of soil
formation. We specifically focused on the distributions and
identities of organisms that are predicted to be involved in
selected steps of the N cycle. A suite of complementary
approaches was used to determine how the structure and
functional capabilities of the target soil microbial communities
shift over more than a century of natural ecosystem development.
We thus analyzed soil sampled from five successional stages
along replicated plots, representing distinctly vegetated sites
under different abiotic conditions (i.e., tidal regime, salinity,
pH and soil nutrients) (see Supplementary Figure 1 and
Supplementary Table 1). The functional potentials of the
communities were characterized by shotgun metagenomic
profiling, whereas seasonal variations of specific N cycling genes
were measured using quantitative PCR assays. We quantified
the genes encoding (1) subunits of enzymes involved in N
fixation (nitrogenase reductase, nifH), (2) nitrification (ammonia
monooxygenase, amoA, of both AOB and AOA) and (3)
denitrification (nitrite reductase nirS and nirK and nitrous oxide
reductase nosZ from clades I and II). The whole dataset was
used to test the overarching hypothesis that the genes involved
in the different N transformations change not only in abundance
but also with respect to the identity of the taxonomic groups
along the ecological succession. We also examined whether the
shifts are related to important abiotic variables, such as primary
net productivity (Brankatschk et al., 2011) and soil nutrient
status, i.e., levels of carbon (Liu and Greaver, 2010) and nitrogen
(LeBauer and Treseder, 2008).

MATERIALS AND METHODS

Sampling Location and Data Collection
Soil samples were collected along a well-established salt marsh
chronosequence located at the island of Schiermonnikoog
(N53◦30′′ E6◦10′′), The Netherlands (Supplementary Figure 1).
This chronosequence is formed through the constant deposition
of silt and clay particles (carried by sea currents and winds
directed west-to-east) that accumulate on top of the underlying
sandflats, causing the island to progressive extend eastwards
(Olff et al., 1997; Schrama et al., 2012). Salt marsh age at
each stage of the succession was estimated from topographic
maps, aerial photographs and the thickness of the sediment
layer accumulating on top of the underlying sand layer. In
addition, permanent plots have monitored the space-for-time
replacement in this system for more than 20 years (Van Wijnen
et al., 1997). For this study, five different soil successional stages
were identified and estimated as 0, 5, 35, 65 and 105 years
of soil development in 2012 (the sampling year) (referred in
the main text and figures as “stages 0, 5, 35, 65, 105”). Soil
samples were collected in May, July, September and November
2012. Triplicate plots (5 × 5m2) were established at each
identified soil successional stage (separated 25m from each
other) at the same base of elevation—position at the initial
elevation gradient on the bare sand flats with a base elevation
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of 1.16m ± 2.2 cm (mean ± SE) above Dutch ordinance level.
Importantly, differences in the base elevation reflect differences
in inundation regimes, therefore having strong influences on
the dynamics and the fate of succession (Olff et al., 1997). Soil
samples were collected in each plot by randomly taking 20 soil
cores (5 cm diameter, 10 cm depth), using aseptic techniques,
to represent a composite sample. Samples were placed in a
sterile plastic bag, sealed and transported to the laboratory
(<24 h). All samples were sieved (4 mm mesh size) under sterile
conditions and stored at −20◦C for total DNA extraction and
at 4◦C for physico-chemical measurements. For each sample,
we quantified the soil physical structure (silt:clay:sand %) and
chemical content of total organic matter (SOM), nitrate (N-
NO−

3 ), ammonium (N-NH+
4 ), sulfate (S-SO2−

4 ), sodium (Na)
and pH. For detailed information on the soil physico-chemical
analyses see Dini-Andreote et al. (2014). For soil physico-
chemical properties see Supplementary Table 1. Total soil DNA
was extracted from 0.5 g of soil using the MoBio PowerSoil
DNA isolation kit (MoBio Laboratories, Carlsbad, CA, USA).
Extracted DNA samples were quantified using the Quant-iT
PicoGreen dsDNA assay kit (Invitrogen, Carlsbad, CA, USA) on
a TECAN infinite M200 Pro (Maennedorf, Switzerland) plate
reader reading at 485 nm excitation and 530 nm emission. All
samples were standardized at equal concentrations for further
analysis.

Shotgun Metagenomics
Shotgun metagenomic sequencing was conducted following
the procedure described in the Illumina TrueSeq DNA
sample preparation protocol. The triplicated samples for each
successional stage collected in July 2012 were subjected to
shotgun metagenomic profiling (n = 15). Seasonal variations in
the abundance ofmarker genes were later interrogated by primer-
specific quantitative PCR assays (see below). In brief, aliquots
of each DNA sample were mechanically sheared before entering
the Illumina library generation protocol. Libraries were size-
selected to 170–180 bp using an agarose gel. Sequencing was
carried out in a paired-end (2 × 100 bp) Illumina HiSeq2000
run at the Argonne National Laboratory in the Next Generation
Sequencing Core (NGS). Raw, unassembled Illumina reads were
paired, dereplicated and quality filtered in MG-RAST (Meyer
et al., 2008). Putative open reading frames on the quality-
controlled sequences were called using FragGeneScan (Rho et al.,
2010). Metagenomes were functionally annotated using BLASTX
searches against the KEGG (Kyoto Encyclopedia of Genes and
Genomes) Orthology (KO) identifiers (Kanehisa et al., 2008).
For the taxonomic assignments of selected KOs, sequences of
specific KOs were retrieved and annotated against the M5nr (an
MD5 nonredundant database) (Wilke et al., 2012) using the best-
hit organismal classification method. Functional and taxonomic
annotations of sequences were carried out with a maximum e-
value cutoff of 10−5, a minimum percent identity cutoff of 60%
and a minimum alignment length cutoff of 15. All sequence data
have been deposited in the MG-RAST database. The reference
IDs of the metagenomes are provided in Supplementary Table 2.

Quantitative PCR Analysis
Functional marker genes encoding subunits of enzymes involved
in N fixation (nifH), nitrification [amoA of ammonia-oxidizing
bacteria (AOB) and archaea (AOA)] and denitrification (nirS,
nirK and nosZ clades I and II), in addition to the phylogenetic
marker 16S rRNA gene for bacteria and archaea, were
quantified using quantitative PCR (qPCR) assays run on
a ABI Prism 7300 Cycler (Applied Biosystems). For the
qPCR assays, all collected samples were considered, including
seasonal time points (May, July, September and November)
(n = 60). We applied Sybr Green-based quantification assays
using the Power SYBR Green PCR Master Mix (Applied
Biosystems, Frankfurt, Germany). Reaction volumes were 25
µL containing one-fold PCR master mix. PCR conditions,
efficiencies, primers and calibration standards used are shown
in Table 1. The specificity of the amplification products
was confirmed by melting curve analyses, and the expected
sizes of the amplified fragments were checked in a 1.5%
agarose gel. Two independent quantitative PCR assays were
performed for each gene and four no-template controls
were run for each qPCR assay, which resulted in null
or negligible values. Standard curves were generated over
five orders of magnitude, i.e. from 103 to 108 copies of
template, using a plasmid containing specific marker genes
(Table 1). The qPCR efficiency (E) was calculated according to
the equation E = [10(−1/slope)−1]. Possible inhibitory effects
were checked by spiking samples with a range of known
concentrations of the plasmid. No apparent inhibition was
observed for any of the quantified genes. Data were first
calculated as log copy numbers per gram of dry-weight soil
(Supplementary Figure 2). Since the sizes of the bacterial and
archaeal communities change significantly over the successional
gradient (see Supplementary Figure 2), our data are shown as
the ratio between the abundance of each N cycling gene and its
respective organismal abundance (either bacteria or archaea), as
a percentage.

Statistical Analyses
Cross-soil comparisons were made using Bray-Curtis
similarities calculated based on normalized and square-root
transformed count matrices of unique KOs. As the size
of the metagenomic libraries varied stochastically by soil
sample (Supplementary Table 2), raw counts were normalized
to metagenomic library size to account for inconsistent
sample depth. This facilitated comparison between soils prior
to Bray-Curtis calculations. Principal coordinate analyses
(PCO) and PERMANOVA (Anderson, 2001) were performed
using the homonymous routines in PRIMER6+ (Clarke
and Gorley, 2006) for the complete functional community
profiling data (KO annotations) and a selection of KOs
specifically involved in N cycle transformations (i.e., Nitrogen
metabolism [PATH:ko00910]). Significance levels calculated in
PERMANOVA were determined with 103 permutations. All
measured soil physico-chemical properties were checked for
normality using the Shapiro-Wilk test and further log(x+1)
transformed—with the exception of pH—to improve normality
and homoscedasticity for multivariate statistical analyses. The
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TABLE 1 | Quantitative PCR reaction composition, thermal cycling, source of calibration standards and primer references used in this study.

Target gene Reaction conditions Source of Primer name and reference

calibration

(standard curve)

F- and BSA DMSO Denaturation Annealing Elongation qPCR

R-primer (µg µl−1) (µg µl−1) time at time and time at efficiency

(pmol µl−1) 95◦C (s) temperature 72◦C (s) (%)

nifH 0.26 0.6 0 60 27 s at 55◦C 60 94 Bradyrhizobium

liaoningense

FPGH19/ PolR (Simonet

et al., 1991; Poly et al., 2001)

amoA (AOA) 0.7 0.6 0 40 30 s at 56◦C 60 98 Soil clone Arch amoA-1F/Arch amoA-2R

(Francis et al., 2005)

amoA (AOB) 0.2 0.6 0 45 45 s at 60◦C 45 100 Soil clone amoA 1F/amoA 2R

(Rotthauwe et al., 1997)

nirK 0.3 0.6 30 15 30 s at 58◦C 30 99 Pseudomonas

fluorescens

nirK876/nirK5R (Braker et al.,

1998; Henry et al., 2004)

nirS 0.3 0.6 30 30 60 s at 57◦C 45 98 Pseudomonas

aeruginosa

nirS cd3af/nirS R3cd

(Michotey et al., 2000;

Throback et al., 2004)

nosZ clade I 1 0.6 0 15 30 s at 60◦C 30 102 Pseudomonas

aeruginosa

nosZ2F/nosZ2R (Henry et al.,

2006)

nosZ clade II 2 0.6 0 30 30 s at 54◦C 45 107 Gemmatimonas

aurantiaca

nosZ-II-F/nosZ-II-R (Jones

et al., 2013)

Total bacteria 0.8 0.4 0 27 60 s at 62◦C 30 106 Serratia

plymuthica

FP16S/RP16S (Bach et al.,

2002)

Total archaea 0.3 0.4 0 20 30 s at 60◦C 27 104 Soil clone Arch-967F/Arch-1060R

(Cadillo-Quiroz et al., 2006)

AOB, ammonia-oxidizing bacteria; AOA ammonia-oxidizing archaea.

correlation strength and significance between the structure of the
N cycling communities and the soil metadata were determined
using RELATE (a nonparametric Mantel type test), run with 103

permutations. We further used a nonparametric multivariate
regression between normalized soil physico-chemical parameters
and the Bray-Curtis similarity matrix of N cycling communities
implemented as distance-based linear modeling (DistLM)
(McArdle and Anderson, 2001), run with 103 permutations. The
model was built using a step-wise selection procedure and the
adjusted R2 selection criterion. We further used BEST to select
for the best combination of less-colinear factors—previously
selected by Marginal DistLM—to be incorporated in the models
using the “forward” procedure within DistLM. The selected
soil parameters were subsequently used to build a constrained
ordination plot using the best-fitted model in a distance-based
redundancy analysis (dbRDA) (Legendre and Anderson,
1999). These analyses were conducted using PRIMER6 and
PERMANOVA+ (PrimerE Ltd, Ivybridge, UK).

For this study, the functional metagenomic analyses focused
on the genetic potential of communities involved in N
transformations. Marker genes (KOs) were selected as previously
reported (Lauro et al., 2011; Llorens-Marès et al., 2015) (see
Supplementary Table 3 and Figure 2, for a full description).
Predicted KOs that segregated significantly between successional
stages were identified using random forest analysis (Breiman,
2001) with 1,000 trees followed by the Boruta algorithm for
feature selection (average z-scores of 1,000 runs > 4) (Kursa

and Rudnicki, 2010). These analyses were carried out in R using
the packages RandomForest v4.6-7 and Boruta v3.0. Heatmaps
were constructed based on z-score transformed functional
annotations to improve normality and homogeneity of the
variances. The genetic potentials to perform specific steps in the
N biogeochemical cycle of the salt marsh soils were assessed using
the combination of these selected marker genes (Lauro et al.,
2011; Llorens-Marès et al., 2015), where each gene combination
is averaged (multiple enzymes/subunits in the same conversion
step) or summed (multiple pathways performing the same
conversion step). For a detailed list of selected KOs involved in
each step of the N cycle, see Supplementary Table 3.

RESULTS

Structure of N Cycling Communities in a
Developing Salt Marsh Chronosequence
We analyzed the shotgun metagenomic data from the soil
samples taken from triplicate plots along five successional
stages (sampling time: July; n = 15) in the Schiermonnikoog
chronosequence. The sequenced soil metagenomes averaged
1.9 ± 0.7 (mean ± SD) gigabases, with average read lengths
of 165 bp. Of the total read counts in each metagenome,
12.6 ± 0.9% could be assigned to KOs and thus to specific
functions (e-value 10−5) (see Supplementary Table 2 for
details). Principal coordinate analysis (PCO) of the annotated
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KOs revealed a clear separation of functional community
structures when compared across different soil successional
stages (Figure 1A) (PERMANOVA, Pseudo-F= 6.77, P < 0.001;
for pairwise PERMANOVAs between consecutive soil stages,
see Supplementary Table 4). From the annotated KOs, we then
selected a set of marker genes that report on specific N cycle
transformations (i.e., nitrogen metabolism [PATH:ko00910]).
Differences in functional community structures occurred in a
similar manner when only the KOs involved in N cycling were
considered (Figure 1B) (PERMANOVA, Pseudo-F = 7.79, P <

0.001; see also Supplementary Table 4).
The investigated soil successional stages had distinct edaphic

properties, as previously described in detail (Dini-Andreote
et al., 2014, 2015, 2016; see Supplementary Table 4). We thus
examined a possible coupling of the N cycling data with the
soil metadata. First, the functional community structures were
weakly but significantly correlated with soil physico-chemical
properties (RELATE ρ = 0.249, P = 0.013). Analyses of the
individual soil parameters by Marginal DistLM resulted in the
assertion that (levels of) sodium (Pseudo-F= 3.66, Proportion=

0.22), nitrate (Pseudo-F = 2.37, Proportion = 0.15), ammonium
(Pseudo-F = 2.31, Proportion = 0.15), pH (Pseudo-F = 1.95,
Proportion = 0.13) and sand content (Pseudo-F = 1.58,
Proportion = 0.10) were the best predictors of the structures
of the N cycling communities. Collectively, these selected
parameters correlated marginally with the N cycling community
structures (BEST ρ = 0.262, P = 0.049). The best-fitted DistLM
model, using the “forward” procedure of selected predictor
variables, as shown by dbRDA, explained 73.8% of the total
variation with an adjusted R2 of 0.71 (Figure 1C).

Genetic Potentials and Taxonomic
Assignment of N Cycling Communities in
Salt Marsh Soils
We used the relative abundances of selected marker genes
obtained bymetagenomics as proxies for their potential relevance
(i.e., genetic potential) in different steps of the N cycle.

We start by depicting the normalized relative abundance
of selected marker genes involved in N transformations
across the different successional stages. The data showed
that genes related to N assimilation and mineralization
encompassed the major proportion of genes present across all
successional stages (61.8 ± 3.4% and 22.3 ± 1.3%, respectively)
(Supplementary Table 5, Figure 2A). Three genes encoding
glutamate dehydrogenase (involved in Nmineralization; K00260,
K00261, K00262) were found to have a differential distribution
along the succession (Boruta feature selection average z-score
of 1,000 runs > 4). The taxa involved in N mineralization
were affiliated with heterotrophic free-living organisms at
early successional stages, mainly Actinomycetales (7.8%) and
Burkholderiales (7.6%), whereas at stage 105 the Actinomycetales
(10.6%) were followed by Rhizobiales (7.9%), encompassing
the genera Bradyrhizobium, Methylobacterium, Rhizobium and
Xanthobacter. Here, Burkholderiales encompassed only 4.5%
of the total gene sequences. Next, the potential for nitrogen
fixation (nif genes) was observed in all soil sites, significantly
segregating across these and peaking at stage 35 (2.4%)
followed by the late successional sites (stages 65 and 105,
1.4 and 0.6%, respectively). The taxonomic assignment of the
nif genes was partitioned mostly among Desulfuromonadales
(23.5%) and Desulfovibrionales (21.3%) at the initial soil stage.
However, as succession proceeds, the relative contribution
of N-fixing Desulfuromonadales increased, reaching 31.8% at
stage 35 and peaking at the soil stages 65 and 105 (43.9
and 42.1%, respectively). Genes involved in nitrification were
present at low abundances in all soil sites (0.18 + 0.07%),
followed by ammonification (0.7 + 0.19%). The levels of the
latter genes peaked at stage 0 (1.02%), with the underlying
taxa being mostly affiliated to the orders Myxococcales
(29.4%) (generaAnaeromyxobacter,Myxococcus, Sorangium) and
Desulfuromonadales (16.9%) (genera Geobacter and Pelobacter).
Genes involved in denitrification (5.2+ 0.8%) were found across
all successional stages. They peaked in intermediate site (stage 35)
at 6.22%, which was followed by stage 0 at 5.8% and stage 105 at
5.0%. The main denitrifying taxa were Flavobacteriales (17.2%)
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FIGURE 2 | Distribution of genes involved in the N cycle in salt marsh soils. (A) Distribution of KOs involved in N cycle transformations in samples collected

along the salt marsh soil chronosequence. The heatmap displays the relative abundance (row z-scores) of KOs across all samples (triplicate plots per stage of

succession). KOs that differentially segregated across soil successional stages were identified by random forest analysis with Boruta feature selection (average

z-scores of 1000 runs > 4) (see Supplementary Table 6). Circles are proportional to the relative abundance of each gene family in all samples. (B) Genetic potential

for different steps of the N cycle in salt marsh soils using a combination of normalized marker genes (see Materials and Methods and Supplementary Table 3 for

details). Arrow sizes are proportional to the genetic potential of the nitrogen transformation (100%, see Supplementary Tables 3, 7 for details). Differences across

successional stages of each step are shown by z-score heatmap lines indicated in each N transformation.

and Cytophagales (7.4%) at stage 0. At stage 35, Flavobacteriales
(15.6%), Bacteroidetes Order II Incertae sedis belonging
to the family Rhodothermaceae (genera Rhodothermus and
Salinibacter) (5.5%) were prominent, whereas Flavobacteriales
(19.8%) and Rhizobiales (5.5%) prevailed at stage 105. We also
found significant differences in the distribution and abundances

of genes encoding enzymes involved in nitrate reduction
(napA, periplasmic nitrate reductase; napB, cytochrome c-type
protein). These genes peaked at stage 35 (4.4%), with the
underlying taxa being mostly affiliated to Alteromonadales
(10.9%), Burkholderiales (8.1%), Campylobacterales (9.2%) and
Puniceicoccales (7.7%). We further examined the genetic

Frontiers in Microbiology | www.frontiersin.org 6 June 2016 | Volume 7 | Article 902

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Dini-Andreote et al. Ecology of Nitrogen Cycling in Salt Marsh

potential of genes involved in N cycle transformations in
salt marsh soils using a previously described approach (for
details see Lauro et al., 2011; Llorens-Marès et al., 2015;
Supplementary Table 3 and Figure 2B).

Quantitative Assessment and Seasonal
Variation of N Cycling Gene Abundances
Quantitative PCR (qPCR) was used to examine the abundances
of nitrogen fixers (nifH), ammonia-oxidizing bacteria (AOB-
amoA), ammonia-oxidizing archaea (AOA-amoA) and
denitrifiers (nirK, nirS and nosZ clades I and II). In order
to address potential within-stage seasonal variations in the
N cycling marker gene abundances, quantifications were
performed in soil samples collected at five successional stages
(triplicate plots per stage) along the soil chronosequence, at four
sampling times (samples collected in May, July, September and
November 2012) (n = 60). Importantly, the population sizes
of bacteria and archaea (as estimated by the copy numbers of
16S rRNA genes) varied over 10- to 100-fold across all stages
of the chronosequence and seasonal variations were observed
in some cases (Supplementary Figure 2). Given such variation,
our data are shown as the ratio between the abundance of each
N cycling gene and its respective organismal abundance (either
bacteria or archaea), in percentage (termed “relative abundance”)
(Figure 3). For absolute quantifications of each individual gene,
shown as log copy numbers per gram of dry-weight soil, see
Supplementary Figure 2.

Nitrogen Fixation (Bacterial nifH Gene)
The relative abundance of the nifH gene peaked at the
intermediate site (stage 35, seasonal variation 51 ± 18%,
average ± SD), followed by stage 65 (23 ± 9%), being lowest
at stages 5 (5 ± 3%) and 105 (4–6%) and slightly higher at
stage 0 (16 ± 13%). Interestingly, these results corroborate
the quantifications of this gene obtained by comparative
metagenomics (see Figure 2). Seasonal variations in the N fixer
population sizes were observed for stages 0, 35 and 105 (ANOVA
with Tukey’s post-hoc test, P < 0.05) (see Figure 3 for details).
We also found the relative abundance of the nifH gene to weakly
but significantly correlate (ρ = 0.27, P < 0.05) with variations in
sodium concentration across the samples (Figure 4).

Ammonia Oxidation (Bacterial AOB-amoA and

Archaeal AOA-amoA)
The abundance of the ammonia monooxygenase gene was
quantified for both AOB and AOA. Independent of the stage
of succession, the abundance of AOB was always higher than
that of AOA (AOB:AOA ratios of >1). Moreover, the abundance
of total bacteria was higher than that of archaea by ca. 1,000-
fold (Supplementary Figure 2). Normalization of amoA gene
numbers as relative abundance in the respective organismal
groups indicated that the AOB accounted for a small proportion
of the total bacterial communities (ca. 0.5–1.5%), being higher at
stage 35 and displaying seasonal variations at stage 5 (Figure 3B).
Conversely, the relative abundance of the amoA gene in the
archaeal communities ranged from ca. 16 to 77%, displaying a
slightly opposite pattern, i.e., being proportionally lowered at

the intermediate stage (stage 35) and displaying only significant
seasonal variations at the initial soil site (stage 0) (Figure 3B).
These differences were also evidenced by the distinct correlations
of the patterns with the soil metadata. Whereas AOB correlated
with the soil chemical parameters (i.e., sulfate, sodium, total N,
NH+

4 and NO−
3 contents; ρ-values ranging from 0.22 to 0.34,

P < 0.05), AOA correlated with soil physical structure (i.e., silt
and clay content, ρ-values ca. 0.33, P < 0.01; sand content, ρ =

−0.32, P < 0.01). For the latter, only marginal correlations were
found with SOM (ρ = 0.22, P < 0.05), sulfate concentrations
(ρ = 0.28, P < 0.05) and soil pH (ρ =−0.3, P < 0.05) (Figure 4).

Denitrification (Bacterial nirS, nirK and nosZ Clade I

and Clade II)
To quantify denitrifying bacteria, genes encoding nitrite
reductase (nirK and nirS) and nitrous oxide reductase (nosZ clade
I and II) were used. The relative abundances of the nirK and nirS
genes were clearly influenced by the conditions prevailing at the
local sites. This was evidenced by the opposing relation of their
respective distributions with the soil metadata. In brief, whereas
nirK was positively and significantly correlated with parameters
prevailing at initial soil stages (higher pH and sand content)
(ρ = 0.70 and 0.69, respectively; P < 0.01), nirS correlated
with conditions prevailing at late successional stages (higher
nutrient contents—SOM, total N, NH+

4 and NO−
3 —SO2−

4 and
sodium concentrations, and silt and clay contents) (ρ-values
ranging from 0.32 to 0.55, P < 0.01) (Figure 4). The relative
abundances of these genes also revealed opposite trends along
the successional gradient: nirK peaked at the initial soil sites,
ranging from ca. 0.21 ± 0.14 to 0.42 ± 0.16% (average ± SD)
at stages 0 and 5, respectively; whereas nirS was highest at the
intermediate and late sites, ranging from ca. 0.58 ± 0.28 to
1.06 ± 0.6% at stage 105 and 65, respectively (Figure 3). For
the seasonal within-stage variations of these genes, see Figure 3.
We also quantified the abundance of the nitrous oxide reductase
gene (nosZ), which has been recently shown to occur across two
distinct phylogenetic clades (see Discussion for details). Across
all successional stages, we found nosZ clade I to occur at ca. 10-
fold higher abundances than clade II (Figure 3C). The relative
abundances of these clades did not display a clear inversely
distributed pattern along the chronosequence. However, they
clearly correlated with different soil parameters. For instance,
whereas nosZ clade I correlated with (shifts in) soil chemical
properties (i.e., sodium, SOM, sulfate and N—total, nitrate and
ammonium) (ρ-values ranging from 0.32 to 0.4, P < 0.01) (pH, ρ
= −0.35, P < 0.01), nosZ clade II correlated only with variations
in soil physical structure: sand (ρ = 0.32, P < 0.01), silt (ρ =

−0.32, P < 0.01) and clay (ρ = −0.33, P < 0.01). Both nosZ
clades also displayed different within-stage seasonal variations
along the chronosequence, providing additional support for their
niche partitioning (Figure 3C).

DISCUSSION

The increasing discharges of agricultural fertilizers into coastal
ecosystems have been shown to cause a progressive transition
of creek-edge and bay-edge marshes into mudflats and wider
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FIGURE 3 | Relative abundances of N cycling genes in five successional stages of the salt marsh chronosequence. Data encompass four sampling times

(May, July, September and November 2012). Values are shown as the ratio between the abundance of each N cycling gene and the respective organismal abundance

(either bacteria or archaea), in percentage. (A) N fixation (nifH gene), (B) Nitrification [amoA gene of ammonia-oxidizing bacteria (AOB) and archaea (AOA)] and (C)

denitrification (nirS, nirK and nosZ clades I and II genes). Bars represent average values ± standard error (SE) (n = 3) and letters above each bar describe seasonal

variations within each stage of succession (ANOVA with Tukey’s post-hoc test, P < 0.05).

creeks worldwide (MacGarvin, 2001; Tiner et al., 2006; Deegan
et al., 2012). Thus, to prevent such ecological distress, it is
crucial to examine the capacity of salt marshes to cycle N
and to deal with exogenous N influxes (e.g., Lovell et al.,
2001; Bowen et al., 2011; Peng et al., 2013). In spite of the
urgency, the current knowledge of how microbial N cycling
populations are ecologically assembled in salt marshes is still
rudimentary. Here, we examined the successional signatures
of microbial N-cycling genes across a naturally developing
salt marsh chronosequence. Previous studies have made use

of these soil sites to examine the patterns and mechanisms
driving bacterial and fungal community assembly and dynamics
at the phylogenetic level (see Dini-Andreote et al., 2014, 2015,
2016). In order to build on this knowledge, we here examined
the distribution of genes predicted to encode nitrogen cycling
enzymes in this system. Our results highlight whether or
not the observed shifts relate to important abiotic variables.
Last, we provided evidence that metabolically redundant genes
involved in the nitrification and denitrification pathways are
niche partitioned.
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FIGURE 4 | Correlational analyses between the relative abundance of

each N cycling gene and the soil physico-chemical properties. The

heatmap displays significant positive (ρ > 0) and negative (ρ < 0) Spearman’s

correlations. *P < 0.05 and **P < 0.01.

Nitrogen Input at the Initial Stages of the
Soil Chronosequence
Emerging terrestrial systems are often characterized by low
nutrient content and scarce vegetation (Sigler and Zeyer,
2002; Brankatschk et al., 2011). In the Schiermonnikoog
chronosequence, the initial soil sites (stages 0 and 5) had less
than 20% vegetation cover, whereas the intermediate (stage
35) and late sites (stages 65 and 105) were densely vegetated
(Schrama et al., 2012). Thus, the initial input of organic materials
by root exudates and plant litter was presumably low. Hence,
N fixation, as well as autotrophic CO2 incorporation, at early
successional sites might be critical for primary production (Kohls
et al., 1994). Interestingly, using metagenomics and direct qPCR,
our data revealed a low genetic potential for N fixation and
low nifH gene copy numbers at stages 0 and 5 (Figures 2B,
3A). This finding corroborates those of Brankatschk et al.
(2011) and Nemergut et al. (2007), who also found that the
lowest N fixation rates occurred in the bulk soil of the initial,
rather than later, stages of soil development at the forefields
of the Damma glacier in Switzerland and the Puca glacier
in Peru. Moreover, we did not find a systematic shift in the
taxonomic distribution of organisms holding N fixation genes.
For instance, there was a clear (relative) dominance of anaerobic
sulfate reducers as N fixers throughout the current study,
as organisms belonging to the Desulfuromonadales increased
progressively along the successional gradient (see Results for
details). In addition, whereas free-living autotrophic N-fixers
such as cyanobacteria were expected to abound in the early
stages (Bolhuis and Stal, 2011; Fan et al., 2015), anaerobic N
fixers, specifically belonging to the Desulfuromonadales and
Desulfovibrionales, prevailed. This finding potentially relates to
our sampling strategy, which focused on the “bulk soil” part of the
initial stages, whereas the referenced studies focused onmicrobial
mats.

In contrast to the (relatively) low genetic potential for N
fixation, uptake of organic nitrogen compounds that came
about as a result of mineralization seems to be the major N
cycling step at the early stages of this ecosystem development.
This is supported by the high abundance of glutamate
dehydrogenase genes, which are proxies for mineralization.
These genes were mostly affiliated with heterotrophic free-living
organisms like Actinomycetales and Burkholderiales at the early
stages, but changed systematically as succession proceeded (see
Results for details). In line with these arguments, it is worth
mentioning that (marine-derived) C substrates are constantly
being provided for mineralization at these initial soil sites
(Schrama et al., 2012). These external amendments of organic
materials occur mostly through the adjective effect of the
tides (i.e., daily cycles of inundation and water retraction).
This process has not only been shown to carry high loads
of marine-derived nutrients toward the coast (Schrama et al.,
2012), but it may also have been the key cause of the
largely stochastic assembly of the microbial communities at
the early stages of this chronosequence (Dini-Andreote et al.,
2015).

Evidence for Niche Partitioning in Nitrifying
and Denitrifying Communities
Nitrification in soils is often rate-limited by the first step, the
oxidation of ammonia, which is driven by AOB and AOA.
Across all successional stages, the abundance of the genes
involved in nitrification was very low in the metagenomes,
yet they were detected at a higher resolution in the qPCR
assays. Interestingly, the abundance distributions of nitrification
genes across successional stages displayed opposite patterns,
providing an indication that niche partitioning influences the
abundances of amoA from AOB and amoA from AOA across
the chronosequence (Figure 3B). This finding feeds the current
debate on the drivers of the AOB and AOA in soils (e.g.,
Sterngren et al., 2015). Mounting evidence supports a clear niche
partitioning between these organismal groups. For instance, the
physiological characterization of culturable ammonia oxidizers
has pointed toward their different tolerances to ammonium
concentrations—whereas AOA isolates are inhibited at 2–20
nM (Tourna et al., 2011; Hatzenpichler, 2012), AOB tolerate a
concentration of up to 50–1000 nM (Koops and Pommerening-
Röser, 2006). In our study, AOB always outnumbered AOA
(AOB:AOA ratios of >1), which is consistent with other data
from estuarine and coastal studies (e.g., Santoro et al., 2008;
Caffrey et al., 2010; Wankel et al., 2011). Further support for
niche partitioning was found in the significant correlations
between AOB abundance and sulfate concentration (Spearman,
ρ = 0.34, P < 0.01), and the marginal positive correlations with
other soil chemical parameters (see Figure 4 for details). As for
the AOA abundances, they correlated mostly with soil physical
structure (i.e., sand:silt:clay content). Collectively, our data are
consistent with a suite of other studies that indicate, in order of
importance, that dissolved oxygen, temperature (directly affected
by the soil structure), soil salinity, sulfate and N availability exert
significant influences on the abundance and composition of the
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ammonia-oxidizing communities in soils (e.g., Francis et al.,
2003; Ward et al., 2007; Santoro et al., 2008; Moin et al., 2009).

Denitrification, a facultative respiratory pathway in which
nitrate is reduced to nitrogen gas through the intermediates
nitrite, nitric oxide and nitrous oxide, is a wide-spread process
carried out by many bacterial and archaeal taxa (Jones and
Hallin, 2010). Here, we initially focused on the abundance of
genes for two functionally equivalent, yet structurally distinct,
nitrate reductase encoding the reduction of nitrite to nitric
oxide (nirK and nirS). We found a clear separation of the
nirS and nirK types based on the habitat categories studied,
which supports the idea that habitat selective factors exert a
differential effect on organisms with different nir types (Hallin
et al., 2009). Despite the overrepresentation of nirK over nirS
across all successional stages (nirK:nirS ratios of >1 at the
level of gene copies per gram of soil), we found their relative
abundances to vary in a distinct manner along the succession.
That is, nirK peaked at the initial soil sites (stages 0 and 5),
and steadily decreased over time, whereas nirS showed the
opposite pattern (Figure 3C). These findings are in striking
conflict with the idea that nirS types dominate in marine habitats
whereas nirK prevails in terrestrial systems (Jones and Hallin,
2010). Salinity has been suggested as an effective modulator
of nir types (Jones and Hallin, 2010), and one explanation
for this discrepancy might be the progressive accumulation of
sodium (Na) in later stages of the chronosequence. Specifically,
the initial soil sites had relatively low levels of Na (ca. 1.8–
2.4% by weight) as compared with the intermediate and late
successional stages (ca. 13.8–14.4%) (Dini-Andreote et al.,
2014, 2015; Supplementary Table 1). The opposing correlational
patterns of nir types and the soil parameters (including Na)
(Figure 4) supports the idea of niche partitioning. This finding
is also consistent with Smith and Ogram (2008) suggesting
that denitrifying communities harboring different nir types
respond differently to environmental gradients. Moreover, we
also revealed the habitat preferences of two phylogenetic clades of
nitrous oxide reductase (nitrous oxide conversion to dinitrogen;
gene nosZ clades I and II). The nosZ clade I encompasses a well-
known clade of nitrous oxide reductase (Henry et al., 2006),
whereas clade II is a recent discovery (Sanford et al., 2012; Jones
et al., 2013). As the latter occurs mostly in bacterial genomes
that contain truncated versions of other denitrification genes
(Graf et al., 2014), nosZII harboring organisms consume rather
than produce N2O, which has critical implications for N cycling
in soils (Jones et al., 2014; Domeignoz-Horta et al., 2015). In
the salt marsh chronosequence, the abundance of nosZI was
ca. 10-fold higher than that of clade II across all successional
stages (Figure 3C). This contrasts with previous findings, where
the mean relative abundance of both clades was reported to be
similar (Jones et al., 2013). Moreover, the relative abundances
of nosZI and nosZII correlated with different soil parameters
(Figure 4), thus supporting the contention of niche partitioning.
Jones et al. (2013) and Domeignoz-Horta et al. (2015), using
structural equationmodeling and correlational analyses, reported
the chemical and physical properties that drove the distribution
of these clades. Whereas in Jones et al. (2013) clade I was
most sensitive to shifts in soil texture, shifts in soil chemistry

were a more important driver of clade II. In the light of our
divergent findings (Figure 4) and given the infancy of the studies
on the ecology of these clades, we argue that a thorough study
of the factors influencing their distributions across a range
of soil biomes with contrasting biotic effects and historical
contingencies is needed.

CONCLUSION AND METHODOLOGICAL
CONSIDERATIONS

This study provides a resolved profile of selected genes involved
in different steps of the N cycle in salt marsh soils. As
mentioned, understanding the natural variations intrinsic of
such communities and, in doing so, establishing a baseline
genetic profile is required for future management of nitrogen
dynamics in these systems (Turner et al., 2009; Deegan et al.,
2012; Bowen et al., 2013). In particular, we focused on the
reconstruction of community genetic potentials and specific
niche partitioning of selected genes. Through this vantage
point, historical contingency, niche structure and varying abiotic
variables emerged as key drivers of the ecological distribution
and abundance of N cycling genes along the investigated eco-
evolutionary chronosequence. Of particular importance, caution
should be taken in the use of gene quantities as “proxies”
for the respective activities in soils, as the abundance and
structure of the functional communities do not necessarily
reflect their effectiveness (see Brankatschk et al., 2011; Sterngren
et al., 2015). Finally, we argue that future programs aiming to
monitor coastal habitats, and restore impacted ones, may profit
from the methodological and scientific improvements shown
herein. The current robust inventory of N cycle genes and their
implementation in a successional framework in the salt marsh
soils is a key achievement, and the dynamics and patterns we
report can aid in the development of ecological models that aim
to explain ecosystem processes and help the recovery of disturbed
salt marsh ecosystems.

AUTHOR CONTRIBUTIONS

FD-A, JDvE and JFS designed the research; JDvE and JFS
contributed with new reagents and analytical tools; FD-A and
MJLB performed the research and analysed the data; FD-A wrote
the manuscript with comments provided byMJLB, JDvE and JFS.

ACKNOWLEDGMENTS

We thank the “Nederlandse Vereniging voor
Natuurmonumenten” for granting us access to the salt marsh
area at the island of Schiermonnikoog, The Netherlands. We also
thank Irene Marring for technical support, Laurent Philippot
and David Bru for kindly providing the nosZ clade II standard
clone and the optimized protocol and Cyrus AMallon for critical
reading of the manuscript. This research was supported by the
Netherlands Organisation for Scientific Research (NWO) and
the Gratama Foundation.

Frontiers in Microbiology | www.frontiersin.org 10 June 2016 | Volume 7 | Article 902

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Dini-Andreote et al. Ecology of Nitrogen Cycling in Salt Marsh
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Supplementary Figure 1 | Map of the island of Schiermonnikoog, the

Netherlands (N53◦30’ E6◦10’). Dot marks represent the location of the

five soil successional stages established along the chronosequence in

2012 (that is, stages 0, 5, 35, 65 and 105—in years of soil

development). The below panel displays photographs of each plot taken

in July 2012.

Supplementary Figure 2 | Absolute quantifications of N cycling genes at

five successional stages of the salt marsh chronosequence. Data

encompass four sampling times (May, July, September and November 2012).

Values are shown as log copy number per gram of dry-weight (dw) soil.

Supplementary Table 1 | Location and physico-chemical parameters

measured for the samples collected along the salt marsh

chronosequence at the island Schiermonnikoog, The Netherlands.

Sampling was performed in the referred months in the year

of 2012.

Supplementary Table 2 | Characteristics of the metagenomes generated

by Illumina HiSeq2000 for soil samples collected along the salt marsh

chronosequence at the island of Schiermonnikoog, The Netherlands.

Supplementary Table 3 | List of KO IDs involved in N cycle

transformations. The genetic potential of each step was calculated as previously

described (Lauro et al., 2011; Llorens-Marès et al., 2015).

Supplementary Table 4 | Overall and pairwise comparisons of KOs

community profiles across five soil successional stages analyzed using

PERMANOVA (Bray-Curtis distance) with 103 permutations. Abbreviations:

MS, mean sum of squares; SS, sum of squares. ∗∗P ≤ 0.01, ∗P < 0.05.

Supplementary Table 5 | Normalized percentage (%) of annotated KOs

involved in N cycle transformations across metagenomes.

Supplementary Table 6 | Layer decision of KOs involved in N cycle

transformations identified using random forest analysis (Breiman, 2001)

with 1,000 trees followed by the Boruta algorithm for feature selection

(average z-scores of 1000 runs > 4) (Kursa and Rudnicki, 2010).

Supplementary Table 7 | Normalized relative abundance of N cycle

transformations as a proxy of the potential in situ relevance of each step

at different soil stages along succession.
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